ncg

bachelorthesis in physics
git clone git://popovic.xyz/ncg.git
Log | Files | Refs

week5.tex (27284B)


      1 \documentclass[a4paper]{article}
      2 
      3 \usepackage[T1]{fontenc}
      4 \usepackage[utf8]{inputenc}
      5 
      6 \usepackage{mathptmx}
      7 
      8 \usepackage{subcaption}
      9 \usepackage[shortlabels]{enumitem}
     10 \usepackage{amsmath,amssymb}
     11 \usepackage{amsthm}
     12 \usepackage{bbm}
     13 \usepackage{graphicx}
     14 \usepackage[colorlinks=true,naturalnames=true,plainpages=false,pdfpagelabels=true]{hyperref}
     15 \usepackage[parfill]{parskip}
     16 
     17 \usepackage{tikz}
     18 \usetikzlibrary{patterns,decorations.pathmorphing,positioning}
     19 
     20 \usepackage[framemethod=TikZ]{mdframed}
     21 
     22 \tikzstyle{titlered} =
     23     [draw=black, thick, fill=white,%
     24         text=black, rectangle,
     25         right, minimum height=.7cm]
     26 
     27 \newcounter{exercise}
     28 
     29 \renewcommand*\theexercise{Exercise~\arabic{exercise}}
     30 
     31 \makeatletter
     32 \mdfdefinestyle{exercisestyle}{%
     33     outerlinewidth=1em,%
     34     outerlinecolor=white,%
     35     leftmargin=-1em,%
     36     rightmargin=-1em,%
     37     middlelinewidth=1.2pt,%
     38     roundcorner=5pt,%
     39     linecolor=black,%
     40     backgroundcolor=blue!5,
     41     innertopmargin=1.2\baselineskip,
     42     skipabove={\dimexpr0.5\baselineskip+\topskip\relax},
     43     skipbelow={-1em},
     44     needspace=3\baselineskip,
     45     frametitlefont=\sffamily\bfseries,
     46     settings={\global\stepcounter{exercise}},
     47     singleextra={%
     48         \node[titlered,xshift=1cm] at (P-|O) %
     49             {~\mdf@frametitlefont{\theexercise}~};},%
     50     firstextra={%
     51             \node[titlered,xshift=1cm] at (P-|O) %
     52                     {~\mdf@frametitlefont{\theexercise}~};},
     53 }
     54 \makeatother
     55 
     56 \newenvironment{MyExercise}%
     57 {\begin{mdframed}[style=exercisestyle]}{\end{mdframed}}
     58 
     59 \theoremstyle{definition}
     60 \newtheorem{definition}{Definition}
     61 
     62 \theoremstyle{definition}
     63 \newtheorem{question}{Question}
     64 
     65 \theoremstyle{definition}
     66 \newtheorem{example}{Example}
     67 
     68 \theoremstyle{theorem}
     69 \newtheorem{theorem}{Theorem}
     70 
     71 \theoremstyle{theorem}
     72 \newtheorem{lemma}{Lemma}
     73 
     74 \newtheorem*{idea}{Proof Idea}
     75 
     76 
     77 
     78 \title{University of Vienna\\ Faculty of Physics\\ \vspace{1.25cm}
     79 Notes on\\ Noncommutative Geometry and Particle Phyiscs}
     80 \author{Milutin Popovic \\ Supervisor: Dr. Lisa
     81 Glaser}
     82 \date{Week 5: 12.03 - 19.03}
     83 
     84 \begin{document}
     85 
     86     \maketitle
     87     \tableofcontents
     88     \newpage
     89 
     90 \section{Noncommutative Geometric Spaces }
     91 \subsection{Exercises}
     92 
     93 \begin{MyExercise}
     94 \textbf{
     95     Make the proof of the last theorem (see week4.pdf) explicit for $N=3$.
     96 }\newline
     97 
     98     For the C* algebra we have $A=\mathbb{C}^3$
     99     For $H$ we have $H = (\mathbb{C}^2)^{\oplus 3} = H_2 \oplus H_2^1 \oplus H_2^2$.
    100     The symmetric operator $D$ acting on $H$ and the representation $\pi (a)$:
    101     \begin{align}
    102         \pi((a(1), a(2), a(3)) &=
    103         \begin{pmatrix}
    104             a(1) & 0 \\ 0 & a(2)
    105         \end{pmatrix} \oplus
    106         \begin{pmatrix}
    107             a(1) & 0 \\ 0 & a(3)
    108         \end{pmatrix} \oplus
    109         \begin{pmatrix}
    110             a(2) & 0 \\ 0 & a(2)
    111         \end{pmatrix} \nonumber  \\
    112         & =
    113         \begin{pmatrix}
    114             a(1) & 0 & 0 & 0 & 0 & 0 \\
    115             0    & a(2) & 0 & 0 & 0 & 0 \\
    116             0    & 0 & a(1) & 0 & 0 & 0 \\
    117             0    & 0 & 0 & a(3) & 0 & 0 \\
    118             0    & 0 & 0 & 0 & a(2) & 0 \\
    119             0    & 0 & 0 & 0 & 0 & a(3)
    120         \end{pmatrix} \\
    121         D &=
