ncg

bachelorthesis in physics
git clone git://popovic.xyz/ncg.git
Log | Files | Refs

week1.tex (16785B)


      1 \documentclass[a4paper]{article}
      2 
      3 \usepackage[T1]{fontenc}
      4 \usepackage[utf8]{inputenc}
      5 
      6 \usepackage{mathptmx}
      7 
      8 \usepackage{subcaption}
      9 \usepackage[shortlabels]{enumitem}
     10 \usepackage{amsmath,amssymb}
     11 \usepackage{amsthm}
     12 \usepackage{bbm}
     13 \usepackage{graphicx}
     14 \usepackage[colorlinks=true,naturalnames=true,plainpages=false,pdfpagelabels=true]{hyperref}
     15 \usepackage[parfill]{parskip}
     16 
     17 \usepackage{tikz}
     18 \usetikzlibrary{patterns,decorations.pathmorphing,positioning}
     19 
     20 \usepackage[framemethod=TikZ]{mdframed}
     21 
     22 \tikzstyle{titlered} =
     23     [draw=black, thick, fill=white,%
     24         text=black, rectangle,
     25         right, minimum height=.7cm]
     26 
     27 \newcounter{exercise}
     28 
     29 \renewcommand*\theexercise{Exercise~\arabic{exercise}}
     30 
     31 \makeatletter
     32 \mdfdefinestyle{exercisestyle}{%
     33     outerlinewidth=1em,%
     34     outerlinecolor=white,%
     35     leftmargin=-1em,%
     36     rightmargin=-1em,%
     37     middlelinewidth=1.2pt,%
     38     roundcorner=5pt,%
     39     linecolor=black,%
     40     backgroundcolor=blue!5,
     41     innertopmargin=1.2\baselineskip,
     42     skipabove={\dimexpr0.5\baselineskip+\topskip\relax},
     43     skipbelow={-1em},
     44     needspace=3\baselineskip,
     45     frametitlefont=\sffamily\bfseries,
     46     settings={\global\stepcounter{exercise}},
     47     singleextra={%
     48         \node[titlered,xshift=1cm] at (P-|O) %
     49             {~\mdf@frametitlefont{\theexercise}~};},%
     50     firstextra={%
     51             \node[titlered,xshift=1cm] at (P-|O) %
     52                     {~\mdf@frametitlefont{\theexercise}~};},
     53 }
     54 \makeatother
     55 
     56 \newenvironment{MyExercise}%
     57 {\begin{mdframed}[style=exercisestyle]}{\end{mdframed}}
     58 
     59 \theoremstyle{definition}
     60 \newtheorem{definition}{Definition}
     61 
     62 \theoremstyle{definition}
     63 \newtheorem{question}{Question}
     64 
     65 \theoremstyle{definition}
     66 \newtheorem{example}{Example}
     67 
     68 \theoremstyle{theorem}
     69 \newtheorem{theorem}{Theorem}
     70 
     71 \theoremstyle{theorem}
     72 \newtheorem{lemma}{Lemma}
     73 
     74 \newtheorem*{idea}{Proof Idea}
     75 
     76 \title{University of Vienna\\ Faculty of Physics\\ \vspace{1.25cm}
     77 Notes on\\ Noncommutative Geometry and Particle Phyiscs}
     78 \date{Week 1: 05.02 - 12.02}
     79 \author{Milutin Popovic \\ Supervisor: Dr. Lisa
     80 Glaser}
     81 
     82 \begin{document}
     83 
     84     \maketitle
     85     \tableofcontents
     86     \newpage
     87 
     88 \section{Noncommutative Geometric Spaces}
     89 \subsection{Matrix Algebras and Finite Spaces}
     90 \subsubsection{$*$-Algebra}
     91 \begin{definition}
     92     A \textit{vector space} $A$ over $\mathbb{C}$ is called a \textit{complex, unital Algebra} if, \\
     93     $\forall a,b \in A$ :
     94     \begin{enumerate}
     95         \item
     96             $A \times A \rightarrow A$       \hspace{0.1\textwidth} \textit{bilinear} \\
     97             $(a, b)\ \mapsto \ a\cdot b$
     98         \item
     99             $1a = a1 =a$                     \hspace{0.08\textwidth}  \textit{unital} \\
    100     \end{enumerate}
    101 \end{definition}
    102 
    103 \begin{definition}
    104     A $*$-algebra is an algebra $A$ with a \textit{conjugate linear map (involution)} $*:A\ \rightarrow  A$,
    105     $\forall a, b \in A$ satisfying:
    106     \begin{enumerate}
    107         \item
    108             $(ab)^* = b^*a^*$         \hspace{0.05\textwidth} \textit{antidistributive}
    109         \item
    110             $(a^*)^* = a$                   \hspace{0.1\textwidth} \textit{closure}
