ncg

bachelorthesis in physics
git clone git://popovic.xyz/ncg.git
Log | Files | Refs

week6.tex (14607B)


      1 \documentclass[a4paper]{article}
      2 
      3 \usepackage[T1]{fontenc}
      4 \usepackage[utf8]{inputenc}
      5 
      6 \usepackage{mathptmx}
      7 
      8 \usepackage{subcaption}
      9 \usepackage[shortlabels]{enumitem}
     10 \usepackage{amsmath,amssymb}
     11 \usepackage{amsthm}
     12 \usepackage{bbm}
     13 \usepackage{graphicx}
     14 \usepackage[colorlinks=true,naturalnames=true,plainpages=false,pdfpagelabels=true]{hyperref}
     15 \usepackage[parfill]{parskip}
     16 
     17 \usepackage{tikz}
     18 \usetikzlibrary{patterns,decorations.pathmorphing,positioning}
     19 
     20 \usepackage[framemethod=TikZ]{mdframed}
     21 
     22 \tikzstyle{titlered} =
     23     [draw=black, thick, fill=white,%
     24         text=black, rectangle,
     25         right, minimum height=.7cm]
     26 
     27 \newcounter{exercise}
     28 
     29 \renewcommand*\theexercise{Exercise~\arabic{exercise}}
     30 
     31 \makeatletter
     32 \mdfdefinestyle{exercisestyle}{%
     33     outerlinewidth=1em,%
     34     outerlinecolor=white,%
     35     leftmargin=-1em,%
     36     rightmargin=-1em,%
     37     middlelinewidth=1.2pt,%
     38     roundcorner=5pt,%
     39     linecolor=black,%
     40     backgroundcolor=blue!5,
     41     innertopmargin=1.2\baselineskip,
     42     skipabove={\dimexpr0.5\baselineskip+\topskip\relax},
     43     skipbelow={-1em},
     44     needspace=3\baselineskip,
     45     frametitlefont=\sffamily\bfseries,
     46     settings={\global\stepcounter{exercise}},
     47     singleextra={%
     48         \node[titlered,xshift=1cm] at (P-|O) %
     49             {~\mdf@frametitlefont{\theexercise}~};},%
     50     firstextra={%
     51             \node[titlered,xshift=1cm] at (P-|O) %
     52                     {~\mdf@frametitlefont{\theexercise}~};},
     53 }
     54 \makeatother
     55 
     56 \newenvironment{MyExercise}%
     57 {\begin{mdframed}[style=exercisestyle]}{\end{mdframed}}
     58 
     59 \theoremstyle{definition}
     60 \newtheorem{definition}{Definition}
     61 
     62 \theoremstyle{definition}
     63 \newtheorem{question}{Question}
     64 
     65 \theoremstyle{definition}
     66 \newtheorem{example}{Example}
     67 
     68 \theoremstyle{theorem}
     69 \newtheorem{theorem}{Theorem}
     70 
     71 \theoremstyle{theorem}
     72 \newtheorem{lemma}{Lemma}
     73 
     74 \newtheorem*{idea}{Proof Idea}
     75 
     76 \date{Week 6: 19.03 - 26.03}
     77 
     78 \title{University of Vienna\\ Faculty of Physics\\ \vspace{1.25cm}
     79 Notes on\\ Noncommutative Geometry and Particle Phyiscs}
     80 \author{Milutin Popovic \\ Supervisor: Dr. Lisa
     81 Glaser}
     82 \date{Week 6: 19.03 - 26.03}
     83 
     84 
     85 \begin{document}
     86 
     87     \maketitle
     88     \tableofcontents
     89     \newpage
     90 \section{Finite Real Noncommutative Spaces}
     91 \subsection{Finite Real Spectral Triples}
     92 Add on to finite real spectral triples a \textit{real structure}. The
     93 requirement is that $H$ is a $A$-$A$-bimodule (before only a $A$-left
     94 module).
     95 \newline
     96 
     97 For this we introduce a $\mathbb{Z}_2$-grading $\gamma$ with
     98 \begin{align}
     99     &\gamma ^* = \gamma \\
    100     &\gamma ^2 = 1 \\
    101     &\gamma D = - D \gamma\\
    102     &\gamma a = a \gamma \;\;\;\; a\in A
    103 \end{align}
    104 
    105 \begin{definition}
    106     A \textit{finite real spectral triple} is given by a finite spectral
    107     triple $(A, H, D)$ and a anti-unitary operator $J:H\rightarrow H$ called
    108     the \textit{real structure}, such that
    109     \begin{align}
    110         a^\circ := J a^* J^{-1}
    111     \end{align}
    112     is a right representation of $A$ on $H$, that is $(ab)^\circ = b^\circ
    113     a^\circ$. With two requirements
    114     \begin{align}
    115         &[a, b^\circ] = 0\\
    116         &[[D, a],b^\circ] = 0.
