ncg

bachelorthesis in physics
git clone git://popovic.xyz/ncg.git
Log | Files | Refs

week4.tex (20498B)


      1 \documentclass[a4paper]{article}
      2 
      3 \usepackage[T1]{fontenc}
      4 \usepackage[utf8]{inputenc}
      5 
      6 \usepackage{mathptmx}
      7 
      8 \usepackage{subcaption}
      9 \usepackage[shortlabels]{enumitem}
     10 \usepackage{amsmath,amssymb}
     11 \usepackage{amsthm}
     12 \usepackage{bbm}
     13 \usepackage{graphicx}
     14 \usepackage[colorlinks=true,naturalnames=true,plainpages=false,pdfpagelabels=true]{hyperref}
     15 \usepackage[parfill]{parskip}
     16 
     17 \usepackage{tikz}
     18 \usetikzlibrary{patterns,decorations.pathmorphing,positioning}
     19 
     20 \theoremstyle{definition}
     21 \newtheorem{definition}{Definition}
     22 
     23 \theoremstyle{definition}
     24 \newtheorem{question}{Question}
     25 
     26 \theoremstyle{definition}
     27 \newtheorem{example}{Example}
     28 
     29 \theoremstyle{theorem}
     30 \newtheorem{theorem}{Theorem}
     31 
     32 \theoremstyle{theorem}
     33 \newtheorem{exercise}{Exercise}
     34 
     35 \theoremstyle{definition}
     36 \newtheorem{solution}{Solution}
     37 
     38 \newtheorem*{idea}{Proof Idea}
     39 
     40 \title{University of Vienna\\ Faculty of Physics\\ \vspace{1.25cm}
     41 Notes on\\ Noncommutative Geometry and Particle Phyiscs}
     42 \author{Milutin Popovic \\ Supervisor: Dr. Lisa
     43 Glaser}
     44 \date{Week 4: 05.03 - 12.03}
     45 
     46 \begin{document}
     47 
     48     \maketitle
     49     \tableofcontents
     50     \newpage
     51 
     52 \section{Characters}
     53 \begin{definition}
     54     The characters $\chi _D$ of a group representation $D$, are the \textit{traces} of the linear operators
     55     of of the representation or their matrix elements.
     56     \begin{equation}
     57         \chi _D (g) \equiv \text{Tr}(D(g)) = \sum _i (D(g))_{ii}
     58     \end{equation}
     59 \end{definition}
     60 Advantages of the characters are:
     61 \begin{itemize}
     62     \item $\text{Tr}(AB) = \text{Tr}(BA)$ so $\text{Tr}(D(g^{-1}g_1g)) = \text{Tr}(D(g_1))$
     63     \item equivalent representations have the \textit{same} characters
     64     \item characters are different for inequivalent irreducible representation,
     65         say $D_a$ and $D_b$ then there is a orthogonality relation up to $N$
     66         (number of elements in the group):
     67         \begin{align}
     68             \frac{1}{N} \sum _{g\in G} \chi _{D_a}(g)^*\chi_{D_b}(g) = \delta _{ab}
     69         \end{align}
     70 \end{itemize}
     71 Furthermore characters are a \textit{complete} basis for functions that are constant on the conjugacy
     72     class. Suppose $F(g_1)$ is such a function. We can expand this function in terms of matrix elements
     73     of irreducible representations.
     74     \begin{align}
     75         F(g_1) &= \sum_{a,j,l}\frac{1}{n_a} c_{jk}^{a} (D_a(g_1))_{jk}  \\
     76                 &= \sum_{a,j,l}\frac{1}{n_a} c_{jk}^{a} (D_a(g^{-1}g_1g))_{jk}  \\
     77                 &= \sum_{a,j,k,g,l,m}\frac{1}{n_a} c_{jk}^{a} (D_a(g^{-1}))_{jl}(D_a(g_1))_{lm}(D_a(g))_{mk} \\
     78                 &= \sum_{a,j,l}\frac{1}{n_a} c_{jk}^{a} (D_a(g_1))_{lm} \delta _{jk} \delta _{lm} \\
     79                 &= \sum_{a,j,l}\frac{1}{n_a} c_{jj}^{a} (D_a(g_1))_{ll}  \\
     80                 &= \sum_{a,j,l}\frac{1}{n_a} c_{jj}^{a} \chi _a (g_1)
     81     \end{align}
     82 where $n_a$ denotes the dimension of the representation $D_a$.