    111     \end{enumerate}
    112 \end{definition}
    113 In the following all unital algebras are referred to as algebras.
    114 
    115 \subsubsection{Functions on Discrete Spaces}
    116 Let $X$ be a \textit{discretized topological} space with $N$ points.
    117 Consider functions of a continuous $*$-algebra $C(X)$ assigning values to $\mathbb{C}$, for $f, g \in C(X)$,
    118 $\lambda \in \mathbb{C}$ and $x \in X$ they provide the following structures:
    119 
    120 \begin{itemize}
    121     \item \textit{pointwise linear} \\
    122       $(f + g)(x) = f(x) + g(x)$\\
    123       $(\lambda f)(x) = \lambda (f(x))$
    124     \item \textit{pointwise multiplication} \\
    125         $fg(x) = f(x)g(x)$ \hspace{0.1\textwidth} same as $(fg)(x) = f(x)g(x))$?
    126     \item \textit{pointwise involution} \\
    127         $f^*(x) = \overline{f(x)}$
    128 \end{itemize}
    129 
    130 \begin{question}
    131     Mathematical difference between Topological Discreet Spaces and just Discreet Spaces?
    132 \end{question}
    133 
    134 The author indicates that $\mathbb{C}$-valued functions on $X$ are automatically continuous.
    135 \begin{idea}
    136     CAN WE USE THE METRIC? NO!
    137     We know that $X$ is a \textit{finite discrete space}, meaning in an $\epsilon$-$\delta$ approach
    138     for each $x \in X$ the only $y \in X$, that is small enough is $x$ by itself, which implies
    139     $\epsilon$ is always bigger than zero, thus every function $f:X\ \rightarrow\ \mathbb{C}$ is continuous.
    140 \end{idea}
    141 
    142 \subsubsection{Isomorphism Property}
    143 Furthermore $C(X)$ $*$-algebra is \textit{isomorphic} to a $*$-algebra $\mathbb{C}^N$ with involution
    144 ($N$ number of points in $X$), written as $C(X) \simeq \mathbb{C}^N$.
    145 A function $f:X\ \rightarrow\ \mathbb{C}$ can be represented with $N \times N$ diagonal matrices,
    146 where the value $(ii)$ is the value of the function at the corresponding
    147 $i$-th point ($i = 1,...,N$). The structure is preserved because of the definitions of
    148 matrix multiplication and the hermitian conjugate of matrices.
    149 
    150 \begin{question}
    151     Can isomorphisms between $C(X)$ and $\mathbb{C}^N$ be shown with matrix factorization?
    152 \end{question}
    153     Isomorphisms are bijective preserve structure and don't lose physical information/
    154 
    155 \subsubsection{Mapping Finite Discrete Spaces}
    156 
    157 \begin{definition}
    158     A \textit{map} between finite discrete spaces $X_1$ and $X_2$ is a function $\phi:\ X_1 \rightarrow\ X_2$
    159 \end{definition}
    160 
    161 For every map between finite discrete spaces there exists a corresponding map \\
    162 $\phi ^*:C(X_2)\ \rightarrow C(X_1)$, which `pulls back' values even if $\phi$ is not bijective.
    163 Note that the pullback doesn't map points back, but maps functions on an $*$-algebra $C(X)$.
    164 
    165 
    166 This map is called a pullback (or a $*$-homomorphism or a $*$-algebra map under pointwise product).
    167 Under the pointwise product:
    168 \begin{itemize}
    169     \item $\phi ^*(fg) = \phi ^*(f) \phi ^*(g)$
    170     \item $\phi ^*(\overline{f}) = \overline{\phi ^*(f)}$
    171     \item $\phi ^*(\lambda f + g) = \lambda \phi ^*(f) + \phi ^*(g)$
    172 \end{itemize}
    173 
    174 \begin{question}
    175     $\phi$ is in most cases not bijective, so how can we prove that there exists such a
    176     pullback for every map between discrete spaces which preserves information? For bijective
    177     it is given by its inverse, which by definition exists because $\phi$ is a map.
    178     Or I didn't understand this correctly?
    179 \end{question}
    180 
    181 \begin{MyExercise}
    182     \textbf{
    183     Show that $\phi :X_1\ \rightarrow \ X_2$ is injective (surjective) map of finite spaces iff
    184     $\phi ^* :C(X_2)\ \rightarrow \ C(X_1)$ is surjective (injective).
