ncg

bachelorthesis in physics
git clone git://popovic.xyz/ncg.git
Log | Files | Refs

week3.tex (8481B)


      1 \documentclass[a4paper]{article}
      2 
      3 \usepackage[T1]{fontenc}
      4 \usepackage[utf8]{inputenc}
      5 
      6 \usepackage{mathptmx}
      7 
      8 \usepackage{subcaption}
      9 \usepackage[shortlabels]{enumitem}
     10 \usepackage{amsmath,amssymb}
     11 \usepackage{amsthm}
     12 \usepackage{bbm}
     13 \usepackage{graphicx}
     14 \usepackage[colorlinks=true,naturalnames=true,plainpages=false,pdfpagelabels=true]{hyperref}
     15 \usepackage[parfill]{parskip}
     16 
     17 \theoremstyle{definition}
     18 \newtheorem{definition}{Definition}
     19 
     20 \theoremstyle{definition}
     21 \newtheorem{question}{Question}
     22 
     23 \theoremstyle{definition}
     24 \newtheorem{example}{Example}
     25 
     26 \theoremstyle{theorem}
     27 \newtheorem{theorem}{Theorem}
     28 
     29 \theoremstyle{theorem}
     30 \newtheorem{exercise}{Exercise}
     31 
     32 \theoremstyle{theorem}
     33 \newtheorem{lemma}{Lemma}
     34 
     35 \theoremstyle{definition}
     36 \newtheorem{solution}{Solution}
     37 
     38 \newtheorem*{idea}{Proof Idea}
     39 
     40 \title{University of Vienna\\ Faculty of Physics\\ \vspace{1.25cm}
     41 Notes on\\ Noncommutative Geometry and Particle Phyiscs}
     42 \author{Milutin Popovic \\ Supervisor: Dr. Lisa
     43 Glaser}
     44 \date{Week 3: 26.02 - 4.03}
     45 
     46 \begin{document}
     47 
     48     \maketitle
     49     \tableofcontents
     50     \newpage
     51 \section{Excurse to Group Theory and Lie Groups}
     52 \subsection{Groups and Representations}
     53     \begin{definition}
     54         A Group $G$ is a set with a binary operation on $G$ satisfying.
     55         \begin{enumerate}
     56         \item $f, g \in G$ we have $fg = h \in G$.
     57         \item $f(gh) = (fg) h$
     58         \item  $\exists\ e \in G\ \forall f\in G$ with $ef=fe=f$
     59         \item $\forall f \in G\ \exists\ f^{-1}\in G$ with $ff^{-1}=f^{-1}f=e$
     60         \end{enumerate}
     61     \end{definition}
     62 
     63     \begin{definition}
     64         A Representation of a Group $G$ is a mapping, $D$ of elements of $G$ onto a set of \textit{linear
     65         operators} such that:
     66         \begin{enumerate}
     67             \item $D(e) = 1$, $1$ is the identity operator in the space on which linear operators act
     68             \item $D(g_1)D(g_2) = D(g_1g_2)$, the mapping is linear in group the group operation
     69         \end{enumerate}
     70     \end{definition}
     71 
     72     Just by looking at symmetries of a Group we can find a nice representation, and if the group is finite we
     73     can even find a matrix representation (Cheyley's Theorem). We all ready know a lot about linear algebra
     74     which will then allow us to study these Groups very thoroughly and derive physical properties with
     75     minimal information.
     76 
     77 
     78 \subsection{Lie Groups}
     79     Group elements now depend \textit{smoothly} on a set \textit{continuous parameters} $g(\alpha) \in G$.
     80     We are looking at continuous symmetries, e.g. a Sphere in $\mathbb{R}^3$ can be rotated in any direction
     81     without changing. The collection of rotations forms a Lie group because the group elements are smoothly
     82     differentiable.
     83 
     84 \subsubsection{Generators}
     85     We parameterize $g(\alpha)|_{\alpha=0} = e$ and we assume that near the identity element, the group
     86     elements can be described by a finite set of elements $\alpha_a$ for $a = 1,..,N$. For a representation
     87     $D$ of this group, linear operators need to be parametrized the same way:
     88     \begin{align}
     89         D(\alpha)|_{\alpha=0} = 1
     90     \end{align}
     91 
     92     Because of the smoothness and continuity we can Taylor expand a representation near the identity:
     93     \begin{align}
     94         D(\alpha) &= 1 + id\alpha_a X_a + \cdots && \\
     95         \text{with}&\;\; X_a = -i \frac{\partial D(\alpha)}{\partial \alpha_a}\bigg\arrowvert _{\alpha=0}
     96         && \text{\footnote{Einstein Summation Convention, summation over repeated indices}}
     97     \end{align}
     98 
     99     We call $X_a$ the \textit{generators of the group}.
    100     \begin{itemize}
    101         \item If the parametrization is \textit{parsimonious}\footnote{parsimonious -
    102             All parameters are needed to distinguish between group elements} then all
    103             of $X_a$ will be independent.
    104 
    105         \item If the representation is unitary then $X_a$ will be \textit{hermitian}, because of the
    106             $i$ in the definition.
    107 
    108         \item Sophus Lie showed how to derive generators without representations.
    109     \end{itemize}
    110 
    111     Now let us go in some fixed infinitesimal direction from the identity.
