ncg

bachelorthesis in physics
git clone git://popovic.xyz/ncg.git
Log | Files | Refs

week7.tex (25325B)


      1 \documentclass[a4paper]{article}
      2 
      3 \usepackage[T1]{fontenc}
      4 \usepackage[utf8]{inputenc}
      5 
      6 \usepackage{mathptmx}
      7 
      8 \usepackage{subcaption}
      9 \usepackage[shortlabels]{enumitem}
     10 \usepackage{amsmath,amssymb}
     11 \usepackage{amsthm}
     12 \usepackage{bbm}
     13 \usepackage{graphicx}
     14 \usepackage[colorlinks=true,naturalnames=true,plainpages=false,pdfpagelabels=true]{hyperref}
     15 \usepackage[parfill]{parskip}
     16 
     17 \usepackage{pst-node}
     18 \usepackage{tikz-cd}
     19 
     20 \usepackage{tikz}
     21 \usetikzlibrary{patterns,decorations.pathmorphing,positioning}
     22 
     23 \usepackage[framemethod=TikZ]{mdframed}
     24 
     25 \tikzstyle{titlered} =
     26     [draw=black, thick, fill=white,%
     27         text=black, rectangle,
     28         right, minimum height=.7cm]
     29 
     30 \newcounter{exercise}
     31 
     32 \renewcommand*\theexercise{Exercise~\arabic{exercise}}
     33 
     34 \makeatletter
     35 \mdfdefinestyle{exercisestyle}{%
     36     outerlinewidth=1em,%
     37     outerlinecolor=white,%
     38     leftmargin=-1em,%
     39     rightmargin=-1em,%
     40     middlelinewidth=1.2pt,%
     41     roundcorner=5pt,%
     42     linecolor=black,%
     43     backgroundcolor=blue!5,
     44     innertopmargin=1.2\baselineskip,
     45     skipabove={\dimexpr0.5\baselineskip+\topskip\relax},
     46     skipbelow={-1em},
     47     needspace=3\baselineskip,
     48     frametitlefont=\sffamily\bfseries,
     49     settings={\global\stepcounter{exercise}},
     50     singleextra={%
     51         \node[titlered,xshift=1cm] at (P-|O) %
     52             {~\mdf@frametitlefont{\theexercise}~};},%
     53     firstextra={%
     54             \node[titlered,xshift=1cm] at (P-|O) %
     55                     {~\mdf@frametitlefont{\theexercise}~};},
     56 }
     57 \makeatother
     58 
     59 \newenvironment{MyExercise}%
     60 {\begin{mdframed}[style=exercisestyle]}{\end{mdframed}}
     61 
     62 \theoremstyle{definition}
     63 \newtheorem{definition}{Definition}
     64 
     65 \theoremstyle{definition}
     66 \newtheorem{question}{Question}
     67 
     68 \theoremstyle{definition}
     69 \newtheorem{example}{Example}
     70 
     71 \theoremstyle{theorem}
     72 \newtheorem{theorem}{Theorem}
     73 
     74 \theoremstyle{theorem}
     75 \newtheorem{lemma}{Lemma}
     76 
     77 \theoremstyle{theorem}
     78 \newtheorem{proposition}{Proposition}
     79 
     80 \newtheorem*{idea}{Proof Idea}
     81 
     82 \title{University of Vienna\\ Faculty of Physics\\ \vspace{1.25cm}
     83 Notes on\\ Noncommutative Geometry and Particle Phyiscs}
     84 \author{Milutin Popovic \\ Supervisor: Dr. Lisa
     85 Glaser}
     86 \date{Week 7: 23.04 - 27.04}
     87 
     88 \begin{document}
     89 
     90     \maketitle
     91     \tableofcontents
     92     \newpage
     93 \section{Classification of Finite Real Spectral Triples}
     94 
     95 Here we classify finite real spectral triples modulo unitary equivalence with
     96 \textit{Krajewski Diagrams}. We extend $\Lambda$-decorated graphs to the case of
     97 real spectral triples (grading and real structure).
