ncg

bachelorthesis in physics
git clone git://popovic.xyz/ncg.git
Log | Files | Refs

week10.tex (11993B)


      1 \documentclass[a4paper]{article}
      2 
      3 \usepackage[T1]{fontenc}
      4 \usepackage[utf8]{inputenc}
      5 
      6 \usepackage{mathptmx}
      7 
      8 \usepackage{subcaption}
      9 \usepackage[shortlabels]{enumitem}
     10 \usepackage{amssymb}
     11 \usepackage{amsthm}
     12 \usepackage{mathtools}
     13 \usepackage{bbm}
     14 \usepackage{graphicx}
     15 \usepackage[colorlinks=true,naturalnames=true,plainpages=false,pdfpagelabels=true]{hyperref}
     16 \usepackage[parfill]{parskip}
     17 
     18 \usepackage{tikz}
     19 \usetikzlibrary{patterns,decorations.pathmorphing,positioning}
     20 
     21 \usepackage[framemethod=TikZ]{mdframed}
     22 
     23 \tikzstyle{titlered} =
     24     [draw=black, thick, fill=white,%
     25         text=black, rectangle,
     26         right, minimum height=.7cm]
     27 
     28 \newcounter{exercise}
     29 
     30 \renewcommand*\theexercise{Exercise~\arabic{exercise}}
     31 
     32 \makeatletter
     33 \mdfdefinestyle{exercisestyle}{%
     34     outerlinewidth=1em,%
     35     outerlinecolor=white,%
     36     leftmargin=-1em,%
     37     rightmargin=-1em,%
     38     middlelinewidth=1.2pt,%
     39     roundcorner=5pt,%
     40     linecolor=black,%
     41     backgroundcolor=blue!5,
     42     innertopmargin=1.2\baselineskip,
     43     skipabove={\dimexpr0.5\baselineskip+\topskip\relax},
     44     skipbelow={-1em},
     45     needspace=3\baselineskip,
     46     frametitlefont=\sffamily\bfseries,
     47     settings={\global\stepcounter{exercise}},
     48     singleextra={%
     49         \node[titlered,xshift=1cm] at (P-|O) %
     50             {~\mdf@frametitlefont{\theexercise}~};},%
     51     firstextra={%
     52             \node[titlered,xshift=1cm] at (P-|O) %
     53                     {~\mdf@frametitlefont{\theexercise}~};},
     54 }
     55 \makeatother
     56 
     57 \newenvironment{MyExercise}%
     58 {\begin{mdframed}[style=exercisestyle]}{\end{mdframed}}
     59 
     60 \theoremstyle{definition}
     61 \newtheorem{definition}{Definition}
     62 
     63 \theoremstyle{definition}
     64 \newtheorem{question}{Question}
     65 
     66 \theoremstyle{definition}
     67 \newtheorem{example}{Example}
     68 
     69 \theoremstyle{theorem}
     70 \newtheorem{theorem}{Theorem}
     71 
     72 \theoremstyle{theorem}
     73 \newtheorem{lemma}{Lemma}
     74 
     75 
     76 \theoremstyle{theorem}
     77 \newtheorem{proposition}{Proposition}
     78 
     79 \newtheorem*{idea}{Proof Idea}
     80 
     81 
     82 \title{University of Vienna\\ Faculty of Physics\\ \vspace{1.25cm}
     83 Notes on\\ Noncommutative Geometry and Particle Phyiscs}
     84 \author{Milutin Popovic \\ Supervisor: Dr. Lisa
     85 Glaser}
     86 \date{Week 8: 8.05 - 18.05}
     87 
     88 \begin{document}
     89 
     90     \maketitle
     91     \tableofcontents
     92     \newpage
     93 
     94 
     95 \section{Spectral Action of the Fluctuated Dirac Operator}
     96 \begin{proposition}
     97     The spectral action of the almost commutative manifold $M$ with $\dim(M)
     98     =4$ with a fluctuated Dirac operator is.
