ncg

bachelorthesis in physics
git clone git://popovic.xyz/ncg.git
Log | Files | Refs

week2.tex (17201B)


      1 \documentclass[a4paper]{article}
      2 
      3 \usepackage[T1]{fontenc}
      4 \usepackage[utf8]{inputenc}
      5 
      6 \usepackage{mathptmx}
      7 
      8 \usepackage{subcaption}
      9 \usepackage[shortlabels]{enumitem}
     10 \usepackage{amsmath,amssymb}
     11 \usepackage{amsthm}
     12 \usepackage{bbm}
     13 \usepackage{graphicx}
     14 \usepackage[colorlinks=true,naturalnames=true,plainpages=false,pdfpagelabels=true]{hyperref}
     15 \usepackage[parfill]{parskip}
     16 
     17 \usepackage{tikz}
     18 \usetikzlibrary{patterns,decorations.pathmorphing,positioning}
     19 
     20 \usepackage[framemethod=TikZ]{mdframed}
     21 
     22 \tikzstyle{titlered} =
     23     [draw=black, thick, fill=white,%
     24         text=black, rectangle,
     25         right, minimum height=.7cm]
     26 
     27 \newcounter{exercise}
     28 
     29 \renewcommand*\theexercise{Exercise~\arabic{exercise}}
     30 
     31 \makeatletter
     32 \mdfdefinestyle{exercisestyle}{%
     33     outerlinewidth=1em,%
     34     outerlinecolor=white,%
     35     leftmargin=-1em,%
     36     rightmargin=-1em,%
     37     middlelinewidth=1.2pt,%
     38     roundcorner=5pt,%
     39     linecolor=black,%
     40     backgroundcolor=blue!5,
     41     innertopmargin=1.2\baselineskip,
     42     skipabove={\dimexpr0.5\baselineskip+\topskip\relax},
     43     skipbelow={-1em},
     44     needspace=3\baselineskip,
     45     frametitlefont=\sffamily\bfseries,
     46     settings={\global\stepcounter{exercise}},
     47     singleextra={%
     48         \node[titlered,xshift=1cm] at (P-|O) %
     49             {~\mdf@frametitlefont{\theexercise}~};},%
     50     firstextra={%
     51             \node[titlered,xshift=1cm] at (P-|O) %
     52                     {~\mdf@frametitlefont{\theexercise}~};},
     53 }
     54 \makeatother
     55 
     56 \newenvironment{MyExercise}%
     57 {\begin{mdframed}[style=exercisestyle]}{\end{mdframed}}
     58 
     59 \theoremstyle{definition}
     60 \newtheorem{definition}{Definition}
     61 
     62 \theoremstyle{definition}
     63 \newtheorem{question}{Question}
     64 
     65 \theoremstyle{definition}
     66 \newtheorem{example}{Example}
     67 
     68 \theoremstyle{theorem}
     69 \newtheorem{theorem}{Theorem}
     70 
     71 \theoremstyle{theorem}
     72 \newtheorem{lemma}{Lemma}
     73 
     74 \newtheorem*{idea}{Proof Idea}
     75 
     76 
     77 \title{University of Vienna\\ Faculty of Physics\\ \vspace{1.25cm}
     78 Notes on\\ Noncommutative Geometry and Particle Phyiscs}
     79 \author{Milutin Popovic \\ Supervisor: Dr. Lisa
     80 Glaser}
     81 \date{Week 2: 12.02 - 19.02}
     82 
     83 \begin{document}
     84 
     85     \maketitle
     86     \tableofcontents
     87     \newpage
     88 
     89 \section{Noncommutative Geometric Spaces}
     90 \subsection{Noncommutative Matrix Algebras}
     91 \subsubsection{Balanced Tensor Product and Hilbert Bimodules}
     92 
     93 \begin{definition}
     94     Let $A$ be an algebra, $E$ be a \textit{right} $A$-module and $F$ be a \textit{left} $A$-module.
     95     The \textit{balanced tensor product} of $E$ and $F$ forms a $A$-bimodule.
     96     \begin{align}
     97         E \otimes _A F := E \otimes F / \left\{\sum _i e_i a_i \otimes f_i - e_i \otimes a_i f_i : \;\;\;
     98                                          a_i \in A,\ e_i \in E,\ f_i \in F \right\}
     99     \end{align}
    100 \end{definition}
    101 Note $/$ denotes the quotient space. So $\otimes _A$ takes two left/right modules and makes a
    102 bimodule with the help the tensor product of the two modules and the quotient space that takes
    103 out all the elements from the tensor product that dont preserver the left/right representation and that
    104 are duplicates.