     98 
     99 \textbf{The Algebra:}Like before:
    100 \begin{align}
    101     A\simeq \bigoplus_{i=1}^N M_{n_i}(\mathbb{C}) \;\;\;\;\;\;\; \text{with} \;\;\; \hat{A} = \{\textbf{n}_1, \dots, \textbf{n}_N\}
    102 \end{align}
    103 Where $\textbf{n}_i$ are irreducible representation of $A$ on
    104 $\mathbb{C}^{n_i}$
    105 
    106 \textbf{The Hilbertspace:}Faithful irreducible representation on $A$ are the
    107 direct sum of $\mathbb{C}^{n_i}$'s, which act on $A$ by left block-diagonal
    108 matrix multiplication.
    109 \begin{align}
    110     \bigoplus_{i=1}^N \mathbb{C}^{n_i}
    111 \end{align}
    112 Furthermore we need a representation of $A^\circ$ on $H$ that commutes with
    113 $A$. That is
    114 \begin{align}
    115     A^\circ \simeq &\bigoplus_{i=1}^N M_{n_i}(\mathbb{C})^\circ \\
    116         \text{with} \;\;\; &\hat{A}^\circ = \{\textbf{n}_1^\circ, \dots,
    117     \textbf{n}_N^\circ\} \\
    118     \text{and} \;\;\;  &\bigoplus_{i=1}^N \mathbb{C}^{n_i\circ}
    119 \end{align}
    120 And we need the multiplicity space $V_{ij}$ of $\mathbb{C}^{n_i} \otimes
    121 \mathbb{C}^{n_j\circ}$.
    122 Thus making the Hilbertspace:
    123 \begin{align}
    124     H=\bigoplus_{i,j=1}^N \mathbb{C}^{n_i} \otimes \mathbb{C}^{n_j\circ}
    125     \otimes V_{ij}
    126 \end{align}
    127 \begin{itemize}
    128     \item $\textbf{n}_i$, $\textbf{n}_j^\circ$ form a grid
    129     \item if there is a node at $(\textbf{n}_i$, $\textbf{n}_j^\circ)$ then
    130             $\mathbb{C}^{n_i} \otimes \mathbb{C}^{n_j\circ}$ is nonzero in $H$.
    131     \item multiplicity implies multiple nodes
    132 \end{itemize}
    133 
    134 \begin{example}
    135     $A = \mathbb{C} \oplus M_2 (\mathbb{C})$, two options of the Hilbertspace.
    136     \begin{figure}[h!] \centering
    137     \begin{tikzpicture}[
    138         dot/.style = {draw, circle, inner sep=0.06cm},
    139         no/.style = {},
    140         ]
    141         \node[no](a) at (0,0) [label=left:$\textbf{1}^\circ$] {};
    142         \node[no](b) at (0, -1) [label=left:$\textbf{2}^\circ$] {};
    143         \node[no](c) at (1, 0.5) [label=above:$\textbf{1}$] {};
    144         \node[no](d) at (2, 0.5) [label=above:$\textbf{2}$] {};
    145         \node[dot](d0) at (1,0) [] {};
    146         \node[dot](d0) at (2,-1) [] {};
    147 
    148         \node[no](a1) at (6,0) [label=left:$\textbf{1}^\circ$] {};
    149         \node[no](b2) at (6, -1) [label=left:$\textbf{2}^\circ$] {};
    150         \node[no](c2) at (7, 0.5) [label=above:$\textbf{1}$] {};
    151         \node[no](d2) at (8, 0.5) [label=above:$\textbf{2}$] {};
    152         \node[dot](d0) at (7,0) [] {};
    153         \node[dot](d0) at (8,0) [] {};
    154 
    155 
    156         \end{tikzpicture}
    157     \end{figure}
    158 
    159 The first diagram corresponds to $H_1 = \mathbb{C} \oplus M_2(\mathbb{C})$,
    160 to the second $H_2 = \mathbb{C} \oplus \mathbb{C}^2$.