    122         \begin{pmatrix}
    123             0 & x_1 \\ x_1 & 0
    124         \end{pmatrix} \oplus
    125         \begin{pmatrix}
    126             0 & x_2 \\ x_2 & 0
    127         \end{pmatrix} \oplus
    128         \begin{pmatrix}
    129             0 & x_3 \\ x_3 & 0
    130         \end{pmatrix} \nonumber \\
    131         &=
    132         \begin{pmatrix}
    133             0   & x_1 & 0 & 0 & 0 & 0 \\
    134             x_1 & 0   & 0 & 0 & 0 & 0 \\
    135             0   & 0   & 0 & x_2 & 0 & 0 \\
    136             0   & 0   & x_2 & 0 & 0 & 0 \\
    137             0   & 0   & 0 & 0 & 0 & x_3 \\
    138             0   & 0   & 0 & 0 & x_3 & 0 \\
    139         \end{pmatrix} \\
    140     \end{align}
    141     Then the norm of the commutator would be the largest eigenvalue
    142     \begin{align}
    143         &||[D, \pi(a)]|| = ||D\pi(a) - \pi(a)D||\nonumber\\
    144         &=
    145         \left|\left|
    146     \setlength{\arraycolsep}{0.1cm}
    147       \renewcommand{\arraystretch}{0.1}
    148         \begin{pmatrix}
    149             0   & x_1(a(2)-a(1)) & 0 & 0 & 0 & 0 \\
    150             -x_1(a(2)-a(1)) & 0   & 0 & 0 & 0 & 0 \\
    151             0   & 0   & 0 & x_2(a(3)-a(1)) & 0 & 0 \\
    152             0   & 0   & -x_2(a(3)-a(1)) & 0 & 0 & 0 \\
    153             0   & 0   & 0 & 0 & 0 & x_3(a(3)-a(2)) \\
    154             0   & 0   & 0 & 0 & -x_3(a(2)-a(3)) & 0 \\
    155         \end{pmatrix}\right|\right| \label{skew matrix}
    156     \end{align}
    157 The matrix in Equation \ref{shew matrix} is a skew symmetric matrix its eigenvalues
    158 are $i\lambda_1, i\lambda_2, i\lambda_3, i\lambda_4$, where the $\lambda$'s are on the
    159 upper and lower diagonal check \url{https://en.wikipedia.org/wiki/Skew-symmetric_
    160 matrix#Skew-symmetrizable_matrix}. The matrix norm of would be the maximum of the norm of
    161 the larges eigenvalues:
    162 \begin{align}
    163     ||[D, \pi(a)]|| = \max_{a\in A}\{&x_1|a(2)-a(1)|,\\
    164     &x_2|(a(3)-a(1))|,\nonumber\\
    165     &x_3|(a(3)-a(2))|,\}\nonumber
    166 \end{align}
    167 The metric is then:
    168 \begin{align}
    169     d =
    170     \begin{pmatrix}
    171         0 & a(1)-a(2) & a(1)-a(3)\\
    172         a(2)-a(1) & 0 & a(2)-a(3)\\
    173         a(3)-a(1) & a(3)-a(2) & 0
    174     \end{pmatrix}
    175 \end{align}
    176 \end{MyExercise}
    177 
    178 \begin{MyExercise}
    179     \textbf{
    180 	Compute the metric on the space of three points given by $d_{ij} =
    181 	\sup_{a\in A}\{|a(i) - a(j)|: ||[D, \pi(a)]|| \leq 1\}$ for the set of data
    182     $A = \mathbb{C}^3$ acting in the defining representation $H = \mathbb{C}^3$, and
    183     \begin{align}
    184     D =
    185     \begin{pmatrix}
    186         0 & d^{-1} & 0 \\
    187         d^{-1} & 0 & 0 \\
    188         0 & 0 & 0
    189     \end{pmatrix}
    190     \end{align}
    191     for some $d \in \mathbb{R}$
    192 }\newline
    193 
    194     We have $A=\mathbb{C}^3$, $H=\mathbb{C}^3$ and $D$ from above, then
    195 
    196     \begin{align}
    197         ||[D, \pi(a)]|| &= d^{-1}\left|\left|
    198     \begin{pmatrix}
    199         0 & a(2)-a(1) & 0 \\
    200         -(a(2)-a(1)) & 0 & 0 \\
    201         0 & 0 & 0
    202     \end{pmatrix} \right|\right|
    203     \end{align}
    204     The metric is then
    205     \begin{align}
    206     d =
    207         \begin{pmatrix}
    208             0 & a(1)-a(2) & a(1)  \\
    209             a(2)-a(1) & 0 & a(2) \\
    210             -a(1) & -a(2) & 0
    211         \end{pmatrix}
    212     \end{align}
    213 \end{MyExercise}
    214 
    215 \begin{MyExercise}
    216     \textbf{
    217     Show that $d_{ij}$ from Equation \ref{ext metric} is a metric on $\hat{A}$ by
    218     establishing that:
    219     \begin{align}
    220         d_{ij} &= 0\;\;\; \Leftrightarrow \;\;\; i=j \label{metric 1} \\
    221         d_{ij} &= d_{ji} \label{metric 2}\\
    222         d_{ij} &\leq d_{ik} + d_{kj} \label{metric 3}
    223     \end{align}
    224     \begin{equation} \label{ext metric}
    225         d_{ij} = \sup_{a\in A}\big\{|\text{Tr}(a(i)) - \text{Tr}((a(j))|: ||[D, a]|| \leq 1\big\}