    185 }\newline
    186 
    187     Consider $X_1$ with $n$ points and $X_2$ with $m$ points. Then there are three cases:
    188     \begin{enumerate}
    189         \item $n=m$ \\
    190             Obviously $\phi$ is bijective and $\phi ^*$ too.
    191         \item $n \rangle  m$ \\
    192             $\phi$ assigns $n$ points to $m$ points when $n \rangle  m$,
    193             which is by definition surjective. \\
    194             $\phi ^*$ assigns $m$ points to $n$ points when $n \rangle  m$,
    195             which is by definition injective. \\
    196         \item $n \langle  m $ \\
    197             analogous
    198     \end{enumerate}
    199 \end{MyExercise}
    200 
    201 \subsubsection{Matrix Algebras}
    202 \begin{definition}
    203     A \textit{(complex) matrix algebra} A is a direct sum, for $n_i, N \in \mathbb{N}$.
    204     \begin{align}
    205         A = \bigoplus _{i=1}^{N} M_{n_i}(\mathbb{C})
    206     \end{align}
    207     The involution is the hermitian conjugate, a $*$ algebra with involution is referred to as
    208     a matrix algebra
    209 \end{definition}
    210 
    211 So from a topological discrete space $X$, we can construct a $*$-algebra $C(X)$ which is isomorphic
    212 to a matrix algebra $A$. The question is can we construct $X$ given $A$? $A$ is a matrix algebra,
    213 which are in most cases is not commutative, so the answer is generally no.
    214 
    215 There are two options. We can restrict ourselves to commutative matrix algebras,
    216 which are the vast minority and not physically interesting.
    217 Or we can allow more morphisms(isomorphisms) between matrix algebras.
    218 
    219 \begin{question}
    220     Why are non-commutative algebras not physically interesting?
    221     Maybe too far fetched,but because physical observables (QM-Operators) are not commutative?
    222 \end{question}
    223 Exactly.
    224 
    225 \subsubsection{Finite Inner Product Spaces and Representations}
    226 Until now we looked at a finite topological discrete space, moreover we can consider a
    227 finite dimensional inner product space $H$ (finite Hilbert-spaces), with inner product
    228 $(\cdot,\cdot)\rightarrow \mathbb{C}$. $L(H)$ is the $*$-algebra of operators on $H$
    229 with product given by composition and involution given by the adjoint, $T \mapsto T^*$.
    230 $L(H)$ is a \textit{normed vector space} with
    231 \begin{align}
    232     &\|T\|^2 = \text{sup}_{h \in H}\{(Th,Th): (h,h) \leq 1\} \hspace{0.1\textwidth} T \in L(H) \\
    233     &\|T\| = \text{sup}\{\sqrt{\lambda}: \lambda \text{ eigenvalue of } T\}
    234 \end{align}
    235 
    236 
    237 \begin{definition}
    238     The \textit{representation} of a finite dimensional $*$-algebra A is a pair $(H, \pi)$.
    239     $H$ is a finite, dimensional inner product space and $\pi$ is a $*$-\textit{algebra map}
    240     \begin{align}
    241         \pi:A\ \rightarrow \ L(H)
    242     \end{align}
    243 \end{definition}
    244 \begin{definition}
    245     $(H, \pi)$ is called \textit{irreducible} if:
    246     \begin{itemize}
    247         \item $H \neq \emptyset$
    248         \item only $\emptyset$ or $H$ is invariant under the action of $A$ on $H$
    249     \end{itemize}
    250 \end{definition}
    251 
    252 Examples for reducible and irreducible representations
    253 \begin{itemize}
    254     \item $A = M_n(\mathbb{C})$, representation $H=\mathbb{C}^n$, $A$ acts as matrix multiplication\\
    255             $H$ is irreducible.
    256     \item $A = M_n(\mathbb{C})$, representation $H=\mathbb{C}^n\oplus \mathbb{C}^n$, with $a \in A$ acting
    257         in block form \\ $\pi: a \mapsto \big(\begin{smallmatrix} a & 0\\ 0 & a \end{smallmatrix}\big)$ is
    258             reducible.
    259 \end{itemize}
    260 
    261 \begin{definition}
    262     Let $(H_1, \pi _1)$ and $(H_2, \pi _2)$ be representations of a $*$-algebra $A$. They are called
    263     \textit{unitary equivalent} if there exists a map $U: H_1 \rightarrow H_2$ such that.