    161 \end{example}
    162 
    163 \begin{MyExercise}
    164     \textbf{Let $J$ be an anti-unitary operator on a finite-dimensional Hilbert space.
    165     Show that $J^2$ is an unitary operator
    166     } \newline
    167 
    168     Straight forward, say $J:\; H \rightarrow H$, then let $\xi_1, \xi_2 \in
    169     H$:
    170 
    171     \centering
    172     \begin{align}
    173         <J^2 \xi_1, J^2 \xi_2> &= <J(J\xi_1), J(J\xi_2)> =\\
    174         &= <J\xi_2, J\xi_1>  = <\xi_1, \xi_2>
    175     \end{align}
    176 \end{MyExercise}
    177 
    178 \textbf{The real Structure:} $J:\; H \rightarrow H$.
    179 \begin{lemma}
    180     \label{lemma}
    181     Let $J$ be an anti-unitary operator on a finite-dimensional Hilbertspace
    182     $H$ with $J^2 = \pm 1 $
    183     \begin{enumerate}
    184         \item If $J^2 = 1 \;\; \Rightarrow \;\; \exists$ an ONB $\{e_k\}$ of $H$\\
    185             with $Je_k = e_k$.
    186         \item If $J^2 = -1 \;\; \Rightarrow \;\; \exists$ an ONB $\{e_k, f_k\}$ of $H$\\
    187             with $Je_k = f_k$ and consequently $Jf_k = -e_k$.
    188     \end{enumerate}
    189 \end{lemma}
    190 \begin{proof}
    191     \textbf{1.} $J^2 = 1$\newline
    192 
    193     $v\in H$ and set:
    194     \begin{align}
    195         e_1 :=
    196                 \begin{cases}
    197                     c (v + Jv)\;\;\; \text{if}\;\;\; Jv \neq -v \\
    198                     iv\;\;\; \text{if}\;\;\; Jv = -v
    199                 \end{cases}
    200     \end{align}
    201     Where $c$ is a normalization constant, then take $Je_1$
    202     \begin{align}
    203         &J(v + Jv) = Jv + J^2v= v + Jv \;\;\;\; \text{and} \\
    204         &J(iv) = -iJv = iv\\
    205         &\Rightarrow Je_1 = e_1
    206     \end{align}
    207     Take $v'\perp e_1$ making:
    208     \begin{align}
    209         <e_1 , Jv'> = <J^2 v', Je_1> = <v' , Je_1>= <v', e_1> =0
    210     \end{align}
    211     Construct $e_2 \perp e_1$ with $v'$:
    212     \begin{align}
    213         e_2 :=
    214         \begin{cases}
    215             c (v' + Jv')\;\;\; \text{if}\;\;\; Jv' \neq -v' \\
    216             iv'\;\;\; \text{if}\;\;\; Jv' = -v'
    217         \end{cases}
    218     \end{align}
    219     Do this $k$ times and get $\{e_k\}$ ONB of $H$ for $J^2 = 1$.
    220     \newline
    221 
    222     \textbf{2.} $J^2 = -1$\newline
    223     $v \in H$ and set $e_1 = cv$, $c$ normalization constant.
    224     Then we set $f_1 = Je_1$ with $f_1 \perp e_1$, this is automatically the
    225     case because:
    226     \begin{align}
    227         <f_1, e_1> &= <Je_1, e_1> = -<Je_1 , J^2e_1> =\\
    228         &= -<Je_1, e_1> = -<f_1, e_1>
    229     \end{align}
    230     this only holds for 0. Then take some $v' \perp e_1, f_1$ and set\\
    231     $e_2 =c 'v'$ and $f_2 = Je_2 \perp e_2, f_1, e_1$.
    232     \begin{align}
    233         &<e_1, f_2> = <e_1, Je_2> = -<J^2e_1, Je_2> = -<e_2, Je_1> = -<e_2,
    234         f_1>=0\\
    235         &<f_1, f_2> = <Je_1, Je_2> = <e_2, e_1> = 0.