    226     \end{equation}
    227 }\newline
    228 
    229 For Equation \ref{metric 1} set $i=j$ in \ref{ext metric}.
    230 \begin{align}
    231     d_{ii} &= \sup_{a \in A}\{|\text{Tr}(a(i)) - \text{Tr}((a(i))|: ||[D, a]|| \leq
    232     1\big\} \\
    233     &= \sup_{a \in A}\{0: ||[D, a]|| \leq 1\big\} = 0
    234 \end{align}
    235 For Equation \ref{metric 2} obviously we have the commuting property of
    236 addition.
    237 \newline
    238 For Equation \ref{metric 3}, for $k=j$ then $d_{kj} = 0$ and the equality
    239 holds. For $i = k$ then $d_{ik} = 0$ and equality holds. Else set $d_{ik} =
    240 1$ and $d_{kj} = 1$ then $d_{ij} = 1 \leq d_{ik} + d_{kj} = 2$
    241 \end{MyExercise}
    242 
    243 \subsection{Properties of Matrix Algebras}
    244 \begin{lemma}
    245     If $A$ is a unital C* algebra that acts faithfully on a finite
    246     dimensional Hilbert space, then $A$ is a matrix algebra of the Form:
    247     \begin{equation}
    248         A \simeq \bigoplus _{i=1}^N M_{n_i}(\mathbb{C})
    249     \end{equation}
    250 \end{lemma}
    251 \begin{proof}
    252     Since $A$ acts faithfully on a Hilbert space, then $A$ is a C*
    253     subalgebra of a matrix algebra $L(H) = M_{\dim (H)}(\mathbb{C}
    254     \Rightarrow A \simeq \text{Matrix algebra}$.
    255 \end{proof}
    256 
    257 \begin{question}
    258     What does the author mean when he sais 'acts faithfully on a
    259     Hilbertspace`? Then the representation is fully reducible, or that the
    260     presentation is irreducible?
    261     \newline
    262 
    263     For a *-representation 'faithful` if it is injective. For a
    264     *-homomorphism 'faithful` means one-to-one correspondance
    265 \end{question}
    266 
    267 \begin{example}
    268     $A = M_n(\mathbb{C})$ and $H=\mathbb{C}^n$, $A$ acts on $H$ with matrix
    269     multiplication and standard inner product. $D$ on $H$ is a hermitian
    270     matrix $n\times n$ matrix.
    271 \end{example}
    272 
    273 $D$ is referred to as a finite Dirac operator as in as its $\infty$
    274 dimensional on Riemannian Spin manifolds coming in Chapter 4.
    275 \newline
    276 
    277 Now can introduce a 'differential 'geometric structure` on the finite space X
    278 with the \textbf{devided difference}
    279 \begin{equation}
    280     \frac{a(i)-a(j)}{d_{ij}}
    281 \end{equation}
    282 for each pair $i$, $j$ $\in X$ the finite dimensional discrete space $X$.
    283 This appears in the entries in the commutator $[D, a]$ in the above
    284 exercises.
    285 
    286 \begin{definition}
    287     Given an finite spectral triple $(A, H, D)$, the $A$-bimodule of
    288     Connes' differential one-forms is:
    289     \begin{equation}
    290         \Omega _D ^1 (A) := \left\{ \sum _k a_k[D, b_k]: a_k, b_k \in A \right\}
    291     \end{equation}
    292 \end{definition}
    293 
    294 \begin{question}
    295     Is the Conne's differential one form  the set of all '1st order
    296     differential operators` given $A$, that act on $H$?