    112     \begin{align}
    113         D(d\alpha) = 1+ id\alpha _a X_a
    114     \end{align}
    115     Because of the group property of closure with respect to the group operation we can raise $D(d\alpha)$
    116     to a large power and still get a group element.
    117     \begin{align}
    118         D(\alpha) = \lim_{k\rightarrow \infty}(1+i\frac{\alpha_a X_a}{k})^k = e^{i\alpha_a X_a}
    119     \end{align}
    120     This is called the \textit{exponential parameterization}. Looking at the expression we see that
    121     group elements can be expressed in terms of generators, and generators form a vector space.
    122     They are often referred to any element in the real linear space spanned by $X_a's$.
    123 
    124 \subsubsection{Lie Algebras}
    125     Let us consider a parameter family of group elements created by one generator $X_a$:
    126     \begin{align}
    127         U(\lambda) = e^{i\lambda \alpha _a X_a}
    128     \end{align}
    129     We know for that for the same generator the group multiplication is linear meaning:
    130     \begin{align}
    131         U(\lambda _1)U(\lambda _2) = U(\lambda_1 + \lambda_2)
    132     \end{align}
    133     But if we multiply elements generated by two different generators the general case is
    134     \begin{align}
    135         e^{i\alpha_a X_a} e^{i\beta_b X_b} \neq  e^{i (\alpha _a + \beta_b) X_a}
    136     \end{align}
    137     Yet because the exponentials are a representation of a group, and a group has closure under
    138     group operation we know the above needs to be true for some $\delta _a$
    139     \begin{align}
    140         e^{i\alpha_a X_a} e^{i\beta_b X_b} = e^{i \delta _a X_a}
    141     \end{align}
    142     To further examine the exponent we rewrite the expression and Taylor expand $ln(1+K)$
    143     to the second of $K = e^{i\alpha_a X_a} e^{i\beta_b X_b} -1$
    144     \begin{align}
    145         i\delta _a X_a =& ln(1 + K) = K - \frac{K^2}{2} + \cdots \\
    146         \text{and}\;\;\; K =&\ e^{i\alpha_a X_a} e^{i\beta_b X_b} -1 \\
    147           =&\ (1 + i\alpha _a X_a - \frac{1}{2}(\alpha _a X_a)^2 + \cdots) \\
    148           \cdot&\ (1 + i\beta _b X_b - \frac{1}{2}(\beta _b X_b)^2 + \cdots) -1 \\
    149           =&\ i\alpha _a X_a + i\beta _b X_b - \alpha_a X_a \beta _b X_b \\
    150           -&\ \frac{1}{2}(\alpha _a X_a)^2 - \frac{1}{2}(\beta _b X_b)^2 + \cdots
    151     \end{align}
    152     So:
    153     \begin{align}
    154         i\delta _a X_a =&\ i\alpha _a X_a + i\beta _b X_b - \alpha_a X_a \beta _b X_b \\
    155           -&\ \frac{1}{2}(\alpha _a X_a)^2 - \frac{1}{2}(\beta _b X_b)^2 \\
    156           +&\ \frac{1}{2}(\alpha _a X_a + i\beta _b X_b - \alpha_a X_a \beta _b X_b)^2 \\
    157           =&\ i\alpha _a X_a + i\beta _b X_b - \alpha_a X_a \beta _b X_b \\
    158           -&\ \frac{1}{2}(\alpha _a X_a)^2 - \frac{1}{2}(\beta _b X_b)^2  \\
    159           +&\ \frac{1}{2}(\alpha _a X_a)^2 + \frac{1}{2}(\beta _b X_b)^2 \\
    160           +& \frac{1}{2}\alpha _a X_a \beta _b X_b + \frac{1}{2}\beta _b X_b \alpha _a X_a
    161     \end{align}
    162     Because $X$'s are linear operators $\alpha _a X_a \beta _b X_b \neq \beta _b X_b \alpha _a X_a$.
    163     These generators form an \textit{algebra under commutation} and we get
    164     \begin{align}
    165         i\delta _a X_a =&\ i\alpha _a X_a + i\beta _b X_b - \alpha_a X_a \beta _b X_b \\
    166                     -&\ \frac{1}{2}[\alpha _a X_a, \beta _b X_b] + \cdots
    167     \end{align}
    168     Thus rewriting the equation gives us
    169     \begin{align}
    170         [\alpha _a X_a, \beta _b X_b] = -2i(\delta _c -\alpha _c -\beta _c) X_c \cdots \equiv i\gamma _c X_c
    171     \end{align}
    172     Because this is true for all $\alpha$ and $\beta$, and considering the group closure, there exists some
    173     \textit{real} $f_{abc}$ called the \textit{structure constant} satisfying.
    174     \begin{equation}
    175         \gamma _c = \alpha _a \beta _b f_{abc}
    176     \end{equation}
    177     Which is the same as.
    178     \begin{equation}
    179         [X_a, X_b] = i f_{abc} X_c
    180     \end{equation}
    181     This is called the \textit{Lie algebra of a group}
    182     \newline
    183     \newline
    184     So $f$ is antisymmetric because $[A, B] = -[B, A]$, which means $f_{abc} = -f_{bac}$.
    185     \newline
    186     And $\delta$ can now be written as
    187     \begin{equation}
    188         \delta _a = \alpha _a + \beta _a - \frac{1}{2} \gamma _a \cdots
    189     \end{equation}
    190     Just by following the properties of Lie Groups (dependence on parameters and smoothness) in a fixed
    191     direction near die identity to find physical statements. E.g.
    192     $[\hat{r}_i, \hat{p}_j] = i \hslash \delta _{ij}$ tells us that we can't know the position
    193     and the momentum of a particle exactly at a given time.
    194 
    195 
    196 
    197 
    198 \end{document}