    236     \end{align}
    237     Do this $k$ times and get $\{e_k, f_k\}$ ONB of $H$ for $J^2 = -1$
    238 
    239 \end{proof}
    240 
    241 Apply Lemma \ref{lemma} to the real structure $J$ on a spectral triple. $J$
    242 implements right action of $A$ on $H$ with
    243 \begin{align}
    244         a^\circ = Ja^* J^{-1}
    245 \end{align}
    246 and satisfying $[a, b^\circ]=0$. With the block form of $A$, this implies
    247 \begin{align}
    248     J(a^*_1 \oplus \cdots \oplus a_N^*) = (a^\circ_1 \oplus \cdots \oplus
    249     a_N^\circ)J.
    250 \end{align}
    251 With this we can conclude that the Krajewski diagram for a real finite spectral
    252 triple is symmetric along the diagonal.$J$ hast then the following bilinear
    253 mapping:
    254 \begin{align}
    255     J:\;\; \mathbb{C}^{n_i} \otimes \mathbb{C}^{n_j\circ} \otimes V_{ij}
    256     \rightarrow \mathbb{C}^{n_j} \otimes \mathbb{C}^{n_i\circ} \otimes V_{ji}.
    257 \end{align}
    258 
    259 \begin{proposition}
    260     \label{proposition}
    261     Let $J$ be a real structure on a finite real spectral triple $(A, H , D;
    262     J)$.
    263     \begin{enumerate}
    264         \item If $J^2 = 1$ (K0-dimension 0, 1, 6, 7) $Rightarrow \;\; \exists$
    265             an ONB $\{e_k^{(ij)}\}$\\ with $e_k^{(ij)} \in \mathbb{C}^{n_i} \otimes
    266             \mathbb{C}^{n_j\circ} \otimes V_{ij}$ such that
    267             \begin{align}
    268                 Je_k^{(ij)} = e_k^{(ij)} \;\;\; (i, j = 1,\dots,N;\; k=1,\dots
    269                 dim(V_{ij}))
    270             \end{align}
    271         \item If $J^2 = -1$ (KO-dimension 2, 3, 4, 5) $\Rightarrow \;\; \exists$
    272             ONB $\{e_k^{(ij)}, f_k^{(ji)}\}$ \\
    273             with $e_k^{(ij)} \in \mathbb{C}^{n_i} \otimes \mathbb{C}^{n_j\circ}
    274             \otimes V_{ij}$ and $f_k^{(ji)} \in \mathbb{C}^{n_j} \otimes
    275             \mathbb{C}^{n_i\circ} \otimes V_{ji}$ such that
    276             \begin{align}
    277                 Je_k^{(ij)} = f_k^{(ji)} \;\;\; (i\leq j=1,\dots, N;\;
    278                 k=1,\dots,dim(V_{ji})).
    279             \end{align}
    280     \end{enumerate}
    281 \end{proposition}
    282 \begin{proof}
    283     Similar to Lemma \ref{lemma}.
    284 \end{proof}
    285 
    286 For whatever unknown reasons this implies that in the case of KO-dimension 2,
    287 3, 4, 5, diagonals $H_ii$ need to have even multiplicity.
    288 
    289 \textbf{The finite Dirac Operator:} Is a mapping between $H_{ij}$ to $H_{kl}$
    290 
    291 \begin{align}
    292         D_{ij,kl}: \; \mathbb{C}^{n_i} \otimes
    293         \mathbb{C}^{n_j\circ}\otimes V_{ij} \rightarrow \mathbb{C}^{n_k} \otimes
    294         \mathbb{C}^{n_l\circ}\otimes V_{kl}
    295 \end{align}
    296 We have $D_{kl,ij} = D^*_{ij, kl}$. And in the diagram we have a line between
    297 the nodes $(\textbf{n}_i, \textbf{n}_j^\circ)$ and $(\textbf{n}_l,
    298 \textbf{n}_k^\circ)$. But instead of drawing directional lines draw a single
    299 undirected line that represents both $D_{ij, kl}$ and the adjoint $D_{kl, ij}$.