    105 \begin{definition}
    106     Let $A$, $B$ be \textit{matrix algebras}. The \textit{Hilbert bimodule} for $(A, B)$ is given by
    107     \begin{itemize}
    108         \item $E$, an $A$-$B$-bimodue $E$ and by
    109         \item an $B$-valued \textit{inner product} $\langle \cdot,\cdot\rangle_E: E\times E \rightarrow B$
    110     \end{itemize}
    111 $\langle \cdot,\cdot\rangle_E$ needs to satisfy the following for $e, e_1, e_2 \in E,\ a \in A$ and $b \in B$.
    112 \begin{align}
    113     \langle e_1, a\cdot e_2\rangle_E &= \langle a^*\cdot e_1, e_2\rangle_E \;\;\;\; & \text{sesquilinear in $A$}\\
    114     \langle e_1, e_2 \cdot b\rangle_E &= \langle e_1, e_2\rangle_E b \;\;\;\; & \text{scalar in $B$} \\
    115     \langle e_1, e_2\rangle_E &= \langle e_2,e_1\rangle^*_E \;\;\;\; & \text{hermitian} \\
    116     \langle e, e\rangle_E &\ge 0 \;\;\;\; & \text{equality holds iff $e=0$}
    117 \end{align}
    118 
    119 \end{definition}
    120 
    121 We denote $KK_f(A,B)$ the set of all \textit{Hilbert bimodules} of $(A,B)$.
    122 
    123 \begin{MyExercise}
    124     \textbf{
    125     Check that a representation $\pi:\ A \ \rightarrow L(H)$ of a matrix algebra $A$ turns $H$ into
    126     a Hilbert bimodule for $(A, \mathbb{C})$.
    127     \label{ex: bimodule}
    128 }\newline
    129 
    130 
    131     We check if the representation of $a \in A$, $\pi(a)=T \in L(H)$ fulfills
    132     the conditions on the $\mathbb{C}$-valued inner product for $h_1, h_2 \in H$:
    133     \begin{itemize}
    134         \item $\langle h_1, \pi(a) h)2\rangle _\mathbb{C} = \langle h_1, T h_2\rangle _\mathbb{C} =
    135             \langle T^* h_1, h_2\rangle _\mathbb{C}$, $T^*$ given by the adjoint
    136         \item $\langle h_1, h_2 \pi(a)\rangle _\mathbb{C} = \langle h_1, h_2 T\rangle _\mathbb{C} = \langle h_1, h_2\rangle _\mathbb{C}$, $T$ acts from the left
    137         \item $\langle h_1, h_2\rangle _\mathbb{C}^* = \langle h_2,h_1\rangle _\mathbb{C}$, hermitian because of the
    138             $\mathbb{C}$-valued inner product
    139         \item $\langle h_1, h_2\rangle  \ge 0$, $\mathbb{C}$-valued inner product.