    117     \end{align}
    118     They are called the \textit{commutant property}, and mean that the left
    119     action of an element in $A$ and $\Omega _D^1(A)$ commutes with the right
    120     action on $A$.
    121 \end{definition}
    122 \begin{definition}
    123     The $KO$-dimension of a real spectral triple is determined by the sings
    124     $\epsilon, \epsilon ' ,\epsilon '' \in \{-1, 1\}$ appearing in
    125     \begin{align}
    126         &J^2 = \epsilon \\
    127         &JD = \epsilon \ DJ\\
    128         &J\gamma = \epsilon '' \gamma J.
    129     \end{align}
    130 \end{definition}
    131 \begin{table}[h!]
    132     \centering
    133     \caption{$KO$-dimension $k$ modulo $8$ of a real spectral triple}
    134     \begin{tabular}{ c | c c c c c c c c}
    135         \hline
    136         $k$        & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
    137         \hline
    138      $\epsilon$    & 1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 \\
    139      $\epsilon '$  & 1 & -1 & 1 & 1 & 1 & -1 & 1 & 1 \\
    140      $\epsilon ''$ & 1 &  & -1 &  & 1 &  & -1 &  \\
    141      \hline
    142     \end{tabular}
    143 \end{table}
    144 
    145 
    146 \begin{definition}
    147 An opposite-algebra $A^\circ$ of a $A$ is defined to be equal to $A$ as a
    148 vector space with the opposite product
    149 \begin{align}
    150     &a\circ b := ba\\
    151     &\Rightarrow a^\circ = Ja^* J^{-1} \;\;\; \text{defines the left
    152     representation of $A^\circ$ on $H$}
    153 \end{align}
    154 \end{definition}
    155 
    156 
    157 \begin{example}
    158     Matrix algebra $M_N(\mathbb{C})$ acting on $H=M_N(\mathbb{C})$ by left
    159     matrix multiplication with the Hilbert Schmidt inner product.
    160     \begin{align}
    161         \langle a , b \rangle = \text{Tr}(a^* b)
    162     \end{align}
    163     Then we define $\gamma (a) = a$ and $J(a) = a^*$ with $a\in H$.
    164     Since $D$ mus be odd with respect to $\gamma$ it vanishes identically.
    165 \end{example}
    166 
    167 \begin{definition}
    168     We call $\xi \in H$ \textbf{cyclic vector} in $A$ if:
    169     \begin{align}
    170         A\xi := { a\xi:\;\; a\in A} = H
    171     \end{align}
    172 
    173     We call $\xi \in H$ \textbf{separating vector} in $A$ if:
    174     \begin{align}
    175         a\xi = 0\;\; \Rightarrow \;\; a=0;\;\;\; a\in A
    176     \end{align}
    177 \end{definition}
    178 
    179 \begin{MyExercise}
    180     \textbf{
    181         In the previous example, show that the right action on $M_N(\mathbb{C})$
    182     on $H = M_N(\mathbb{C})$ as defined by $a \mapsto a^\circ$
    183     is given by right matrix multiplication.
    184 }\newline
    185 
    186     \begin{align}
    187         a^\circ \xi = J a^* J^{-1}\xi = Ja^* \xi^* = J\xi a=\xi^* a
    188     \end{align}
    189 \end{MyExercise}
    190 \begin{MyExercise}
    191     \textbf{
    192         Let $A= \bigoplus _i M_{n_i}(\mathbb{C})$, represented on $H = \bigoplus_i \mathbb{C}^{n_i}
    193         \otimes \mathbb{C}^{m_i}$, meaning that the irreducible representation $\textbf{n}_i$ has
    194         multiplicity $m_i$.
    195         \begin{enumerate}
    196             \item Show that the commutant $A'$ of $A$ is $A'\simeq \bigoplus_i M_{m_i} (\mathbb{C})$. As a consequence show $A'' \simeq A$.
    197             \item Show that if $\xi$ is a separating vector for $A$ than it is cyclic for $A'$.