     83 \newline
     84 
     85 
     86 We can use characters to find out how many irreducible representations appear in a reducible one and
     87 decompose it to it's irreducible components. We define the projection operator onto the subspace that
     88 transforms under the representation of $a$, where $D$ is a arbitrary representation.
     89 \begin{equation}
     90     P_a = \frac{n_a}{N} \sum _{g\in G} \chi _{D_a}(g)^* D(g)
     91 \end{equation}
     92 This gives us the projection to the original basis.
     93 
     94 \section{Spring System in a Equilateral Triangle}
     95 Consider three masses on the edges of a equilateral triangle connected by springs.
     96 The system has 6 degrees of freedom, the $x, y$ coordinates of the three masses.
     97 
     98 \begin{figure}[h!]
     99     \centering
    100     \begin{tikzpicture}[
    101         mass/.style = {draw,circle, minimum size=0.6cm, inner sep=0pt, thick},
    102         spring/.style = {decorate,decoration={zigzag, pre length=1cm,post length=1cm,segment length=5pt}},
    103         ]
    104         \node[mass] (m1) at (2,3) {$1$};
    105         \node[mass] (m2) at (-2,3) {$2$};
    106         \node[mass] (m3) at (0,0) {$3$};
    107         \draw[spring] (m1) -- node[above] {} (m2);
    108         \draw[spring] (m2) -- node[above] {} (m3);
    109         \draw[spring] (m3) -- node[above] {} (m1);
    110     \end{tikzpicture}
    111     \caption{Spring System Equilateral Triangle (not equilateral in the picture)\label{drawing}}
    112 \end{figure}
    113 
    114 First we will see what we can find just by looking at the symmetries of the system.
    115 \subsection{Group Theoretical Approach}
    116 The 6 degrees of freedom means that the system can be described with a 6 dimensional space.
    117 This is a tensor product of a 2 dimensional space of $x$ and $y$ coordinates and a 3 dimensional
    118 space of the masses (blocks).
    119 \begin{align}
    120     (x_1, y_1, x_2, y_2,x_3, y_3)
    121 \end{align}
    122 The 3 dimensional space has $S_3$ symmetry (Group of all permutations of a three-element set),
    123 it can be represented with $D_3$ the dihedral group.
    124 \begin{align}
    125     D_3(e) =
    126     \begin{pmatrix}
    127         1 & 0 & 0 \\
    128         0 & 1 & 0 \\
    129         0 & 0 & 1 \\
    130     \end{pmatrix} \;\;\;\;
    131     D_3(a_1) = \begin{pmatrix}
    132         0 & 0 & 1 \\
    133         1 & 0 & 0 \\
    134         0 & 1 & 0 \\
    135     \end{pmatrix} \;\;\;\;
    136     D_3(a_2) =
    137     \begin{pmatrix}
    138         0 & 1 & 0 \\
    139         0 & 0 & 1 \\
    140         1 & 0 & 0 \\
    141     \end{pmatrix} \;\;\;\; \\
    142     D_3(a_3) =
    143     \begin{pmatrix}
    144         0 & 1 & 0 \\
    145         1 & 0 & 0 \\
    146         0 & 0 & 1 \\
    147     \end{pmatrix} \;\;\;\;
    148     D_3(a_4) = \begin{pmatrix}
    149         1 & 0 & 0 \\
    150         0 & 0 & 1 \\
    151         0 & 1 & 0 \\
    152     \end{pmatrix} \;\;\;\;
    153     D_3(a_5) =
    154     \begin{pmatrix}
    155         0 & 0 & 1 \\
    156         0 & 1 & 0 \\
    157         1 & 0 & 0 \\
    158     \end{pmatrix} \;\;\;\;
    159 \end{align}
    160 The 2 dimensional space also transforms under $S_3$, under a representation $D_2$
    161 \begin{align}
    162     D_2(e) =
    163     \begin{pmatrix}
    164         1 & 0 \\
    165         0 & 1 \\