    264     \begin{align}
    265         \pi _1(a) = U^* \pi _2(a) U
    266     \end{align}
    267 \end{definition}
    268 
    269 \begin{question}
    270     In matrix representation this is diagonalization condition? (unitary diagonalization)
    271 \end{question}
    272 Yes
    273 
    274 \begin{definition}
    275     $A$ a $*$-algebra then, $\hat{A}$ is called the structure space of all \textit{unitary equivalence classes
    276     of irreducible representations of A}
    277 \end{definition}
    278 
    279 \begin{question}
    280     Gelfand duality and the spectrum of $\hat{A}$, examples Fourier-Transform and Laplace-Transform
    281     for simple spaces.
    282 \end{question}
    283 More on that in later chapters.
    284 
    285 \begin{MyExercise}
    286     \textbf{
    287     Given $(H, \pi)$ of a $*$-algebra $A$, the \textbf{commutant} $\pi (A)'$ of $\pi (A)$ is defined as a set
    288     of operators in $L(H)$ that commute with all $\pi (a)$
    289     \begin{align}
    290         \pi (A)' = \{T \in L(H):\pi (a)T = T\pi (a) \;\;\; \forall a\in A\}
    291     \end{align}
    292     \begin{enumerate}
    293         \item Show that $\pi (A)'$ is a $*$-algebra.
    294         \item Show that a representation $(H, \pi)$ of $A$ is irreducible iff the commutant $\pi (A)'$
    295                 consists of multiples of the identity
    296     \end{enumerate}
    297 }
    298 
    299     1. To show that $\pi (A)'$ is a $*$-algebra we have to show that it is unital, associative and involute.
    300     And note that $\pi (a) \in L(H)\ \forall a \in A$.
    301     Unitarity is given by the unital operator of the $*$-algebra of operators $L(H)$, which exists by definition
    302     because H is a inner product space. Associativity is given by $*$-algebra of $L(H)$, $L(H) \times L(H) \mapsto L(H)$,
    303     which is associative by definition. Involutnes is also given by the $*$-algebra $L(H)$
    304     with a map $*: L(H) \mapsto L(H)$ only for $T$ that commute with $\pi (a)$.
    305     \\
    306     2.?
    307 \end{MyExercise}
    308 
    309 \begin{MyExercise}
    310     \textbf{
    311     \begin{enumerate}
    312         \item If $A$ is a unital $*$-algebra, show that the $n \times n$ matrices $M_n(A)$ with entries
    313             in $A$ form a unital $*$-algebra.
    314         \item Let $\pi :A\ \rightarrow \ L(H)$ be a representation of a $*$-algebra $A$ and set
    315             $H^n = H \oplus ... \oplus H$, $n$ times. Show that $\tilde{\pi}:M_n(A) \rightarrow L(H^n)$
    316             of $M_n(A)$ with\\
    317             $\tilde{\pi}((a_{ij})) = (\tilde{\pi}(a_{ij})) \in M_n(A)$.
    318         \item Let $\tilde{\pi}:M_n(A) \rightarrow L(H^n)$ be a $*$ algebra representation of $M_n(A)$.
    319             Show that $\pi: A \rightarrow L(H^n)$ is a representation of $A$.
    320     \end{enumerate}
    321 }
    322     1. We know $A$ is a $*$ algebra. Unitary operaton in $M_n(A)$ is given by the identity Matrix, which
    323     has to exists because every entry in $M_n(A)$ has to behave like in $A$. Associativity is given by
    324     matrix multiplication. Involutnes is given by the conjugate transpose.\\
    325     2. $A \simeq M_n(A)$ and $H \simeq H^n$ meaning $\tilde{\pi}$ is a valid reducible representation.\\
    326     3. $\tilde{\pi}$ and $\pi$ are unitary equivalent, there is a map $U: H^n \rightarrow H^n$ given by
    327     $U=\mathbbm{1}_n$:\\
    328     $\pi (a) = \mathbbm{1}_n^*\ \tilde{\pi}((a_{ij}))\ \mathbbm{1}_n = \tilde{\pi}((a_{ij})) = \pi (a_{ij})
    329     \Rightarrow a_{ij} = a\mathbbm{1}_n$.
    330 \end{MyExercise}
    331 
    332 \subsection{Commutative Matrix Algebras}
    333 \begin{itemize}
    334     \item Commutative matrix algebras can be used to reconstruct a discrete space given
    335         a matrix \textit{commutative} matrix algebra.