    140     \end{itemize}
    141 \end{MyExercise}
    142 
    143 \begin{MyExercise}
    144     \textbf{
    145     Show that the $A-A$ bimodule given by $A$ is in $KK_f(A,A)$ by taking the following inner product
    146     $\langle \cdot,\cdot\rangle_A:A \times A \rightarrow A$:
    147     \begin{align}
    148         \langle a, a\rangle_A = a^*a' \;\;\;\; a,a'\in A
    149     \end{align}
    150     \label{exercise: inner-product}
    151 }\newline
    152 
    153 
    154     We check again the conditions on $\langle \cdot, \cdot\rangle _A$, let $a, a_1, a_2 \in A$:
    155     \begin{itemize}
    156         \item $\langle a_1, a\cdot a_2\rangle _A = a^*\ a\cdot a_2 = (a^*a_1)^* a_2 = \langle  a^*a_1, a_2\rangle  $
    157         \item $\langle a_1, a_2 \cdot a\rangle _A = a^*_1 (a_2\cdot a) = (a^*a_2)\cdot a = \langle a_1, a_2\rangle _A a$
    158         \item $\langle a_1, a_2\rangle _A^* = (a_1^* a_2)^* = a_2^*(a_1^*)^* = a_2^* a_1 = \langle a_2, a_1\rangle $
    159     \end{itemize}
    160 \end{MyExercise}
    161 
    162 \begin{example}
    163     Consider a $*$ homomorphism between two matrix algebras $\phi:A\rightarrow B$.
    164     From it we can construct a Hilbert bimodule $E_{\phi} \in KK_f(A, B)$ in the following way.
    165     We let $E_{\phi}$ be $B$ in the vector space sense and an inner product from the above
    166     Exercise \ref{exercise: inner-product}, with $A$ acting on the left with $\phi$.
    167     \begin{align}
    168         a\cdot b = \phi(a)b \;\;\;\; a\in A, b\in E_{\phi}
    169     \end{align}
    170 \end{example}
    171 
    172 
    173 
    174 \subsubsection{Kasparov Product and Morita Equivalence}
    175 \begin{definition}
    176     Let $E \in KK_f(A, B)$ and $F \in KK_F(B, D)$ the \textit{Kasparov product} is defined as
    177     with the balanced tensor product
    178     \begin{align}
    179         F \circ E := E \otimes _B F
    180     \end{align}
    181     Such that $F\circ E \in KK_f(A,D)$ with a $D$-valued inner product.
    182     \begin{align}
    183         \langle e_1 \otimes f_1, e_2 \otimes f_2\rangle _{E\otimes _B F} = \langle f_1,\langle e_1, e_2\rangle _E f_2\rangle _F
    184     \end{align}
    185 \end{definition}
    186 
    187 \begin{question}
    188  How do we go from $\langle e_1 \otimes f_1, e_2 \otimes f_2\rangle _{E\otimes _B F}$ to $
    189     \langle f_1,\langle e_1, e_2\rangle _E f_2\rangle _F$ \label{q: tensorproduct}\\
    190     This statement is still in the definition.
    191 \end{question}
    192 
    193 %\begin{question}
    194 %What is the meaning of `associative up to isomorphism'? Isomorphism of $F \circ E$ or of $A, B$ or $D$?
    195 %\end{question}
    196 
    197     \begin{MyExercise}
    198         \textbf{
    199     Show that the association $\phi \leadsto E_\phi$ (from the previous Example) is natural
    200     in the sense
    201     \begin{enumerate}
    202         \item $E_{\text{id}_A} \simeq A \in KK_f(A,A)$
    203         \item for $*$-algebra homomorphism $\phi: A \rightarrow B$ and $\psi: B \rightarrow C$ we have
    204             an isomorphism
    205             \begin{align}
    206                 E_{\psi} \circ E_{\phi}\ \equiv\ E_{\phi} \otimes _B E_{\psi}\ \simeq\
    207                 E_{\psi \circ \phi} \in KK_f(A,C)
    208             \end{align}
    209     \end{enumerate}
    210 }
    211     \begin{enumerate}
    212         \item $\text{id}_A: A \rightarrow A$.\\
    213             To construct $E_{\phi}\in KK_f(A,A)$, we let $E_{\phi}$ be $A$ with a natural right
    214             representation, so $\Rightarrow E_{\phi}\simeq A$.\\
    215             With an inner product, acting on $A$ from the left with $\phi$, $a', a\in A$\\
    216             $a'a = (\phi(a') a) \in A $, which is satisfied by $\text{id}_A$, so $\phi = \text{id}_A$.