    198         \end{enumerate}
    199     }
    200 
    201 
    202     \begin{enumerate}
    203         \item We know the multiplicity space is $V_i = \mathbb{C}^{m_i}$. We know that
    204             for $T\in H$ and
    205             $a\in A'$ to work we need $aT=Ta$ by laws of matrix multiplication we need
    206             $A' \simeq \oplus _i M_{m_i}(\mathbb{C})$ for this to work since $H = \bigoplus_i
    207             \mathbb{C}^{n_i}
    208         \otimes \mathbb{C}^{m_i}$
    209 
    210         \item Suppose $\xi$ is cyclic for $A$ then $A'\xi = \{0\}$. Under the action of $A$ we
    211             then have $A'A\xi = AA' \xi = 0 \Rightarrow A' = 0$.\\
    212             Suppose now $\xi$ is separating for $A'$, we have $A'\xi = \{0\}$. We can define a
    213             projection in $A'$, $A\xi = P'$. With this projection we have $(1-P')\xi = 0
    214             \Rightarrow 1-P' = 0 \Rightarrow A\xi = H$.
    215     \end{enumerate}
    216 \end{MyExercise}
    217 \begin{MyExercise}
    218     \textbf{ Suppose $(A, H, D = 0)$ is a finite spectral triple such that $H$ possesses a
    219         cyclic and separating vector for $A$.
    220         \begin{enumerate}
    221             \item Show that the formula $S(a \xi) = a* \xi$ defines a anti-linear operator\\
    222                 $S: H \rightarrow H$.
    223             \item Show that $S$ is invertible
    224             \item Let $J: H \rightarrow H$ be the operator in $S = J \Delta ^{1/2}$ with
    225                 $\Delta = S^*S$. Show that $J$ is anti-unitary
    226         \end{enumerate}
    227     }
    228 
    229 
    230     \begin{enumerate}
    231     \item By composition $S(a\xi) = a*\xi$ this is literally anti-linearity. Does this mean
    232         $S\xi = \xi$?
    233     \item Let $\xi \in H$ be cyclic then: $S(A\xi) = A^*\xi = A\xi = H$. The same has to work
    234         for $S^{-1}$ if not then $\xi$ wouldn't exist. $S^{-1}(A^*\xi) = S^{-1}(H) = H$.
    235     \item Since $S$ is bijective then $\Delta ^{1/2}$ and $J$ need to be bijective.
    236         We also have $J = S \Delta^{-1/2}$ and $\Delta^* = \Delta$\\
    237         Now let $\xi _1 , \xi _2 \in H$        \begin{align}
    238             <J \xi _1 , J \xi _2 > &= < J^*J\xi_1 , \xi_2>^* =\\
    239             &= <(\Delta ^{-1/2})^* S^* S \Delta ^{-1/2} \xi_1, \xi_2>^* = \\
    240             &= <(\Delta^{-1/2})^* \Delta \Delta^{-1/2} \xi_1, \xi_2>^* =\\
    241             &= <\Delta^{-1/2} \Delta^{1/2}\Delta^{1/2} \Delta^{-1/2} \xi_1, \xi_2>^* =\\
    242             &= <\xi _1, \xi_2>^* = <\xi_2 , \xi_1>.
    243         \end{align}
    244     \end{enumerate}
    245 \end{MyExercise}
    246 \subsection{Morphisms Between Finite Real Spectral Triples}
    247 Extend unitary equivalence of finite spectral triples to real ones (with $J$
    248 and $\gamma$)
    249 
    250 \begin{definition}
    251     We call two finite real spectral triples $(A_1, H_1 ,D_1 ; J_1 , \gamma
    252     _1)$ and $(A_2, H_2, D_2; J_2, \gamma _2)$ unitarily equivalent if $A_1 =
    253     A_2$ and if there exists a unitary operator $U: H_1 \rightarrow H_2$ such
    254     that
    255     \begin{align}
    256         &U\pi_1(a) U^* = \pi _2(a)\\
    257         &UD_1U^*=D_2\\
    258         &U\gamma _1 U^* = \gamma _2\\
    259         &UJ_1 U^* = J_2
    260     \end{align}
    261 \end{definition}
    262 \begin{definition}
    263     Let $E$ be a $B$-$A$ bimodule. The \textit{conjugate Module} $E^\circ$ is
    264     given by the $A$-$B$-bimodule.