     99     \begin{align}
    100         \text{Tr}(f\frac{D_\omega}{\Lambda}) \sim \int_M \mathcal{L}(g_{\mu\nu},
    101          B_\mu, \Phi) \sqrt{g}\ d^4x + O(\Lambda^{-1})
    102     \end{align}
    103     with
    104     \begin{align}
    105         \mathcal{L}(g_{\mu\nu}, B_\mu, \Phi) =
    106         N\mathcal{L}_M(g_{\mu\nu})
    107         \mathcal{L}_B(B_\mu)+
    108         \mathcal{L}_\phi(g_{\mu\nu}, B_\mu, \Phi)
    109     \end{align}
    110     where $N=4$ and $\mathcal{L}_M$ is the Lagrangian of the spectral triple
    111     $(C^\infty(M) , L^2(S), D_M)$
    112     \begin{align}\label{lagr}
    113         \mathcal{L}_M(g_{\mu\nu}) := \frac{f_4 \Lambda ^4}{2\pi^2} -
    114         \frac{f_2 \Lambda^2}{24\pi ^2}s - \frac{f(0)}{320\pi^2} C_{\mu\nu
    115         \varrho \sigma}C^{\mu\nu \varrho \sigma}.
    116     \end{align}
    117     Here $C^{\mu\nu \varrho \sigma}$ is defined in terms of the Riemannian
    118     curvature tensor $R_{\mu\nu \varrho \sigma}$ and the Ricci tensor
    119     $R_{\nu\sigma} = g^{\mu\varrho} R_{\mu\nu \varrho\sigma}$.
    120 
    121 
    122     Furthermore $\mathcal{L}_B$ describes the kinetic term of the gauge field
    123     \begin{align}
    124         \mathcal{L}_B(B_\mu) := \frac{f(0)}{24\pi^2}
    125         \text{Tr}(F_{\mu\nu}F^{\mu\nu}).
    126     \end{align}
    127     Last $\mathcal{L}_\phi$ is the scalar-field Lagrangian with a boundary
    128     term.
    129     \begin{align}
    130         \mathcal{L}_\phi(g_{\mu\nu}, B_\mu, \Phi) :=
    131         &-\frac{2f_2\Lambda^2}{4\pi^2}\text{Tr}(\Phi^2) + \frac{f(0)}{8\pi^2}
    132         \text{Tr}(\Phi^4) + \frac{f(0)}{24\pi^2} \Delta(\text{Tr}(\Phi^2))\\
    133         &+ \frac{f(0)}{48\pi^2}s\text{Tr}(\Phi^2)
    134         \frac{f(0)}{8\pi^2}\text{Tr}((D_\mu \Phi)(D^\mu \Phi)).
    135     \end{align}
    136 \end{proposition}
    137 \begin{proof}
    138      The dimension of our manifold $M$ is $\dim(M) = \text{Tr}(id) =4 $. Let us
    139      take a $x \in M$, we have an asymtotic expansion of
    140      $\text{Tr}(f(\frac{D_\omega}{\Lambda}))$ as $\Lambda \rightarrow \infty$
    141      \begin{align}
    142          \text{Tr}(f(\frac{D_\omega}{\Lambda})) \simeq& \ 2f_4 \Lambda ^4
    143          a_0(D_\omega ^2)+ 2f_2\Lambda^2 a_2(D_\omega^2) \\&+ f(0) a_4(D_\omega^4)
    144          +O(\Lambda^{-1}).