    217         \item $a \cdot b \cdot c = \psi(\phi (a) \cdot b) \cdot c$ for $a \in A$, $b\in B$, and $c\in C$
    218                 which is $\psi \circ \phi$
    219     \end{enumerate}
    220 \end{MyExercise}
    221 
    222 \begin{MyExercise}
    223     \textbf{
    224     In the definition of Morita equivalence:
    225     \begin{enumerate}
    226         \item Check that $E \otimes _B F$ is a $A-D$ bimodule
    227         \item Check that $\langle \cdot,\cdot\rangle _{E\oplus _B F}$ defines a $D$ valued inner product
    228         \item Check that $\langle a^*(e_1 \otimes f_1), e_2 \otimes f_2\rangle _{E \otimes _B F} = \langle e_1 \otimes f_1, a(e_2 \otimes f_2)\rangle _{E \otimes _B F}$.
    229     \end{enumerate}
    230 }
    231     \begin{enumerate}
    232         \item $E \otimes _B F = E \otimes F / \{\sum_i e_i b_i \otimes f_i - e_i \otimes b_i f_i;
    233             e_i \in E_i, b_i \in B, f_i \in F\}$ the last part takes out all tensor product elements of
    234             $E$ and $F$ that don't preserver the left/right representation and that are duplicates.
    235         \item $\langle e_1, e_2\rangle _E \in B$ and $\langle f_1, f_2\rangle _F \in C$ by definition. So let $\langle e_1, e_2\rangle _E =b$. \\
    236             Then $\langle e_1 \otimes f_1, e_2 \otimes f_2\rangle _{E\otimes _B F} = \langle f_1, \langle e_1, e_2\rangle _E f_2\rangle _F =
    237             \langle f_1, b f_2\rangle _F \in C$
    238         \item Check Question \ref{q: tensorproduct}.\\
    239             But let $G := E\otimes _B F \in KK_f(A,C)$ then $\forall g_1, g_2 \in G$ and $a \in A$ we need
    240             by definition $\langle g_1, ag_2\rangle _G = \langle a^*g_1, g_2\rangle _G$ and we set $g_1 = e_1 \otimes f_1$ and
    241             $g_2 = e_2 \otimes f_2$ for some $e_1, e_2 \in E$ and $f_1, f_2 \in F$, or else
    242             $G \notin KK_f(A,C)$ which would violate the Kasparov product
    243     \end{enumerate}
    244     \end{MyExercise}
    245 
    246 \begin{definition}
    247     Let $A$, $B$ be \textit{matrix algebras}. They are called \textit{Morita equivalent} if there
    248     exists an $E \in KK_f(A, B)$ and an $F \in KK_f(B, A)$ such that:
    249     \begin{align}
    250         E \otimes _B F \simeq A \;\;\; \text{and} \;\;\; F \otimes _A E \simeq B
    251     \end{align}
    252     Where $\simeq$ denotes the isomorphism between Hilbert bimodules, note that $A$ or $B$ is a bimodule by
    253     itself.
    254 \end{definition}
    255 
    256 \begin{question}
    257     Why are $E$ and $F$ each others inverse in the Kasparov Product? \\
    258     They are each others inverse with respect to the Kasparov Product because we land in the same space as we started.