    166     \end{pmatrix} \;\;\;\;
    167     D_2(a_1) = \begin{pmatrix}
    168         -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
    169         \frac{\sqrt{3}}{2} & -\frac{1}{2} \\
    170     \end{pmatrix} \;\;\;\;
    171     D_2(a_2) =
    172     \begin{pmatrix}
    173         -\frac{1}{2} & \frac{\sqrt{3}}{2} \\
    174         -\frac{\sqrt{3}}{2} & -\frac{1}{2} \\
    175     \end{pmatrix} \;\;\;\; \\
    176     D_2(a_3) =
    177     \begin{pmatrix}
    178         -1 & 0 \\
    179         0 & 1 \\
    180     \end{pmatrix} \;\;\;\;
    181     D_2(a_4) = \begin{pmatrix}
    182         \frac{1}{2} & -\frac{\sqrt{3}}{2} \\
    183         \frac{\sqrt{3}}{2} & -\frac{1}{2} \\
    184     \end{pmatrix} \;\;\;\;
    185     D_2(a_5) =
    186     \begin{pmatrix}
    187         \frac{1}{2} & -\frac{\sqrt{3}}{2} \\
    188         -\frac{\sqrt{3}}{2} & -\frac{1}{2} \\
    189     \end{pmatrix} \;\;\;\;
    190 \end{align}
    191 Then $D_6$ is the tensor product of $D_3$ and $D_2$:
    192 \begin{equation}
    193     (D_6(g))_{i\mu k\nu}=(D_3(g))_{ij}(D_2(g)_{\mu \nu}
    194 \end{equation}
    195 For $a_2$ we would than have block matrices instead of $1$ in $D_3$:
    196 \begin{align}
    197     D_6(a_2) =
    198     \begin{pmatrix}
    199         0 & D_2(a_2) & 0 \\
    200         0 & 0 & D_2(a_2) \\
    201         D_2(a_2) & 0 & 0 \\
    202     \end{pmatrix}
    203 \end{align}
    204 All other elements follow accordingly.
    205 
    206 Now $S_3$ has two 1 dimensional irreducible representations which are trivial because they map to the
    207 identity and one, 2 dimensional irreducible representation $D_2$ bellow is a character table of these
    208 representations
    209 \begin{table}[h!]
    210   \begin{center}
    211       \caption{Character table of $S_3$}
    212     \label{tab:table1}
    213     \begin{tabular}{l|l|l|l}
    214         $S_3$       & $e$   & $\{a_1, a_2\}$    & $\{a_3, a_4, a_5\}$ \\
    215       \hline
    216         $\chi _0$    &  1     &     1              &      1               \\
    217         \hline
    218         $\chi _1$    &    1   &     1              &       -1                \\
    219         \hline
    220         $\chi _2$    &   2    &     -1              &       0            \\
    221         \hline
    222         $\chi _3$    &  3      &       0            &        1       \\
    223         \hline
    224         $\chi _6$    &   6    &   0                &    0   \\
    225     \end{tabular}
    226   \end{center}
    227 \end{table}
    228 
    229 To find the  normal modes of the oscillation around equilibrium we project $D_6(g)$ to $D_0$, $D_1$ and $D_2$
    230 which are the irreducible representatives of $S_3$.
    231 \newline
    232 We start with $D_0$:
    233 \begin{align}
    234     P_0 &= \frac{1}{6} \sum _{g\in G} \chi _{0}(g)^* D_6(g) \nonumber \\
    235         &=\frac{1}{6}
    236         \begin{pmatrix}
    237             D_2(e)+D_2(a_4) & D_2(a_2)+D_2(a_3) & D_2(a_1)+D_2(a_5) \\
    238             D_2(a_1)+D_2(a_3) & D_2(e)+D_2(a_5) & D_2(a_2)+D_2(a_4)\\
    239             D_2(a_1)+D_2(a_5) & D_2(a_1)+D_2(a_4) & D_2(e)+D_2(a_3) \\
    240         \end{pmatrix} \nonumber\\
    241         &=
    242         \begin{pmatrix}
    243             \frac{1}{2} \\
    244             \frac{\sqrt{3}}{6} \\
    245             -\frac{1}{2} \\
    246             \frac{\sqrt{3}}{6} \\