    265     \begin{align}
    266         E^\circ = \{\bar{e} : e\in E\}
    267     \end{align}
    268     with
    269     \begin{align}
    270     a \cdot \bar{e} \cdot b = b^* \bar{e} a^* \;\;\;\; \forall a\in A, b \in
    271         B
    272     \end{align}
    273 \end{definition}
    274 $E^\circ$ is not a Hilbert bimodule for $(A, B)$ because it doesn't have a
    275 natural $B$-valued inner product. But there is a $A$-valued inner product on
    276 the left $A$-module $E^\circ$ with
    277 \begin{align}
    278     \langle \bar{e}_1, \bar{e}_2 \rangle = \langle e_2 , e_1 \rangle
    279     \;\;\;\; e_1, e_2 \in E
    280 \end{align}
    281 and linearity in $A$:
    282 \begin{align}
    283     \langle a \bar{e}_1, \bar{e}_2 \rangle = a \langle \bar{e}_1, \bar{e}_2
    284     \rangle \;\;\;\; \forall a \in A.
    285 \end{align}
    286 
    287 \begin{MyExercise}
    288     \textbf{Show that $E^\circ$ is a Hilbert bimodule $(B^{\circ}, A^{\circ})$
    289     }\newline
    290 
    291 
    292     Straightforward show properties of the Hilbert bimodule and its $B^{\circ}$
    293     valued inner product. Let $\bar{e}_1, \bar{e}_2 \in E^{\circ}$ and $a^\circ \in A,
    294     b^\circ \in B$. \\
    295     \begin{align}
    296         <\bar{e}_1, a^\circ \bar{e}_2> &= <\bar{e}_1, Ja^*J^{-1} \bar{e}_2>=\\
    297         &= <\bar{e}_1 , J a^* e_2> = \\
    298         &= <J^{-1} e_1, a^* e_2> =\\
    299         & = <a^* e_1, e_2>= <J^{-1}(a^\circ)^* J e_1, e_2> = \\
    300         & = <J^{-1} (a^\circ)^* \bar{e}_1, e_2> =\\
    301         & = <(a^\circ)^* \bar{e}_1 , \bar{e}_2>.
    302     \end{align}
    303 
    304     Next $<\bar{e}_1, \bar{e}_2 b^\circ> = <\bar{e}_1, \bar{e_2}> b^\circ$.
    305     \begin{align}
    306         <\bar{e}_1, \bar{e}_2 b^\circ>  &= <\bar{e}_1, \bar{e}_2 Jb^*J^{-1}> =\\
    307         &= <\bar{e}_1, \bar{e_2}> Jb^*J^{-1} = \\
    308         &= <\bar{e}_1, \bar{e}_2> b^\circ.
    309     \end{align}
    310     Then:
    311     \begin{align}
    312         (<\bar{e}_1, \bar{e}_2)>_{E^\circ})^* &= (<e_2, e_1>_E)^* =\\
    313         &= <e_1, e_2>_E^* = <\bar{e}_2, \bar{e}_2>_{E^\circ}
    314     \end{align}
    315     And of course $<\bar{e}, \bar{e}> = <e, e> \geq 0$
    316 \end{MyExercise}
    317 
    318 \subsubsection{Construction of a Finite Real Spectral Triple from a Finite
    319 Real Spectral Triple}
    320 Given a Hilbert bimodule $E$ for $(B, A)$ we construct a spectral triple
    321 $(B, H', D'; J', \gamma ')$ from $(A, H, D; J, \gamma)$
    322 
    323 For the $H'$ we make a $\mathbb{C}$-valued inner product on $H'$ by combining
    324 the $A$ valued inner product on $E$ and $E^\circ$ with the
    325 $\mathbb{C}$-valued inner product on $H$.
    326 \begin{align}
    327     H' := E\otimes _A H \otimes _A E^\circ
    328 \end{align}
    329 
    330 Then the action of $B$ on $H'$ is:
    331 \begin{align}
    332     b(e_2 \otimes \xi \otimes \bar{e}_2 ) = (be_1) \otimes \xi \otimes
    333     \bar{e}_2
    334 \end{align}
    335 The right action of $B$ on $H'$ defined by action on the right component
    336 $E^\circ$
    337 \begin{align}
    338     J'(e_1 \otimes \xi \otimes \bar{e}_2) = e_2 \otimes J \xi \otimes
    339     \bar{e}_1
    340 \end{align}
    341 with $b^\circ = J' b^* (J')^{-1}$, $b^* \in B$ action on $H'$.