    259     In the definition we have $E \in KK_f(A, B)$ we start from $A$ and $E \otimes _B F$ lands in $A$.\\
    260     On the other hand we have $F \in KK_f(B, D)$ we start from $B$ and $F \otimes _A E$ lands in $B$.
    261 \end{question}
    262 
    263 \begin{example}
    264     \
    265     \begin{itemize}
    266         \item Hilber bimodule of $(A,A)$ is $A$
    267         \item Let $E \in KK_f(A,B)$, we take $E \circ A = A\oplus _A E \simeq E$
    268         \item we conclude, that $_A A_A$ is the identity in the Kasparov product (up to isomorphism)
    269     \end{itemize}
    270 \end{example}
    271 
    272 \begin{example}
    273     Let $E = \mathbb{C}^n$, which is a $(M_n(\mathbb{C}), \mathbb{C})$ Hilbert bimodule with the
    274     standard $\mathbb{C}$ inner product.\\
    275     On the other hand let $F = \mathbb{C}^n$, which is a $(\mathbb{C}, M_n(\mathbb{C}))$ Hilbert
    276     bimodule by right matrix multiplication with $M_n(\mathbb{C})$ valued inner product:
    277     \begin{align}
    278         \langle v_1, v_2\rangle =\bar{v_1}v_2^t \;\; \in M_n(\mathbb{C})
    279     \end{align}
    280     Now we take the Kasparov product of $E$ and $F$:
    281    \begin{itemize}
    282         \item $F\circ E\ =\  E\otimes _{\mathbb{C}}F\ \;\;\;\;\;\; \simeq \  M_n(\mathbb{C})$
    283         \item $E\circ F\ =\ F\otimes _{M_n(\mathbb{C})}E\ \simeq\ \mathbb{C}$
    284     \end{itemize}
    285     $M_n(\mathbb{C})$ and $\mathbb{C}$ are Morita equivalent
    286 \end{example}
    287 
    288 \begin{theorem}
    289     Two matrix algebras are Morita Equivalent iff their their Structure spaces
    290     are isomorphic as discreet spaces (have the same cardinality / same number of elements)
    291 \end{theorem}
    292 \begin{proof}
    293     Let $A$, $B$ be \textit{Morita equivalent}. So there exists $_A E_B$ and $_B F_A$ with
    294     \begin{align}
    295         E \otimes _B F \simeq A \;\;\; \text{and} \;\;\; F \otimes _A E \simeq B
    296     \end{align}
    297     Consider $[(\pi _B, H)] \in \hat{B}$ than we construct a representation of $A$,
    298     \begin{align}
    299         \pi _A \rightarrow L(E \otimes _B H)\;\;\; \text{with} \;\;\; \pi _A(a) (e \otimes v) = a e \otimes w
    300     \end{align}
    301     \begin{question}
    302         Is $E \simeq H$ and $F \simeq W$? \\
    303         Not in particular, there is a theorem that all infinite dimensional Hilbert spaces are isomorphic.
    304         Here we are looking at finite dimensional Hilbert spaces.\\
    305         Another thing to is that $[\pi _B, H] \in \hat{B}$ and looking at Exercise \ref{ex: bimodule}
    306         we know that $H$ is a bimodule of $B$, hence $E \otimes _B H\simeq A$, and for $[\pi _A, W]$
    307         the same.
    308     \end{question}
    309     \textit{vice versa}, consider $[(\pi _A, W)] \in \hat{A}$ we can construct $\pi _B$
    310     \begin{align}
    311         \pi _B: B \rightarrow L(F \otimes _A W) \;\;\; \text{and}\;\;\; \pi _B(b) (f\otimes w) = bf\otimes w
    312     \end{align}
    313     These maps are each others inverses, thus $\hat{A} \simeq \hat{B}$
    314 \end{proof}
    315 
    316 \begin{MyExercise}
    317     \textbf{
    318     Fill in the gaps in the above proof:
    319     \begin{enumerate}
    320         \item show that the representation of $\pi _A$ defined is irreducible iff $\pi _B$ is.
    321         \item Show that the association of the class $[\pi _A]$ to $[\pi _B]$ is independent
    322             of the choice of representatives $\pi _A$ and $\pi _B$
    323     \end{enumerate}
    324 }
    325 
    326     \begin{enumerate}
    327         \item $(\pi _B, H)$ is irreducible means $H \neq \emptyset$ and only $\emptyset$ or $H$
    328             is invariant under the Action of $B$ on $H$.
    329             Than $E\otimes _B H$ cannot be empty, because also $E$ preserves left representation of $A$
    330             and also $E\otimes _B H \simeq A$.
    331         \item The important thing is that $[\pi _A] \in \hat{A}$ respectively $[\pi _B] \in \hat{B}$,
    332             hence any choice of representation is irreducible, because the structure space denotes all unitary
    333             equivalence classes of irreducible representations.