    247             0 \\
    248             \frac{1}{\sqrt{3}} \\
    249         \end{pmatrix}
    250         \begin{pmatrix}
    251             \frac{1}{2} & \frac{\sqrt{3}}{6} & -\frac{1}{2} &\frac{\sqrt{3}}{6} &  0  & \frac{1}{\sqrt{3}}
    252         \end{pmatrix}
    253         \label{eig: 1}
    254 \end{align}
    255 For $D_1$ we get:
    256 \begin{align}
    257     P_1 &= \frac{1}{6} \sum _{g\in G} \chi _{1}(g)^* D_6(g) \nonumber \\
    258         &=\frac{1}{6}
    259         \begin{pmatrix}
    260             D_2(e)-D_2(a_4) & D_2(a_2)-D_2(a_3) & D_2(a_1)-D_2(a_5) \\
    261             D_2(a_1)-D_2(a_3) & D_2(e)-D_2(a_5) & D_2(a_2)-D_2(a_4)\\
    262             D_2(a_1)-D_2(a_5) & D_2(a_1)-D_2(a_4) & D_2(e)-D_2(a_3) \\
    263         \end{pmatrix} \nonumber\\
    264         &=
    265         \begin{pmatrix}
    266             -\frac{\sqrt{3}}{6} \\
    267             \frac{1}{2} \\
    268             -\frac{\sqrt{3}}{6} \\
    269             -\frac{1}{2} \\
    270             \frac{1}{\sqrt{3}} \\
    271             0
    272         \end{pmatrix}
    273         \begin{pmatrix}
    274             -\frac{\sqrt{3}}{6} & \frac{1}{2} & -\frac{\sqrt{3}}{6} &-\frac{1}{2} &  \frac{1}{\sqrt{3}} & 0
    275         \end{pmatrix}
    276         \label{eig: 2}
    277 \end{align}
    278 And for $D_2$ we get:
    279 \begin{align}
    280     P_2 &= \frac{2}{6} \sum _{g\in G} \chi _{2}(g)^* D_6(g) \nonumber \\
    281         &=\frac{2}{6}
    282         \begin{pmatrix}
    283             2D_2(e) & -D_2(a_2) & -D_2(a_1) \\
    284             -D_2(a_1) & 2D_2(e) & -D_2(a_2)\\
    285             -D_2(a_1) & -D_2(a_1) & 2D_2(e) \\
    286         \end{pmatrix} \nonumber
    287 \end{align}
    288 And the nontrivial modes provided by $P_2$ can be calculated by including translation in $x$ and $y$
    289 direction $T_x$ and $T_y$:
    290 \begin{align}
    291     T_x = \frac{1}{3}
    292 \begin{pmatrix}
    293     1 & 0 & 1 & 0 & 1 & 0 \\
    294     0 & 0 & 0 & 0 & 0 & 0 \\
    295     1 & 0 & 1 & 0 & 1 & 0 \\
    296     0 & 0 & 0 & 0 & 0 & 0 \\
    297     1 & 0 & 1 & 0 & 1 & 0 \\
    298     0 & 0 & 0 & 0 & 0 & 0 \\
    299 \end{pmatrix}
    300     \;\;\;\;
    301     T_y = \frac{1}{3}
    302 \begin{pmatrix}
    303     0 & 0 & 0 & 0 & 0 & 0 \\
    304     0 & 1 & 0 & 1 & 0 & 1 \\
    305     0 & 0 & 0 & 0 & 0 & 0 \\
    306     0 & 1 & 0 & 1 & 0 & 1 \\
    307     0 & 0 & 0 & 0 & 0 & 0 \\
    308     0 & 1 & 0 & 1 & 0 & 1 \\
    309 \end{pmatrix}
    310 \end{align}
    311 To see the modes we move mass $3$ in the $y$ direction which is the vector $\begin{pmatrix}0&0&0&0&0&1\end{pmatrix}$ and its mode can be get by appying it to $P_2 -T_x -T_y$:
    312 \begin{equation}
    313     \begin{pmatrix}
    314         \frac{\sqrt{3}}{6}&-\frac{1}{6}& -\frac{\sqrt{3}}{6} & -\frac{1}{6} & 0 & \frac{1}{3}
    315     \end{pmatrix}
    316     \label{eig: 3}
    317 \end{equation}
    318 
    319 The three vectors in Equasions \ref{eig: 1}, \ref{eig: 2} and \ref{eig: 3} are one of the normal modes of
    320 the system, at the same time they are the eigenvectors of the motion equation of the
    321 system which will be introduced in the next chapter.
    322 Further more the corresponding modes are equaual to the following motions.
    323 Note there are three more nodes mabye I will get later into them, but they can be calculated like the
    324 mode from Eq. \ref{eig: 3}.