    297 \end{question}
    298 Then there is a map $d:A\rightarrow \Omega _D ^1 (A)$, $d = [D, \cdot]$.
    299 \begin{MyExercise}
    300     \textbf{
    301     Verify that 'd` is a derivation of the C* algebra
    302     \begin{align}
    303         d(ab) = d(a)b + ad(b) \\
    304         d(a^*) = -d(a)^*
    305     \end{align}
    306 }\newline
    307 
    308     For the record $d(\cdot) = [D, \cdot]$, then we have
    309     \begin{enumerate}
    310         \item
    311             \begin{align}
    312                 d(ab) &= [D, ab] = [D, a]b + a[D,b]\\
    313                 &= d(a)b + ad(b)
    314             \end{align}
    315         \item
    316             \begin{align}
    317                 d(a^*) &= [D, a^*] = Da^* - a^*D \\
    318                 &=-(D^*a - aD^*) = -[D^*, a] \\
    319                 &= -d(a)^*
    320             \end{align}
    321     \end{enumerate}
    322 \end{MyExercise}
    323 \begin{MyExercise}
    324     \textbf{
    325     Verify that $\Omega _D^1 (A)$ is an $A$-bimodule by rewriting
    326     }
    327     \begin{align}
    328         a(a_k[D, b_k])b = \sum_k a'_k[D, b'_k] \;\;\;\; a'_k, b'_k \in A
    329     \end{align}
    330     \newline
    331 
    332     Begin
    333     \begin{align}
    334         a(a_k[D, b_k])b &= aa_k(Db_k - b_k D) b = \\
    335            &= aa_k(Db_k b - b_k D b) = aa_k(Db_k b - b_k Db - b_kbD +b_kbD)=\\
    336            &= aa_k(Db_kb-b_kbD + b_k b D - b_k D b) = \\
    337            &= aa_k [D, b_kb] + aa_k b [D, b]=\\
    338            &= \sum _k a_k' [D, b_k']
    339     \end{align}
    340 
    341 \end{MyExercise}
    342 
    343 \begin{lemma}
    344     Let $(A, H, D) = (M_n(\mathbb{C}, \mathbb{C}^n, D)$, with $D$ a hermitian
    345     $n\times n$ matrix. If $D$ is not a multiple of the identity then:
    346     \begin{equation}
    347         \Omega _D ^1 (A)  \simeq  M_n(\mathbb{C}) = A
    348     \end{equation}
    349 \end{lemma}
    350 
    351 \begin{proof}
    352     Assume $D = \sum _i \lambda _i e_{ii}$ (diagonal), $\lambda _i \in \mathbb{R}$ and
    353     $\{e_{ij}\}$ the basis of $M_n(\mathbb{C}$. For fixed $i$, $j$ choose $k$
    354     such that $\lambda _k \neq \lambda _j$ then
    355     \begin{align} \label{basis}
    356         \left(\frac{1}{\lambda _k - \lambda _j} e_{ik}\right) [D, e_{kj}] =
    357         e_{ij}
    358     \end{align}
    359     $e_{ij}\in \Omega _D ^1 (A)$ by the above definition. And $\Omega _D ^1
    360     (A) \subset L(\mathbb{C}^n) = H \simeq M_n(\mathbb{C}) = A$
    361 \end{proof}
    362 
    363 \begin{MyExercise}
    364     \textbf{
    365      Consider $(A=\mathbb{C}^2, H=\mathbb{C}^2,
    366      D = \begin{pmatrix} 0 & \lambda \\ \bar{\lambda} & 0
    367      \end{pmatrix})$ with $\lambda \neq 0$. Show that $\Omega _D^1(A)
    368      \simeq M_2(\mathbb{C})$
    369  }
    370 \newline
    371 
    372     Because of the Hilbert Basis $D$ can be extended in terms of
    373     the basis of $M_2(\mathbb{C})$, plugging this into Equation
    374     \ref{basis} will get us the same cyclic result, thus
    375     $\Omega _D^1(A) \simeq M_2(\mathbb{C})$
    376 \
    377 \end{MyExercise}
    378 
    379 \subsection{Morphisms Between Finite Spectral Triples}
    380 \begin{definition}
    381     two finite spectral tripes $(A_1, H_1, D_1)$ and $(A_2, H_2, D_2)$ are
    382     called unitarily equivalent if
    383     \begin{itemize}
    384         \item $A_1 = A_2$
    385         \item $\exists \;\; U: H_1 \rightarrow H_2$, unitary with
    386             \begin{enumerate}
    387                 \item  $U\pi_1(a)U^* = \pi_2(a)$ with $a \in A_1$
    388                 \item  $UD_1 U^* = D_2$
    389             \end{enumerate}
    390     \end{itemize}
    391 \end{definition}
    392 
    393 Some remarks
    394 \begin{itemize}
    395     \item the above is an equivalence relation
    396     \item spectral unitary equivalence is given by the unitaries of the
    397         matrix algebra itself
    398     \item for any such $U$ then $(A, H, D) \sim (A, H, UDU^*)$
    399     \item $UDU^* = D + U[D, U^*]$ of the form of elements in
    400         $\Omega _D^1 (A)$.
    401 \end{itemize}
    402 
    403 \begin{MyExercise}
    404     \textbf{
    405     Show that the unitary equivalence between finite spectral
    406     triples is a equivalence relation
    407 }\newline
    408 
    409     An equivalence relation needs to satisfy reflexivity, symmetry
    410     transitivity.
    411     Let $(A_1, H_1, D_1)$, $(A_2, H_2, D_2)$ and $(A_3, H_3, D_3)$
    412     be three finite spectral triples.
    413     \newline
    414 
    415     For reflexivity $(A_1, H_1, D_1) \sim (A_1, H_1, D_1)$. So there
    416     exists a $U: H_1 \rightarrow H_1$ unitary, which is the identity
    417     and always exists.