    145      \end{align}
    146      Note that the heat kernel coefficients are zero for uneven $k$,
    147      furthermore they are dependent on the fluctuated Dirac operator
    148      $D_\omega$. We can rewrite the heat kernel coefficients in terms of $D_M$,
    149      for the first two we note that $N:= \text{Tr}\mathbbm{1_{H_F}})$
    150      \begin{align}
    151          a_0(D_\omega^2) &= Na_0(D_M^2)\\
    152          a_2(D_\omega^2 &= Na_2(D_M^2) - \frac{1}{4\pi^2}\int_M
    153          \text{Tr}(\Phi^2)\sqrt{g}d^4x
    154      \end{align}
    155      For $a_4$ we need to extend in terms of coefficients of $F$, look week9.pdf
    156      for the standard version,
    157      \begin{align}
    158          &\frac{1}{360}\text{Tr}(60sF)= -\frac{1}{6}S(Ns + 4
    159          \text{Tr}(\Phi^2))\\
    160         \nonumber\\
    161          &F^2 = \frac{1}{16}s^2\otimes 1 + 1\otimes \Phi^4 - \frac{1}{4}
    162          \gamma^\mu\gamma^\nu \gamma^\varrho\gamma^\sigma F_{\mu\nu}F^{\mu\nu}+\\
    163          &\;\;\;\;\;\;\;+\gamma^\mu\gamma^\nu\otimes(D_\mu\Phi)(D_\nu
    164          \Phi)+\frac{1}{2}s\otimes \Phi^2 + \ \text{traceless terms}\\
    165          \nonumber\\
    166          &\frac{1}{360}\text{Tr}(180F^2) = \frac{1}{8}s^2N + 2\text{Tr}(\Phi^4)
    167          + \text{Tr}(F_{\mu\nu}F^{\mu\nu}) +\\
    168          &\;\;\;\;\;\;\;+2\text{Tr}((D_\mu\Phi)(D^\mu\Phi))
    169          + s\text{Tr}(\Phi^2)\\
    170          \nonumber\\
    171          &\frac{1}{360}\text{Tr}(-60\Delta F)=
    172          \frac{1}{6}\Delta(Ns+4\text{Tr}(\Phi^2)).
    173      \end{align}
    174      Now for the cross terms of $\Omega_{\mu\nu}^E\Omega^{E\mu\nu}$  the trace
    175      vanishes because of the anti-symmetric properties of the Riemannian
    176      curvature Tensor
    177      \begin{align}
    178          \Omega_{\mu\nu}^E\Omega^{E\mu\nu} = \Omega_{\mu\nu}^S\Omega^{S\mu\nu}
    179          \otimes 1 - 1\otimes F_{\mu\nu}F^{\mu\nu} + 2i\Omega_{\mu\nu}^S
    180          \otimes F^{\mu\nu}
    181      \end{align}
    182      the trace  of the cross term vanishes because
    183      \begin{align}
    184          \text{Tr}(\Omega^{S}_{\mu\nu} = \frac{1}{4}
    185          R_{\mu\nu\varrho\sigma}\text{Tr}(\gamma^\mu\gamma^\nu) = \frac{1}{4}
    186          R_{\mu\nu\varrho\sigma}g^{\mu\nu} =0
    187      \end{align}
    188      and the trace of the whole term is
    189      \begin{align}
    190          \frac{1}{360}\text{Tr}(30\Omega^E_{\mu\nu}\Omega^{E\mu\nu}) =
    191          \frac{N}{24}R_{\mu\nu\varrho\sigma}R^{\mu\nu\varrho\sigma}
    192          -\frac{1}{3}\text{Tr}(F_{\mu\nu}F^{\mu\nu}).
    193      \end{align}
    194      Plugging the results into $a_4$ and simplifying we can write
    195      \begin{align}
    196          a_4(x, D_\omega^4) &= Na_4(x, D_M^2) + \frac{1}{4\pi^2}\bigg(\frac{1}{12} s
    197          \text{Tr}(\Phi^2) + \frac{1}{2}\text{Tr}(\Phi^4) \\
    198          &+ \frac{1}{4}
    199          \text{Tr}((D_\mu\Phi)(D^\mu \Phi)) + \frac{1}{6}
    200          \Delta\text{Tr}(\Phi^2) + \frac{1}{6}
    201          \text{Tr}(F_{\mu\nu}F^{\mu\nu})\bigg)
    202      \end{align}
    203      The only thing left is to plug in the heat kernel coefficients into the
    204      heat kernel expansion above.