    325 
    326 \begin{figure}[h]
    327     \begin{subfigure}[b]{0.32\textwidth}
    328         \centering
    329         \resizebox{\linewidth}{!}{
    330     \begin{tikzpicture}[
    331         mass/.style = {draw,circle, minimum size=0.6cm, inner sep=0pt, thick},
    332         spring/.style = {decorate,decoration={zigzag, pre length=1cm,post length=1cm,segment length=5pt}},
    333         arrow/.style = {thick, ->, shorten >= 2pt, shorten <=2pt}
    334         ]
    335         \node[mass] (m1) at (2,3) {$1$};
    336         \node[mass] (m2) at (-2,3) {$2$};
    337         \node[mass] (m3) at (0,0) {$3$};
    338 
    339         \draw[spring] (m1) -- node[above] {} (m2);
    340         \draw[spring] (m2) -- node[above] {} (m3);
    341         \draw[spring] (m3) -- node[above] {} (m1);
    342 
    343         \draw[arrow]  (m1) -- (2.5, 3.5);
    344         \draw[arrow]  (m2) -- (-2.5, 3.5);
    345         \draw[arrow]  (m3) -- (0, -0.7);
    346 
    347     \end{tikzpicture}
    348     }
    349         \caption{Motion given by \ref{eig: 1}\\Breathing Mode}
    350     \end{subfigure}
    351     \begin{subfigure}[b]{0.32\textwidth}
    352         \centering
    353         \resizebox{\linewidth}{!}{
    354     \begin{tikzpicture}[
    355         mass/.style = {draw,circle, minimum size=0.6cm, inner sep=0pt, thick},
    356         spring/.style = {decorate,decoration={zigzag, pre length=1cm,post length=1cm,segment length=5pt}},
    357         arrow/.style = {thick, ->, shorten >= 2pt, shorten <=2pt}
    358         ]
    359         \node[mass] (m1) at (2,3) {$1$};
    360         \node[mass] (m2) at (-2,3) {$2$};
    361         \node[mass] (m3) at (0,0) {$3$};
    362 
    363         \draw[spring] (m1) -- node[above] {} (m2);
    364         \draw[spring] (m2) -- node[above] {} (m3);
    365         \draw[spring] (m3) -- node[above] {} (m1);
    366 
    367         \draw[arrow]  (m1) -- (1.5, 3.5);
    368         \draw[arrow]  (m2) -- (-2.5, 2.5);
    369         \draw[arrow]  (m3) -- (0.7, 0);
    370     \end{tikzpicture}
    371     }
    372         \caption{Motion given by \ref{eig: 2}\\ Rotation}
    373     \end{subfigure}
    374     \begin{subfigure}[b]{0.32\textwidth}
    375         \centering
    376         \resizebox{\linewidth}{!}{
    377     \begin{tikzpicture}[
    378         mass/.style = {draw,circle, minimum size=0.6cm, inner sep=0pt, thick},
    379         spring/.style = {decorate,decoration={zigzag, pre length=1cm,post length=1cm,segment length=5pt}},
    380         arrow/.style = {thick, ->, shorten >= 2pt, shorten <=2pt}
    381         ]
    382         \node[mass] (m1) at (2,3) {$1$};
    383         \node[mass] (m2) at (-2,3) {$2$};
    384         \node[mass] (m3) at (0,0) {$3$};
    385 
    386         \draw[spring] (m1) -- node[above] {} (m2);
    387         \draw[spring] (m2) -- node[above] {} (m3);
    388         \draw[spring] (m3) -- node[above] {} (m1);
    389 
    390         \draw[arrow]  (m1) -- (2.5, 2.5);
    391         \draw[arrow]  (m2) -- (-2.5, 2.5);
    392         \draw[arrow]  (m3) -- (0, 0.7);
    393     \end{tikzpicture}
    394     }
    395         \caption{Motion given by \ref{eig: 3}}
    396     \end{subfigure}
    397 \end{figure}
    398 
    399 
    400 
    401 
    402 \subsection{Physical Approach}
    403 The physical approach would be to construct the lagrangian $\mathfrak{L} = T - V$. Were $T$ is
    404 simply the kinetic energy of the system in $\eta = (x_1, y_1, x_2, y_2, x_3, y_3)$ coordinates and
    405 for simplicity we set all masses to $m$.