    418     \newline
    419 
    420     For symmetry we need
    421     \begin{align}
    422         (A_1, H_1, D_1) \sim (A_2, H_2, D_2) \Leftrightarrow
    423         (A_2, H_2, D_2) \sim (A_1, H_1, D_1)
    424     \end{align}
    425     because $U$ is unitary:
    426     \begin{align}
    427         &U\pi_1(a)U^* = \pi_2(a) \;\;\; | \cdot U^*\boxdot U \\
    428         &U^*U\pi_1(a)U^*U = \pi_1(a) = U^*\pi_2(a)U \\
    429     \end{align}
    430     The same with the symmetric operator $D$.
    431     \newline
    432 
    433     For transitivity we need
    434     \begin{align}
    435         (A_1, H_1, D_1) &\sim (A_2, H_2, D_2) \;\;\; \text{and} \;\;\;
    436         (A_2, H_2, D_2) \sim (A_3, H_3, D_3) \\
    437         &\Rightarrow (A_1, H_1, D_1) \sim (A_3, H_3, D_3)
    438     \end{align}
    439     There are two unitary maps $U_{12}:H_1 \rightarrow H_2$ and
    440     $U_{23}: H_2 \rightarrow H_3$ then
    441     \begin{align}
    442         U_{23}U_{12} \pi_1(a) U^*_{12}U^*_{23} &= U_{23}
    443         \pi_2(a) U_23^* \\
    444         &= \pi_3(a) \\
    445         U_{23}U_{12} D_1U^*_{12}U^*_{23} &= U_{23}
    446         D_2 U_23^* \\
    447         &= D_3
    448     \end{align}
    449 \end{MyExercise}
    450 
    451 Extending the this relation we look again at  the notion of equivalence from
    452 Morita equivalence of Matrix Algebras.
    453 \newline
    454 
    455 \begin{definition}
    456     Let $A$ be an algebra. We say that $I \subset A$, as a vector space, is a
    457     right(left) ideal if $ab \in I$ for $a \in A$ and $b\in I$ (or $ba \in
    458     I$, $b\in I$, $a\in A$). We call a left-right ideal simply an ideal.
    459 \end{definition}
    460 
    461 Given a Hilbert bimodule $E \in KK_f(B, A)$ and $(A, H, D)$ we construct
    462 a finite spectral triple on $B$, $(B, H', D')$
    463 \begin{equation}
    464     H' = E \otimes _A H
    465 \end{equation}
    466 We might define $D'$ with $D'(e \otimes \xi) = e\otimes D\xi$, thought this
    467 would not satisfy the ideal defining the balanced tensor product over $A$,
    468 which is generated by elements of the form
    469 \begin{align}
    470     e a \otimes \xi - e\otimes a \xi ;\;\;\;\; e\in E, a\in A, \xi \in H
    471 \end{align}
    472 This inherits the left action on $B$ from $E$ and has a $\mathbb{C}$
    473 valued inner product space. $B$ also satisfies the ideal.
    474 \begin{equation}
    475     D'(e\otimes \xi) = e \otimes D \xi + \nabla (e) \xi \;\;\;\; e\in
    476     E, a\in A
    477 \end{equation}
    478 Where $\nabla$ is called the \textit{connection on the right A-module E}
    479 associated with the  derivation $d=[D, \cdot]$ and satisfying the
    480 \textit{Leibnitz Rule} which is
    481 \begin{equation}
    482     \nabla(ae) = \nabla(e)a + e \otimes [D, a] \;\;\;\;\;  e\in E,\; a\in A
    483 \end{equation}
    484 Then $D'$ is well defined on $E \otimes _A H$:
    485 \begin{align}
    486     D'(ea \otimes \xi - e \otimes a \xi) &=  D'(ea \otimes \xi) - D'(e
    487     \otimes \xi) \\
    488     &= ea\otimes D\xi + \nabla(ae) \xi - e \otimes D(a\xi ) - \nabla (e)a
    489     \xi \\
    490     &= 0.