    336     \item The structure space $\hat{A}$ is used for this. Because $A \simeq \mathbb{C}^N$ we all any
    337         irreducible representation are of the form
    338         $\pi _i:(\lambda_1,...,\lambda_N)\in \mathbb{C}^N \mapsto \lambda_i \in \mathbb{C}$ \\
    339         for $i = 1,...,N \Rightarrow \hat{A} \simeq \{1,...,N\}.$
    340     \item Conclusion is that there is a duality between discrete spaces and commutative matrix algebra
    341         this duality is called the \textit{finite dimensional Gelfand duality}
    342 \end{itemize}
    343 
    344 \subsection{Noncommutative Matrix Algebras}
    345 Aim is to construct duality between finite dimensional spaces and \textit{equivalence classes}
    346 of matrix algebras, to preserve general non-commutivity of matrices.
    347 \begin{itemize}
    348     \item Equivalence classes are described by a generalized notion of ispomorphisms between matrix
    349         algebras (\textit{Morita Equivalence})
    350 \end{itemize}
    351 
    352 \subsubsection{Algebraic Modules}
    353 \begin{definition}
    354     Let $A$, $B$ be algebras (need not be matrix algebras)
    355     \begin{enumerate}
    356         \item \textit{left} A-module is a vector space $E$, that carries a left representation of $A$,
    357             that is $\exists$ a bilinear map $\gamma: A \times E \rightarrow E$ with
    358             \begin{align}
    359                 (a_1a_2)\cdot e = a_1 \cdot (a_2 \cdot e);\;\;\; a_1, a_2 \in A, e \in E
    360             \end{align}
    361         \item \textit{right} B-module is a vector space $F$, that carries a right representation of $A$,
    362             that is $\exists$ a bilinear map $\gamma: F \times B \rightarrow F$ with
    363             \begin{align}
    364                 f \cdot (b_1b_2)= (f \cdot b_1) \cdot b_2;\;\;\; b_1, b_2 \in B, f \in F
    365             \end{align}
    366         \item \textit{left} A-module and \textit{right} B-module is a \textit{bimodule}, a vector space $E$
    367             satisfying
    368             \begin{align}
    369                 a \cdot (e \cdot b)= (a \cdot e) \cdot b;\;\;\;  a \in A, b \in B, e \in E
    370             \end{align}
    371     \end{enumerate}
    372 \end{definition}
    373 Notion of A-\textbf{module homomorphism} as linear map $\phi: E\rightarrow F$ which respects the
    374 representation of A, e.g. for left module.
    375 \begin{align}
    376     \phi (ae) = a \phi (e); \;\;\; a \in A, e \in E.
    377 \end{align}
    378 Remark on the notation
    379 \begin{itemize}
    380     \item ${}_A E$ left $A$-module $E$;
    381     \item ${}_A E_B$ right $B$-module $F$;
    382     \item ${}_A E_B$ $A$-$B$-bimodule $E$;
    383 \end{itemize}
    384 
    385 \begin{MyExercise}
    386     \textbf{
    387     Check that a representation of $\pi : A \rightarrow L(H)$ of a $*$-algebra A turns H into a
    388     left module ${}_A H$.
    389 }\newline
    390 
    391     Not quite sure but \\
    392     $a \in A$, $h_1, h_2 \in H$, we know $\pi (a) = T \in L(H)$ than
    393     \begin{align}
    394         \langle \pi (a) h_1, \pi (a) h_2\rangle  = \langle T h_1, T h_2\rangle  = \langle T^*T h_1, h_2\rangle  = \langle h_1, h_2\rangle
    395     \end{align}
    396     Or maybe this \\
    397     If $_A H$ than $(a_1a_2) h = a_1 (a_2 h)$ for $a_1, a_2 \in A$ and $h \in H$.\\
    398     Then we take the representation of an $a \in A$, $\pi (a)$:
    399     \begin{align}
    400         (\pi(a_1)\pi(a_2))h = \pi(a_1)(\pi(a_2) h) = (T_1T_2) h = T_1 (T_2 h)
    401     \end{align}
    402     For $T_1, T_2 \in L(H)$, which operate naturally from the left on $h$.
    403 \end{MyExercise}
    404 
    405 \begin{MyExercise}
    406     \textbf{
    407     Show that $A$ is a bimodule ${}_A A_A$ with itself.
    408 }\newline
    409 
    410     $\gamma: A\times A\times A \rightarrow A$ which is given by the inner product of the $*$-algebra.
    411 \end{MyExercise}
    412 
    413 \end{document}