    406 \begin{align}
    407     T = \frac{m}{2} \dot{\eta} _i \dot{\eta} ^i \;\;\;\; \text{for\footnote{Einstein Summation Convention}}
    408     \;\; i = 1,\dots,6
    409 \end{align}
    410 For $V$ the potential energy we have three springs and \textit{small oscillations around equilibrium},
    411 two of them are the offset of the one to the angle
    412 of $\theta = \pm \frac{\pi}{3}$, which is $\begin{pmatrix} cos(\theta) \\ sin(\theta)\end{pmatrix} =
    413     \begin{pmatrix} \frac{1}{2} \\ \pm \frac{\sqrt{3}}{2}\end{pmatrix}$. Then $V$ is:
    414 \begin{align}
    415     V &= \frac{k}{2} U^i_{\; j} \eta _i \eta ^j \\
    416      &= \frac{k}{2} \bigg((x_1 - x_2)^2 +(\frac{1}{2}(x_2-x_3 + \frac{\sqrt{3}}{2} (y_2 - y_3))^2
    417     +(\frac{1}{2}(x_1-x_3) + \frac{\sqrt{3}}{2}(y_1 - y_3))^2 \bigg)
    418 \end{align}
    419 Where $U$ is:
    420 \begin{align}
    421     U = \frac{1}{4}
    422     \begin{pmatrix}
    423         5 & \sqrt{3} & -4 & 0 & -1 & -\sqrt{3} \\
    424         \sqrt{3} & 3 & 0 & 0 & -\sqrt{3} & -3 \\
    425         -4 & 0 & 5 & -\sqrt{3} & -1 & \sqrt{3} \\
    426         0 & 0 & -\sqrt{3} & 3 & \sqrt{3} & -3 \\
    427         -1 & -\sqrt{3} & -1 & \sqrt{3} & 2 & 0 \\
    428         -\sqrt{3} & -3 & \sqrt{3} & -3 & 0 & 6
    429     \end{pmatrix}
    430 \end{align}
    431 
    432 The Euler-Lagrange equations then give us :
    433 \begin{equation}
    434     m\ddot{\eta}^i = -k U^i_{\; j} \eta ^j
    435 \end{equation}
    436 With the exponential ansatz $\eta = \eta _0 e^{i\omega t}$ we get
    437 \begin{equation}
    438     U^i_{\; j}\eta ^j = \lambda \eta ^i \;\;\;\;\;\;\; \text{where} \;\; \lambda = \frac{m\omega^2}{k}
    439 \end{equation}
    440 The normal modes are the eigenvalues of $U$, which were calculated only using symmetry in Equations
    441 \ref{eig: 1}, \ref{eig: 2} and \ref{eig: 3}. With some more character theory we can extract even more
    442 information explicitly on the eigenvalues. To sum it up there are four different eigenvalues, which means
    443 that some modes have the same frequency, to find the frequencies (eigenvalues) go through a calculation in
    444 diagonal coordinates of $U$ and $D(g)$ (we know all traces of $D(g)$) the trace is then invariant and the
    445 sum of all eigenvectors, it will give 3 equation with four unknown but one is the trivial oscillation
    446 with $\lambda = 0$ making the system solvable.
    447 
    448 \section{Noncommutative geometric Finite Spaces}
    449 \subsection{Metric on Finite Discrete Spaces}
    450 Let $X$ be a \textit{finite discrete space}, described by a structure space $\hat{A}$ of
    451 a matrix algebra $A$. To describe distance between two points in X (as we would in a metric space)
    452 we use an array $\{d_{ij}\}_{i, j \in X}$ of \textit{real nonnegative} entries on $X$
    453 such that
    454 \begin{itemize}
    455     \item $d_{ij} = d_{ji}$             Symmetric
    456     \item $d_{ij} \leq d_{ik} d_{kj}$       Triangle Inequality
    457     \item $d_{ij} = 0$ for $i=j$ (the same element)
    458 \end{itemize}
    459 
    460 \begin{example}
    461     The \textit{discrete metric} on a discrete space X is $d_{ij}=1$ for $i\neq j$ and $d_{ij}=0$
    462     for $i = j$
    463     \newline
    464     Properties of the discrete metric \url{https://en.wikipedia.org/wiki/Discrete_space#Properties}
    465 \end{example}
    466 
    467 The commutative case, where $A$ is assumed commutative can desrcibe the metric on $X$ in terms of
    468 algebraic data. The result is the following theorem can be proved.