    491 \end{align}
    492 With the information thus far we can prove the following theorem
    493 \begin{theorem}
    494     If $(A, H, D)$ a finite spectral triple, $E \in KK_f(B, A)$.
    495     Then $(V, E\otimes _A H, D')$ is a finite spectral triple, provided that
    496     $\nabla$ satisfies the compatibility condition
    497     \begin{equation}
    498         \langle e_1, \nabla e_2 \rangle _E - \langle \nabla e_1, e_2
    499         \rangle _E = d\langle e_1, e_2 \rangle _E \;\;\;\; e_1, e_2 \in E
    500     \end{equation}
    501 \end{theorem}
    502 \begin{proof}
    503     $E\otimes _A H$ was shown in the previous section (text before the
    504     theorem). The only thing left is to show that $D'$ is a symmetric
    505     operator, this we can just compute. Let $e_1, e_2 \in E$ and $\xi _1,
    506     \xi _2 \in H$ then
    507     \begin{align}
    508         \langle e_1 \otimes \xi _1, D'(e_2 \otimes \xi_2)\rangle _{E\otimes _A H} &=
    509         \langle \xi _1, \langle e_1, \nabla e_2\rangle _E  \xi _2\rangle  + \langle \xi _1 , \langle e_1, e_2\rangle _E D\xi
    510         _2\rangle _H \\
    511         &= \langle \xi _1, \langle \nabla e_1, e_2\rangle _E \xi _2\rangle _H + \langle \xi _1, d\langle e_1, e_2\rangle  _E
    512         \xi _2\rangle _H \\
    513         &+ \langle D\xi _1,\langle e_1, e_2\rangle _E \xi _2\rangle _H - \langle \xi _1, [D, \langle e_1, e_2\rangle _E] \xi
    514         _2 \rangle _H \\
    515         &= \langle D'(e_1 \otimes \xi _1), e_2 \otimes \xi _2\rangle _{E \otimes _A H}
    516     \end{align}
    517 \end{proof}
    518 
    519 \begin{MyExercise}
    520     \textbf{
    521     Let $\nabla$ and $\nabla'$ be two connections on a right $A$-module
    522     $E$. Show that $\nabla - \nabla'$ is a right $A$-linear map
    523     $E \rightarrow E\otimes _A \Omega _D^1(A)$
    524 }\newline
    525 
    526     Both $\nabla$ and $\nabla'$ need to satisfy the Leiblitz rule, so
    527     let's see if $\nabla - \nabla'$ does.
    528 
    529     \begin{align}
    530         \nabla(ea)-\nabla'(ea)&=\nabla(e) + e\otimes[D, a]\\
    531         &-(\nabla'(e)a + e\otimes[D',a])\\
    532         &=\bar{\nabla}a + e\otimes(Da-aD-D'a+aD')\\
    533         &=\bar{\nabla}a + e\otimes((D-D')a-a(D-D'))\\
    534         &=\bar{\nabla}a + e\otimes[D', a]\\
    535         &=\bar{\nabla}(ea)
    536     \end{align}
    537     Therefore $\nabla-\nabla'$ is a linear map.
    538 \end{MyExercise}
    539 
    540 \begin{MyExercise}
    541     \textbf{
    542     Construct a finite spectral triple $(A, H', D')$ from $(A, H, D)$
    543     \begin{enumerate}
    544         \item show that the derivation $d(\cdot):A \rightarrow A\otimes _A
    545             \Omega_D^1(A)=\Omega_D^1(A)$ is a connection on $A$
    546             considered a right $A$-module
    547         \item Upon identifying $A\otimes_A H\simeq H$, what is $D'$
    548             when the connection is $d(\cdot)$.
    549         \item Use 1) and 2) to show that any connection $\nabla:
    550             A\rightarrow A\otimes_A \Omega_D^1(A)$ is given by
    551             \begin{align}
    552                 \nabla = d + \omega
    553             \end{align}
    554             where $\omega \in \Omega_D^1(A)$
    555         \item Upon identifying $A\otimes_A H \simeq H$, what is the
    556             difference operator $D'$ with the connection on $A$ given by
    557             $\nabla = d + \omega$
    558     \end{enumerate}
    559 }
    560     \begin{enumerate}
    561         \item $\nabla(e \cdot a) =  d(a)$
    562         \item
    563             $D'(a\xi) = a(D\xi) + (\nabla a) \xi = D(a\xi)$
    564         \item Use the identity element $e \in A$\\
    565                 $\nabla (e\cdot a) = \nabla(e) a + 1 \otimes d(a)=d(a)
    566                 \nabla(e) a$
    567             \item $D'(a\otimes \xi) = D'(a \xi) = a(D\xi) + (\nabla a)\xi =
    568                 a(D\xi) + \nabla(e \cdot a) \xi \\
    569                 = D(a\xi) + \nabla(e) (a\xi)$
    570     \end{enumerate}
    571 \end{MyExercise}
    572 
    573 \subsection{Graphing Finite Spectral Triples}
    574 \begin{definition}
    575     A \textit{graph} is a ordered pair $(\Gamma ^{(0)}, \Gamma ^{(1)})$.
    576     Where $\Gamma ^{(0)}$ is the set of vertices (nodes) and $\Gamma ^{(1)}$
    577     a set of pairs of vertices (edges)
    578 \end{definition}
    579 \begin{figure}[h!]
    580     \centering
    581 \begin{tikzpicture}[
    582         mass/.style = {draw,circle, minimum size=0.2cm, inner sep=0pt, thick},
    583         spring/.style = {decorate,decoration={zigzag, pre length=1cm,post length=1cm,segment length=5pt}},]
    584         \node[mass] (m1) at (1,1.5) {};
    585         \node[mass] (m2) at (-1,1.5) {};
    586         \node[mass] (m3) at (0,0) {};
    587 
    588         \draw (m1) -- (m2);
    589         \draw (m1) -- (m3);
    590         \draw (m2) -- (m3);
    591     \end{tikzpicture}
    592     \caption{A simple graph with three vertices and three edges}
    593 \end{figure}
    594 \begin{MyExercise}
    595     \textbf{
    596     Show that any finite-dimensional faithful representation $H$ of a matrix
    597     algebra $A$ is completely reducible. To do that show that the complement
    598     $W^{\perp}$ of an $A$-submodule $W\subset H$ is also an $A$-submodule
    599     of $H$.