    300 
    301 \begin{lemma}
    302     The conditions $JD = \pm DJ$ and $[[D,a], b^\circ] = 0$ imply that the
    303     connections in the diagram run only vertically or horizontally and thereby
    304     the diagonal symmetry between the nodes is preserved.
    305 \end{lemma}
    306 \begin{proof}
    307     The condition $JD = \pm DJ$ has the following commutative diagram.
    308 
    309 \[
    310 \begin{tikzcd}
    311  \mathbb{C}^{n_i\circ}\otimes \mathbb{C}^{n_j\circ}\otimes V_{ij}
    312     \arrow[r,"D"] \arrow[d,swap,"J"] &
    313  \mathbb{C}^{n_k\circ}\otimes \mathbb{C}^{n_l\circ}\otimes V_{kl}   \arrow[d,"J"] \\
    314 \mathbb{C}^{n_j\circ}\otimes \mathbb{C}^{n_i\circ}\otimes V_{ji} \arrow[r,"\pm D"] &
    315 \mathbb{C}^{n_l\circ}\otimes \mathbb{C}^{n_k\circ}\otimes V_{lk}
    316 \end{tikzcd}
    317 \]
    318     Relating $D_{ij, kl}$ to $D_{ji, lk}$ and maintaining diagonal symmetry.
    319     Wit the condition $[[D, a], b^\circ]=0$ for the diagonal elements $a =
    320     \lambda_1\mathbb{I}_{n_1}\oplus \cdots \oplus \lambda_N \mathbb{I}_{n_N}
    321     \in A$ and $b = \mu_1\mathbb{I}_{n_1}\oplus \cdots \oplus \mu_N
    322     \mathbb{I}_{n_N} \in A$, with some $\lambda _i , \mu _i \in \mathbb{C}$, we
    323     can commute:
    324     \begin{align}
    325         D_{ij, kl} (\lambda _i - \lambda _k)(\bar{\mu}_j - \bar{\mu}_l)= 0
    326     \end{align}
    327     $\forall \lambda _i , \mu _j \in \mathbb{C}$, thus $D_ij, kl = 0$ for
    328     $i\neq j$ or $j\neq i $.
    329 \end{proof}
    330 \textbf{The Grading:} $\gamma : \; H \rightarrow H$ each node gets labeled by a $+$
    331 or a  $-$ sign.
    332 
    333 \begin{itemize}
    334     \item D only connects nodes with different signs
    335     \item If $(\textbf{n}_i, \textbf{n}_j^\circ)$ has a $\pm$ sing then
    336         $(\textbf{n}_j, \textbf{n}_i^\circ)$ has a $\mp$, $\varepsilon''$ sign\\
    337         according to $J\gamma = \varepsilon'' \gamma J$
    338 \end{itemize}
    339 
    340 \begin{definition}
    341     A Krajewski Diagram of KO-dimension $k$ is an ordered pair $(\Gamma,
    342     \Lambda)$ where $\Gamma$ is a finite graph and $\Lambda$ is a set of
    343     positive integers with a labeling:
    344 
    345     \begin{itemize}
    346         \item of $v \in \Gamma^{(0)}$ of vertices by elements $\iota (v) =
    347             (n(v), m(v))\; \in \; \Lambda \times \Lambda$, an edge from $v$ to
    348             $v'$ implies that either $n(v) = n(v')$ or $m(v) = m('v)$ or both
    349         \item of $e = (v_1, v_2) \in \Gamma^{(1)}$ edges with non-zero
    350             operators $D_e$ and their adjoints $D_e^*$:
    351             \begin{align}
    352                 &D_e:\mathbb{C}^{n(v_1)} \rightarrow
    353                 \mathbb{C}^{n(v_2)}\;\;\;\;\; &\text{if} \;\;\;\; m(v_1) = m(v_2)\\
    354                 &D_e:\mathbb{C}^{m(v_1)} \rightarrow
    355                 \mathbb{C}^{m(v_2)}\;\;\;\;\; &\text{if} \;\;\;\; n(v_1) = n(v_2)