    469 \begin{theorem}
    470     Let $d_{ij}$ be a metric on $X$ a finite discrete space with $N$ points, $A = \mathbb{C}^N$
    471     with elements $a = (a(i))_{i=1}^N$ such that $\hat{A} \simeq X$. Then there exists a
    472     representation $\pi$ of $A$ on a finite-dimensional inner product space $H$ and a symmetric
    473     operator $D$ on $H$ such that
    474     \begin{equation}
    475         d_{ij} = \sup_{a\in A}\{|a(i)-a(j)| : ||[D, \pi(a)]|| \leq 1\}
    476     \end{equation}
    477 \end{theorem}
    478 
    479 \begin{proof}
    480     Claim that this would follow from the equality:
    481     \begin{equation}
    482         ||[D, \pi(a)]|| = \max_{k\neq l} \big\{\frac{1}{d_{kl}}|a(k) - a(l)|\big\}
    483         \label{induction}
    484     \end{equation}
    485     This can be proved with induction. Set $N=2$ then $H=\mathbb{C}^2$, $\pi:A\rightarrow L(H)$ and
    486     a hermitian matrix $D$.
    487     \begin{align}
    488         \pi(a) =
    489         \begin{pmatrix}
    490             a(1) & 0 \\
    491             0 & a(2)
    492         \end{pmatrix}
    493         \;\;\;\;
    494         D =
    495         \begin{pmatrix}
    496             0 & (d_{12})^{-1} \\
    497             (d_{21})^{-1} & 0
    498         \end{pmatrix}
    499     \end{align}
    500     Then:
    501     \begin{align}
    502         ||[D, \pi(a)]|| = (d_{12})^{-1} | a(1) - a(2)|
    503     \end{align}
    504     Suppose this holds for $N$ with $\pi_N$, $H_N = \mathbb{C}^N$ and $D_N$.
    505     Then it holds for $N+1$ with $H_{N+1} = H_{N} \oplus \bigoplus_{i=1}^N H_N^i$ and
    506     \begin{align}
    507         \pi_{N+1}(a(1),\dots,a(N+1)) = \pi_N(a(1),\dots,a(N))
    508         \oplus
    509         \begin{pmatrix}
    510             a(1) & 0 \\
    511             0   & a(N+1)
    512         \end{pmatrix}
    513         \oplus \cdots \oplus
    514         \begin{pmatrix}
    515             a(N) & 0 \\
    516             0  1 & a(N+1)
    517         \end{pmatrix}
    518     \end{align}
    519     And $D_{N+1}$:
    520     \begin{align}
    521         D_{N+1} = D_N
    522         \oplus
    523         \begin{pmatrix}
    524             0 & (d_{1(N+1)})^{-1} \\
    525             (d_{1(N+1)})^{-1}   & 0
    526         \end{pmatrix}
    527         \oplus \cdots \oplus
    528         \begin{pmatrix}
    529             0 & (d_{N(N+1)})^{-1} \\
    530             (d_{N(N+1)})^{-1}   & 0
    531         \end{pmatrix}
    532     \end{align}
    533     From this follows \ref{induction}.
    534     Then we can continue the proof, we set for fixed $i, j$, $a(k) = d_{ik}$, which gives
    535     $|a(i) - a(j)| = d_{ij}$
    536     \begin{align}
    537         \Rightarrow  \frac{1}{d_{kl}} | a(k) - a(l) | =  \frac{1}{d_{kl}} | d_{ik} - d_{il} | \leq 1
    538     \end{align}
    539 \end{proof}
    540 
    541 The translation of the metric on $X$ into algebraic data assumes commutativity in $A$, but this can be
    542 extended to noncommutative matrix algebra, with the following metric on a structure space $\hat{A}$
    543 of a matrix algebra $M_{n_i}(\mathbb{C}$
    544 \begin{equation}
    545     d_{ij} = \sup_{a\in A}\big\{|\text{Tr}(a(i)) - \text{Tr}((a(j))|: ||[D, a]|| \leq 1\big\}
    546 \end{equation}
    547 This is special case of the Connes' distance formula on a structure space of $A$.
    548 
    549 \begin{definition}
    550     A \textit{finite spectral triple} is a tripe $(A, H, D)$, where $A$ is a unital $*$-algebra,
    551     faithfully represented on a finite-dimensional Hilbert space $H$, with a symmetric operator
    552     $D: H \rightarrow H$.
    553 \end{definition}
    554 $A$ is automatically a matrix algebra.
    555 
    556 \end{document}