    600 }\newline
    601 
    602     $A\simeq \bigoplus_{i=1}^N M_{n_i}(\mathbb{C})$ is the matrix algebra
    603     then $H$ is a Hilbert $A$-bimodule and $W$ a submodule of $A$.
    604     Because we have $H = W \cup W^{\perp}$, then $W^{\perp}$ is naturally a
    605     $A$-submodule, because elements in $W^{\perp}$ need to satisfy the
    606     bimodularity.
    607 \end{MyExercise}
    608 \begin{definition}
    609     A $\Lambda$-decorated graph is given by an ordered pair $(\Gamma,
    610     \Lambda)$ of a finite graph $\Gamma$ and a set of positive integers
    611     $\Lambda$ with the labeling
    612     \begin{itemize}
    613         \item of the vetices $v\in \Gamma ^{(0)}$ given by $n(\nu) \in
    614             \Lambda$
    615         \item of the edges $e = (\nu _1, \nu _2) \in \Gamma ^{(1)}$ by
    616             operators
    617             \begin{itemize}
    618                 \item $D_e: \mathbb{C}^{n(\nu _1)} \rightarrow
    619                     \mathbb{C}^{n(\nu _2)}$
    620                 \item and $D_e^*: \mathbb{C}^{n(\nu _2)} \rightarrow
    621                     \mathbb{C}^{n(\nu _1)}$ its conjugate traspose
    622                     (pullback?)
    623             \end{itemize}
    624     \end{itemize}
    625     such that
    626     \begin{equation}
    627         n(\Gamma ^{(0)}) = \Lambda
    628     \end{equation}
    629 \end{definition}
    630 \begin{question}
    631     Would then $D_e$ be the pullback?
    632 \end{question}
    633 \begin{question}
    634     These graphs are important in the next chapter I should look
    635     into it more, I don't understand much here, specific
    636     how to construct them with the abstraction of a spectral triple...
    637 \end{question}
    638 
    639 The operator $D_e$ between $\textbf{n}_i$ and $\textbf{n}_j$ add up to
    640 $D_{ij}$
    641 \begin{align}
    642     D_{ij} = \sum\limits_{\substack{e = (\nu _1, \nu _2) \\ n(\nu _1) =
    643     \textbf{n}_i \\ n(\nu _2) = \textbf{n}_j}} D_e
    644 \end{align}
    645 
    646 \begin{theorem}
    647     There is a on to one correspondence between finite spectral triples
    648     modulo unitary equivalence and $\Lambda$-decorated graphs, given by
    649     associating a finite spectral triples $(A, H, D)$ to  a $\Lambda$ decorated
    650     graph $(\Gamma, \Lambda)$ in the following way:
    651     \begin{equation}
    652         A = \bigoplus _{n\in \Lambda} M_n(\mathbb{C}); \;\;\;
    653         H = \bigoplus _{\nu \in \Gamma ^{(0)}} \mathbb{C}^{n(\nu)}; \;\;\;
    654         D = \sum _{e \in \Gamma ^{(1)}} D_e + D_e^*
    655     \end{equation}
    656 \end{theorem}
    657     \begin{figure}[h!]
    658     \centering
    659     \begin{tikzpicture}[
    660         mass/.style = {draw,circle, minimum size=0.3cm, inner sep=0pt, thick},
    661     ]
    662 
    663     \node[mass, label={\textbf{n}}] (m1) at (1,0) {};
    664     \draw (m1) to [out=330, in=210, looseness=25] node[above] {$D_e$} (m1);
    665     \end{tikzpicture}
    666     \caption{A $\Lambda$-decorated Graph of $(M_n(\mathbb{C}), \mathbb{C}^n,
    667     D = D_e + D_e^*)$}
    668 \end{figure}
    669 
    670 \begin{MyExercise}
    671     \textbf{
    672     Draw a $\Lambda$ decorated graph corresponding to the spectral triple
    673     $(A=\mathbb{C}^3, H=\mathbb{C}^3, D=\begin{pmatrix}0 & \lambda & 0\\
    674     \bar{\lambda} &0 &0 \\ 0&0&0\end{pmatrix})$
    675 }\newline
    676 
    677 \centering
    678 \begin{tikzpicture}[
    679         mass/.style = {draw,circle, minimum size=0.4cm, inner sep=0pt, thick},
    680         spring/.style = {decorate,decoration={zigzag, pre length=1cm,post length=1cm,segment length=5pt}},]
    681         \node[mass] (m1) at (-1,1.5) {\textbf{1}};
    682         \node[mass] (m2) at (1,1.5) {\textbf{2}};
    683         \node[mass] (m3) at (3,1.5) {\textbf{3}};
    684 
    685         \draw[style=thick, -] (1.1,1.7) -- (-1.1,1.7);
    686         \draw[style=thick, -] (1.1,1.3) -- (-1.1,1.3);
    687     \end{tikzpicture}
    688     %    \captionof{figure}{Solution}
    689 \end{MyExercise}