    356             \end{align}
    357     \end{itemize}
    358     Together with an involutive graph automorphism $j:\Gamma \Rightarrow
    359     \Gamma$ such that the following conditions hold:
    360     \begin{enumerate}
    361         \item every row or column in $\Gamma \times \Gamma$ has non-empty
    362             intersection with $\iota(\Gamma)$
    363         \item for each vertex $v$ we have $n(j(v)) = m(v)$
    364         \item for each edge $e$ we have $D_e = \epsilon' D_{j(e)}$
    365         \item if KO dimension $k$ is even, then the vertices are labeled by
    366             $\pm 1$ and the edges only connect opposite signs. The signs at $v$
    367             and $j(v)$ differ by a factor of $\epsilon$
    368         \item if the K0-dimension is 2, 3, 4, 5 then the inverse image of
    369             $\iota$ of the diagonal elements in $\Lambda \times \Lambda$
    370             contains an even number of vertices of $\Gamma$
    371     \end{enumerate}
    372 \end{definition}
    373 With this definition we can label different vertices by the same element in
    374 $\Lambda \times \Lambda$ (accounting for the multiplicities in $V_{ij}$)
    375 \newline
    376 
    377 \textbf{Diagram:} To sum it up we have the following diagram
    378 \begin{itemize}
    379     \item Node at $(\textbf{n}_i, \textbf{n}_j^\circ)$ for each vertex with that label
    380     \item Operators $D_e$  add up to $D_{ij,kl}$ connecting nodes $(\textbf{n}_i,
    381         \textbf{n}_j^\circ)$ with $(\textbf{n}_k, \textbf{n}_l^\circ)$
    382         \begin{align}
    383             D_{ij, kl} = \sum\limits_{\substack{e=(v_1, v_2) \in \Gamma^{(1)}
    384             \\ \iota(v_1) = (\textbf{n}_i, \textbf{n}_j)\\
    385             \iota(v_2)=(\textbf{n}_k, \textbf{n}_l)}} D_e
    386         \end{align}
    387     \item only vertical or horizontal connections
    388 \end{itemize}
    389 
    390 \begin{theorem}
    391     There is a one-to-one correspondence between finite real spectral triples
    392     $(A, H, D; J, \gamma)$
    393     of K0-dimension $k$ modulo unitary equivalence and Krajewski diagrams of
    394     KO-dimension $k$ in the following way:
    395 
    396     \begin{align}
    397         & A = \bigoplus_{n \in \Lambda} M_n(\mathbb{C})\\
    398         & H = \bigoplus_{v \in \Gamma^{(0)}} \mathbb{C}^{n(v)} \otimes
    399         \mathbb{C}^{m(v)\circ}\\
    400         & D = \sum_{e\in \Gamma^{(1)}} D_e + D_e^*
    401     \end{align}
    402     The real structure $J:H\rightarrow H$ is given as as in Proposition
    403     \ref{proposition} with  a basis dictated by a graph automorphism $j: \Gamma
    404     \rightarrow \Gamma$. The grading $\gamma$ is difened by setting $\gamma =
    405     \pm 1$ on $\mathbb{C}^{n(v)} \otimes \mathbb{C}^{m(v)\circ} \subset H$
    406     according to the labeling $\pm$ of the vertex $v$.
    407 \end{theorem}
    408 
    409 \begin{example}
    410     $A = M_n(\mathbb{C})$ with $\hat{A} = {\textbf{n}}$. We have the following