    342 \newline
    343 
    344 
    345 \newpage
    346 \begin{MyExercise}
    347     \textbf{ Let $\nabla : E \Rightarrow E \otimes _A \Omega _d^1 (A)$ be a right connection on $E$
    348     consider the following anti-linear map:
    349     \begin{align}
    350         \tau : E \otimes_A \Omega _D^1 (A) &\rightarrow \Omega _D^1 (A) \otimes_A E^\circ\\
    351                 e \otimes \omega &\mapsto -\omega ^* \otimes \bar{e}
    352     \end{align}
    353     Show that the map $\bar{\nabla} : E^\circ \rightarrow \Omega _D^1(A) \otimes E^\circ$
    354     with $\bar{\nabla}(\bar{e}) = \tau \circ \nabla(e)$ is a left connection, that means
    355     show that it satisfied the left Leibniz rule:
    356     \begin{equation}
    357         \bar{\nabla}(a\bar{e}) = [D, a] \otimes \bar{e} + a \bar{\nabla}(\bar{e})
    358     \end{equation}
    359     }
    360 
    361     Hagime:
    362     \begin{align}
    363         &\text{For one:}\\
    364         &\tau \circ \nabla(ae) = \bar{\nabla}(a\bar{e}) = \bar{\nabla}(a^* \bar{e})\\
    365         &\text{For two:}\\
    366          &\tau \circ \nabla(ae) = \tau(\nabla(e)a) + \tau \circ(e \otimes d(a))=\\
    367          &=a^*\bar{\nabla}(\bar{e}) - d(a)^* \otimes \bar{e}. \\
    368          &= a^*\bar{\nabla}(\bar{e}) + d(a^*) \otimes \bar{e}.
    369     \end{align}
    370 \end{MyExercise}
    371 Then the connections
    372 \begin{align}
    373     &\nabla: E \rightarrow E\otimes _A \Omega _D ^1(A) \\
    374     &\bar{\nabla}:E^\circ \rightarrow \Omega _D^1(A) \otimes _A E^\circ
    375 \end{align}
    376 give us the Dirac operator on $H' = E \otimes _A H \otimes _A E^\circ$
    377 \begin{align}
    378     D'(e_1 \otimes \xi \otimes \bar{e}_2) = (\nabla e_1) \xi \otimes
    379     \bar{e_2}+ e_1 \otimes D\xi \otimes \bar{e}_2 + e_1 \otimes
    380     \xi(\bar{\nabla}\bar{e}_2)
    381 \end{align}
    382 
    383 And the right action of $\omega \in \Omega _D ^1(A)$ on $\xi \in H$ is
    384 defined by
    385 \begin{align}
    386     \xi \mapsto \epsilon' J \omega ^* J^{-1}\xi
    387 \end{align}
    388 
    389 Finally for the grading
    390 \begin{align}
    391     \gamma ' = 1 \otimes \gamma \otimes 1
    392 \end{align}
    393 
    394 \begin{theorem}
    395     Suppose $(A, H, D; J, \gamma)$ is a finite spectral triple of
    396     $KO$-dimension $k$, let $\nabla$ be like above satisfying the
    397     compatibility condition (like with finite spectral triples).
    398 
    399     Then $(B, H',D'; J', \gamma')$ is a finite spectral triple of
    400     $KO$-Dimension $k$. ($H', D', J', \gamma'$ like above)
    401 \end{theorem}
    402 
    403 \begin{proof}
    404     The only thing left is to check if the $KO$-dimension is preserved,
    405     for this we check if the $\epsilon$'s are the same.
    406     \begin{align}
    407         &(J')^2 = 1 \otimes J^2 \otimes 1 = \epsilon\\
    408         &J' \gamma '= \epsilon ''\gamma'J'
    409     \end{align}
    410     and for $\epsilon '$
    411     \begin{align}
    412         J'D'(e_1 \otimes \xi \otimes \bar{e}_2)&=J'((\nabla e_1) \xi \otimes
    413         \bar{e_2} + e_1 \otimes D\xi \otimes \bar{e}_2 + e_1 \otimes \xi (\tau
    414         \nabla e_2))\\
    415         &= \epsilon' D'(e_2 \otimes J\xi \otimes \bar{e}_2)\\
    416         &= \epsilon' D'J'(e_1 \otimes \xi \bar{e}_2)
    417     \end{align}
    418 \end{proof}
    419 
    420 \end{document}