    690 \begin{MyExercise}
    691     \textbf{
    692     Use $\Lambda$-decorated graphs to classify all finite spectral triples
    693     (modulo unitary equivalence) on the matrix algebra
    694     $A=\mathbb{C}\oplus M_2(\mathbb{C})$
    695 }\newline
    696 
    697     \centering
    698 \begin{tikzpicture}[
    699         mass/.style = {draw,circle, minimum size=0.4cm, inner sep=0pt, thick},
    700         spring/.style = {decorate,decoration={zigzag, pre length=1cm,post length=1cm,segment length=5pt}},]
    701         \node[mass] (m1) at (-1,1) {\textbf{1}};
    702         \node[mass] (m2) at (1,1) {\textbf{2}};
    703         \node[mass] (m3) at (3,1) {\textbf{3}};
    704 
    705         \node[mass] (m4) at (-1,0) {\textbf{1}};
    706         \node[mass] (m5) at (1,0) {\textbf{2}};
    707         \node[mass] (m6) at (3,0) {\textbf{3}};
    708 
    709         \node[mass] (m7) at (-1,-1) {\textbf{1}};
    710         \node[mass] (m8) at (1,-1) {\textbf{2}};
    711         \node[mass] (m9) at (3,-1) {\textbf{3}};
    712 
    713         \node[mass] (m10) at (-1,-2) {\textbf{1}};
    714         \node[mass] (m11) at (1,-2) {\textbf{2}};
    715         \node[mass] (m12) at (3,-2) {\textbf{3}};
    716 
    717         \draw[style=thick, -] (1.1,0.2) -- (-1.1,0.2);
    718         \draw[style=thick, -] (1.1,-0.2) -- (-1.1,-0.2);
    719         \draw[style=thick, -] (m7) to [out=330, in=210, looseness=10] node[above] {} (m7);
    720         \draw[style=thick, -] (m10) -- (m11) ;
    721 
    722 \end{tikzpicture}
    723 %    \captionof{figure}{Solution $A=M_3(\mathbb{C})$}
    724 \end{MyExercise}
    725 \subsubsection{Graph Construction of Finite Spectral Triples}
    726 \textbf{Algebra:}We know if a acts on a finite dimensional Hilbert space then
    727 this C* algebra is isomorphic to a matrix algebra so $A \simeq
    728 \bigoplus_{i=1}^{N}M_{n_i}(\mathbb{C})$. Where $i\in
    729 \hat{A}$ represents an equivalence class and runs from $1$ to $N$,
    730 thus $\hat{A}\simeq\{1,\dots, N\}$. We label equivalence classes by
    731 $\textbf{n}_i$, then $\hat{A}\simeq\{\textbf{n}_1,\dots,\textbf{n}_N\}$.
    732 \newline
    733 
    734 \textbf{Hilbert Space:} Since every Hilbert space that acts faithfully on a
    735 C* algebra is completely reducible, it is isomorphic to the composition
    736 of irreducible representations. $H \simeq \bigoplus_{i=1}^N\mathbb{C}^{n_i}
    737 \otimes V_i$. Where all $V_i$'s are Vector spaces, their dimension is the
    738 multiplicity of the representation landed by $\textbf{n}_i$ to $V_i$ itself
    739 by the multiplicity space.
    740 \newline
    741 
    742 \textbf{Finite Dirac Operator:} $D_{ij}$ is connecting nodes $\textbf{n}_i$
    743 and $\textbf{n}_j$, with a symmetric map $D_{ij}:\mathbb{C}^{n_i}\otimes V_i
    744 \rightarrow \mathbb{C}^{n_j}\otimes V_j$
    745 \newline
    746 
    747 To draw a graph, draw nodes in position $\textbf{n}_i\in \hat{A}$.
    748 Multiple nodes at the same position represent multiplicities in $H$.
    749 Draw lines between nodes to represent $D_{ij}$.
    750 
    751 \begin{figure}[h!]
    752     \centering
    753 \begin{tikzpicture}
    754     \node[draw, label=above:{$\textbf{n}_1$},circle, thick] at (-3,0) {};
    755     \node[label=above:{$\dots$}] at (-2,0) {};
    756     \node[draw, label=above:{$\textbf{n}_i$},circle, thick] at (-1,0) {};
    757     \node[label=above:{$\dots$}] at (0,0) {};
    758     \node[draw, label=above:{$\textbf{n}_j$},circle, thick] at (1,0) {};
    759     \node[draw, label=above:{},circle, thick, inner sep=0cm, minimum
    760     size=0.2cm]  at (1,0) {};
    761     \node[label=above:{$\dots$}] at (2,0) {};
    762     \node[draw, label=above:{$\textbf{n}_N$},circle, thick] at (3,0) {};
    763 
    764         \draw[style=thick, -] (-1,-0.2) -- (1,-0.2);
    765         \draw[style=thick, -] (-1,0.2) -- (1,0.2);
    766         \path[style=thick, -] (-1,-0.2) edge[bend right=15]
    767         node[pos=0.5,below] {} (3,-0.2);
    768     \end{tikzpicture}
    769     \caption{Example}
    770 \end{figure}
    771 
    772 
    773 \end{document}