    411     Krajewski diagram.
    412     \begin{figure}[h!] \centering
    413     \begin{tikzpicture}[
    414         dot/.style = {draw, circle, inner sep=0.06cm},
    415         no/.style = {},
    416         ]
    417         \node[no](a) at (0,0) [label=left:$\textbf{n}^\circ$] {};
    418         \node[no](c) at (0.25, 0.25) [label=above:$\textbf{n}$] {};
    419         \node[dot](d0) at (0.25,0) [] {};
    420         \end{tikzpicture}
    421     \end{figure}
    422     \begin{itemize}
    423         \item We can label the node either with a $+$ or a $-$ sign, the choice being
    424             irrelevant
    425         \item $H = \mathbb{C}^n \otimes \mathbb{C}^{n\circ} \simeq
    426             M_n(\mathbb{C})$
    427         \item $\gamma$ trivial grading ($+1$)
    428         \item $J$ is a combination of complex conjugation and the flip
    429             $n\otimes n^\circ$ ($\Rightarrow M_n(\mathbb{C})$ as matrix adjoint)
    430         \item Because node label is $\pm$ there is no non-zero Dirac operator
    431         \item $\Rightarrow (A = M_n(\mathbb{C}), H=M_n(\mathbb{C}) , D=0; J=(\cdot)^*,
    432             \gamma = 1)$
    433     \end{itemize}
    434 \end{example}
    435 \section{Real Algebras and Krajewski Diagrams}
    436 
    437 \begin{definition}
    438     A real Algebra is a Vector space $A$ over $\mathbb{R}$ with $A\times A
    439     \rightarrow A$, $(a, b) \mapsto ab$ and $1a = a1 = a \;\; \forall a\in A$
    440 \end{definition}
    441 
    442 A real *-algebra is a real algebra with a bilinear map $*:A \rightarrow A$
    443 such that $(ab)^* = b^*a^*$ and $(a^*)^* \;\;\; \forall a,b\in A$
    444 \begin{example}
    445     Real *-algebra of quaternions $\mathbb{H}$ subalgebra of $M_2(\mathbb{C})$.
    446     \begin{align}
    447         \mathbb{H} = \{ \begin{pmatrix}\alpha & \beta \\ -\bar{\beta} &
    448         \bar{\alpha}\end{pmatrix} : \alpha, \beta \in
    449             \mathbb{C}\}
    450     \end{align}
    451     $\mathbb{H}$ consists of matrices that commute in $M_2(\mathbb{C})$ with
    452     the operator $I$ defined by:
    453     \begin{align}
    454         I\begin{pmatrix}v_1 \\ v_2\end{pmatrix} = \begin{pmatrix}-\bar{v}_2 \\
    455     \bar{v}_1\end{pmatrix}
    456     \end{align}
    457     The involution is the hermitian conjugation of $M_2(\mathbb{C})$.
    458 \end{example}
    459 \begin{MyExercise}
    460     \textbf{
    461         \begin{enumerate}
    462             \item Show that $\mathbb{H}$ is a real *-algebra which contains a
    463                 real subalgebra isomorphic to $\mathbb{C}$.
    464             \item Show that $\mathbb{H} \otimes_\mathbb{R} \mathbb{C} \simeq
    465                 M_2(\mathbb{C})$ as complex *-algebras.
    466             \item Show that $M_k(\mathbb{H})$ is areal *-algebra for any $k$
    467             \item Show that $M_k(\mathbb{H} \otimes_{\mathbb{R}} \mathbb{C}
    468                 \simeq M_{2k}(\mathbb{C})$ as complex *algebras.
    469         \end{enumerate}
    470     }
    471     1). Let us take some $a, b \in \mathbb{H}$ with
    472     \begin{align}
    473         a = \begin{pmatrix}
    474             \alpha & \beta \\
    475             -\bar{\beta} & \bar{\alpha}
    476         \end{pmatrix} \;\;\;\;
    477         b = \begin{pmatrix}
    478             \gamma & \delta \\
    479             -\bar{\delta} & \bar{\gamma}
    480         \end{pmatrix}
    481     \end{align}
    482         where $\alpha, \beta, \gamma, \delta \in \mathbb{C}$. Since
    483         $\mathbb{H}$ is represented in standard $2x2$ matrices, the involution
    484         is just subsequent from there, the only thing left to show is the
    485         closure $ab \in \mathbb{H}$.