    334     \end{enumerate}
    335 \end{MyExercise}
    336 
    337     \begin{lemma}
    338     The matrix algebra $M_n(\mathbb{C})$ has a unique irreducible representation (up to isomorphism)
    339     given by the defining representation on $\mathbb{C}^n$.
    340 \end{lemma}
    341 \begin{proof}
    342     We know $\mathbb{C}^n$ is a irreducible representation of $A= M_n(\mathbb{C})$. Let $H$ be irreducible
    343     and of dimension $k$, then we define a map
    344     \begin{align}
    345         \phi : A\oplus...\oplus A &\rightarrow H^* \\
    346         (a_1,...,a_k)             &\mapsto e^1\circ a_1^t+...+e^k\circ a_k^t
    347     \end{align}
    348     With $\{e^1,...,e^k\}$ being the basis of the dual space $H^*$ and $(\circ)$ being the pre-composition
    349     of elements in $H^*$ and $A$ acting on $H$. This forms a morphism of $M_n(\mathbb{C})$ modules,
    350     provided a matrix $a \in A$ acts on $H^*$ with $v\mapsto v\circ a^t$ ($v\in H^*$).
    351     Furthermore this morphism is surjective, thus making the pullback $\phi ^*:H\mapsto (A^k)^*$ injective.
    352     Now identify $(A^k)^*$ with $A^k$ as a $A$-module and note that
    353     $A=M_n(\mathbb{C}) \simeq \oplus ^n \mathbb{C}^n$ as a n A module.
    354     It follows that $H$ is a submodule of $A^k \simeq \oplus ^{nk}\mathbb{C}$. By irreducibility
    355     $H \simeq \mathbb{C}$.
    356 \end{proof}
    357 
    358 \begin{example}
    359     Consider two matrix algebras $A$, and $B$.
    360     \begin{align}
    361         A = \bigoplus ^N_{i=1} M_{n_i}(\mathbb{C}) \;\;\; B = \bigoplus ^M_{j=1} M_{m_j}(\mathbb{C})
    362     \end{align}
    363     Let $\hat{A} \simeq \hat{B}$ that implies $N=M$ and define $E$ with $A$ acting by block-diagonal
    364     matrices on the first tensor and B acting in the same way on the second tensor. Define $F$ vice versa.
    365     \begin{align}
    366         E:= \bigoplus _{i=1}^N \mathbb{C}^{n_i} \otimes \mathbb{C}^{m_i} \;\;\;
    367         F:= \bigoplus _{i=1}^N \mathbb{C}^{m_i} \otimes \mathbb{C}^{n_i}
    368     \end{align}
    369     Then we calculate the Kasparov product.
    370     \begin{align}
    371         E \otimes _B F &\simeq \bigoplus _{i=1}^N (\mathbb{C}^{n_i}\otimes\mathbb{C}^{m_i})
    372             \otimes _{M_{m_i}(\mathbb{C})} (\mathbb{C}^{m_i}\otimes\mathbb{C}^{n_i}) \\
    373                        &\simeq \bigoplus _{i=1}^N \mathbb{C}^{n_i}\otimes
    374                        \left(\mathbb{C}^{m_i}\otimes _{M_{m_i}(\mathbb{C})}\mathbb{C}^{m_i}\right)
    375                         \oplus \mathbb{C}^{n_i} \\
    376                        &\simeq \bigoplus _{i=1}^N \mathbb{C}^{m_i}\otimes\mathbb{C}^{n_i} \simeq A
    377     \end{align}
    378     and from $F \otimes _A E \simeq B$.
    379 \end{example}
    380 
    381 We conclude that.
    382 \begin{itemize}
    383     \item There is a duality between finite spaces and Morita equivalence classes of matrix algebras.
    384     \item By replacing $*$-homomorphism $A\rightarrow B$ with Hilbert bimodules $(A,B)$ we introduce
    385         a richer structure of morphism between matrix algebras.
    386 \end{itemize}
    387 
    388 \end{document}