    205 \end{proof}
    206 
    207 \section{Fermionic Action}
    208 A quick reminder with what we are dealing with, the fermionic action is defined
    209 in the following way.
    210 \begin{definition}
    211     The fermionic action is defined by
    212     \begin{align}
    213         S_f[\omega, \psi] = (J\tilde{\psi}, D_\omega \tilde{\psi})
    214     \end{align}
    215     with $\tilde{\psi} \in H_{cl}^+ := \{\tilde{\psi}: \psi \in H^+\}$.
    216     $H_{cl}^+$ is the set of Grassmann variables in $H$ in the +1-eigenspace
    217     of the grading $\gamma$.
    218 \end{definition}
    219 
    220 The almostcommutative Manifold we are dealing with is the following
    221 \begin{align}
    222     &M\times F_{ED} := \left(C^\infty(M,\mathbb{C}^2),\ L^2(S)\otimes
    223     \mathbb{C}^4,\
    224     D_M\otimes 1 +\gamma _M \otimes D_F;\; J_M\otimes J_F,\ \gamma_M\otimes
    225     \gamma _F\right).\\
    226     \nonumber\\
    227     &\text{where:} \nonumber \\
    228     &C^\infty(M,\mathbb{C}^2) = C^\infty(M) \otimes C^\infty(M)
    229     &\mathcal{H} = \mathcal{H}^+ \otimes \mathcal{H}^-\\
    230     &\mathcal{H} = L^2(S)^+ \otimes H_F^+ \oplus L^2(S)^- \otimes H_F^-.
    231 \end{align}
    232 Where $H_F$ is separated into the particle-anitparticle states with ONB $\{e_R,
    233 e_L, \bar{e}_R, \bar{e}_L\}$. The ONB of $H_F^+$ is $\{e_L, \bar{e}_R\}$ and
    234 for $H_F^-$ we have $\{e_R, \bar{e}_L\}$. Furthermore we can decompose a spinor
    235 $\psi \in L^2(S)$ for each of the eigenspaces $H_F^\pm$, $\psi = \psi_R
    236 \psi_L$. Thus we can write for an arbitrary $\psi \in \mathcal{H}^+$
    237 \begin{align}
    238     \psi = \chi_R \otimes e_R + \chi_L \otimes e_L + \psi_L \otimes \bar{e}_R
    239     \psi_R \otimes \bar{e}_L
    240 \end{align}
    241 for $\chi_L, \psi_L \in L^2(S)^+$ and $\chi_R, \psi_R \in L^2(S)^-$.
    242 \begin{proposition}
    243     We can define the action of the fermionic art of $M\times F_{ED}$ in the
    244     following way
    245     \begin{align}
    246         S_f = -i\big(J_M\tilde{\chi}, \gamma(\nabla^S_\mu - i\Gamma_\mu)
    247         \tilde{\Psi}\big) + \big(S_M\tilde{\chi}_L, \bar{d}\tilde{\psi}_L\big) -
    248         \big(J_M\tilde{\chi}_R, d \tilde{\psi}_R\big)
    249     \end{align}
    250 \end{proposition}
    251 \begin{proof}
    252     We take the fluctuated Dirac operator
    253     \begin{align}
    254         D_\omega = D_M \otimes i + \gamma^\mu \otimes B_\mu + \gamma_M \otimes
    255         D_F
    256     \end{align}
    257 \end{proof}
    258 The Fermionic Action is $S_F = (J\tilde{\xi}, D_\omega\tilde{\xi})$  for a $\xi
    259 \in \mathcal{H}^+$, we can begin to calculate (note that we add the constant
    260 $\frac{1}{2}$ to the action)
    261 \begin{align}
    262     \frac{1}{2}(J\tilde{\xi}, D_\omega\tilde{\xi}) =&\\
    263         &+\frac{1}{2}(J\tilde{\xi}, (D_M \otimes i)\tilde{\xi})\label{eq:1}\\
    264         &+\frac{1}{2}(J\tilde{\xi}, (\gamma^\mu \otimes B_\mu)
    265         \tilde{\xi})\label{eq:2}\\
    266         &+\frac{1}{2}(J\tilde{\xi}, (\gamma_M\otimes
    267         D_F)\tilde{\xi})\label{eq:3}.
    268 \end{align}
    269 For equation \ref{eq:1} we calculate
    270 \begin{align}
    271     \frac{1}{2}(J\tilde{\xi}, (D_M\otimes 1)\tilde{\xi}) &=
    272     \frac{1}{2}(J_M\tilde{\chi}_R,D_M\tilde{\psi}_L)+
    273     \frac{1}{2}(J_M\tilde{\chi}_L,D_M\tilde{\psi}_R)+
    274     \\&+\frac{1}{2}(J_M\tilde{\psi}_L,D_M\tilde{\psi}_R)+
    275     \frac{1}{2}(J_M\tilde{\chi}_R,D_M\tilde{\chi}_L)\\
    276     &= (J_M\tilde{\chi},D_M\tilde{\chi}).
    277 \end{align}
    278 For equation \ref{eq:2} we have
    279 \begin{align}
    280     \frac{1}{2}(J\tilde{\xi}, (\gamma^\mu \otimes B_\mu)\tilde{\xi})&=
    281     -\frac{1}{2}(J_M\tilde{\chi}_R, \gamma^\mu Y_\mu\tilde{\psi}_R)
    282     -\frac{1}{2}(J_M\tilde{\chi}_L, \gamma^\mu Y_\mu\tilde{\psi}_R)+\\
    283     &+\frac{1}{2}(J_M\tilde{\psi}_L, \gamma^\mu Y_\mu\tilde{\chi}_R)+
    284     \frac{1}{2}(J_M\tilde{\psi}_R, \gamma^\mu Y_\mu\tilde{\chi}_L)=\\
    285     &= -(J_M\tilde{\chi}, \gamma^\mu Y_\mu\tilde{\psi}).
    286 \end{align}
    287 For equation \ref{eq:3} we have
    288 \begin{align}
    289     \frac{1}{2}(J\tilde{\xi}, (\gamma_M\otimes D_F)\tilde{\xi})&=
    290     +\frac{1}{2}(J_M\tilde{\chi}_R, d\gamma_M\tilde{\chi}_R)
    291     +\frac{1}{2}(J_M\tilde{\chi}_L, \bar{d}\gamma_M\tilde{\chi}_L)+\\
    292     &+\frac{1}{2}(J_M\tilde{\chi}_L, \bar{d}\gamma_M\tilde{\chi}_L)
    293     +\frac{1}{2}(J_M\tilde{\chi}_R, d\gamma_M\tilde{\chi}_R)=\\
    294     &= i(J_M\tilde{\chi}, m\tilde{\psi})
    295 \end{align}
    296 Note that we obtain a complex mass parameter $d$, so we write $d:=im$ for $m\in \mathbb{R}$,
    297 which stands for the real mass and we obtain a nice result
    298 
    299 \begin{theorem}
    300     The full Lagrangian of $M\times F_{ED}$ is the sum of purely gravitational
    301     Lagrangian
    302     \begin{align}
    303         \mathcal{L}_{grav}(g_{\mu\nu})=4\mathcal{L}_M(g_{\mu\nu})
    304         \mathcal{L}_\phi (g_{\mu\nu})
    305     \end{align}
    306     and the Lagrangian of electrodynamics
    307     \begin{align}
    308         \mathcal{L}_{ED} = -i\bigg\langle
    309         J_M\tilde{\chi},\big(\gamma^\mu(\nabla^S_\mu - iY_\mu) -m\big)\tilde{\psi})
    310         \bigg\rangle
    311         +\frac{f(0)}{6\pi^2} Y_{\mu\nu}Y^{\mu\nu}.
    312     \end{align}
    313 
    314 \end{theorem}
    315 
    316 
    317 \end{document}