    486     \begin{align}
    487         ab &=
    488         \begin{pmatrix}
    489             \alpha & \beta \\
    490             -\bar{\beta} & \bar{\alpha}
    491         \end{pmatrix}
    492         \begin{pmatrix}
    493             \gamma & \delta \\
    494             -\bar{\delta} & \bar{\gamma}
    495         \end{pmatrix} =\\
    496         &=
    497         \begin{pmatrix}
    498             \alpha\beta - \beta\bar{\delta}& \alpha\delta + \beta \bar{\gamma}\\
    499             -(\bar{\alpha}\bar{\delta} + \bar{\beta}\gamma) &
    500             \bar{\alpha}\gamma-\bar{\beta}\delta
    501         \end{pmatrix} =
    502         \begin{pmatrix}
    503             \xi& \psi\\
    504             -\bar{\psi} & \bar{\xi}
    505         \end{pmatrix} \in \mathbb{H}
    506     \end{align}
    507     where $\xi, \psi \in \mathbb{C}$ because of closure of complex numbers
    508     in regards to multiplication and addition, which is $\mathbb{R}
    509     \otimes_{\mathbb{R}}\mathbb{C} \simeq \mathbb{C}$, e.g. $\beta \cdot c
    510     \in \mathbb{C}$ with $c \in \mathbb{C}$.
    511     \newline
    512     2)For $\mathbb{H}\otimes_\mathbb{R} \mathbb{C}$ we have for some $h \in
    513     \mathbb{H}$ and $c \in mathbb{C}$
    514     \begin{align}
    515         h\otimes c &=
    516         \begin{pmatrix}
    517             \alpha & \beta \\
    518             -\bar{\beta} & \bar{\alpha}
    519         \end{pmatrix}\otimes c = \\
    520         &=
    521         \begin{pmatrix}
    522             \alpha c & \beta c \\
    523             -\bar{\beta} c & \bar{\alpha} c
    524         \end{pmatrix} \simeq M_2(\mathbb{C})
    525     \end{align}
    526     because again of $\mathbb{R} \otimes_\mathbb{R} \mathbb{C} \simeq
    527     \mathbb{C}$.
    528     \newline
    529     3)We know that $\mathbb{H}$ is a real subalgebra of $M_2(\mathbb{C})$,
    530     so $M_k(\mathbb{H})$ is just an extension and an real subalgebra of
    531     $M_{2k}(\mathbb{C})$.
    532     \newline
    533     4) Here we use what we have learned
    534     \begin{align}
    535         M_k(\mathbb{H})\otimes_\mathbb{R} \mathbb{C} \simeq
    536         M_k(M_2(\mathbb{C})) = M_{2k}(\mathbb{C})
    537     \end{align}
    538 \end{MyExercise}
    539 \begin{definition}
    540     A representation of a finite-dimensional real * algebra $A$ is a pair $(\pi
    541     , H$), $H$- Hilbertspace, $\pi : A \rightarrow L(H)$
    542 \end{definition}
    543 \begin{MyExercise}
    544     Show that there is a one-to-one correspondence between Hilbertspace
    545     representations of real *-algebras $A$ and complex representations of its
    546     complexification $A\otimes _\mathbb{R} \mathbb{C}$. Conclude that the
    547     unique irreducible Hilbertspace representation of $M_k(\mathbb{H})$ is
    548     $\mathbb{C}^{2k}$
    549 \end{MyExercise}
    550 \begin{lemma}
    551     Real *-algebra $A$ represented faithfully on a finite dimensional
    552     Hilbertspace $H$  through a real linear *-algebra map $\pi: A \rightarrow
    553     L(H)$ hen $A$ is a matrix algebra.
    554     \begin{align}
    555         A \simeq \bigoplus _{i=1}^N M_{n_i} (\mathbb{F}_i)
    556     \end{align}
    557     Where $\mathbb{F}_i = \mathbb{R}, \mathbb{C}, \mathbb{H}$ depending on $i$.
    558 \end{lemma}
    559 \begin{proof}
    560     $\pi$ allows $A$ to be considered as a real *-subalgebra of
    561     $M_{dim(H)}(\mathbb{C}) \Rightarrow A+iA$ complex *-subalgebra of
    562     $M_{dim(H)}(\mathbb{C})$. Then $A+iA$ is a matrix algebra and $A+iA =
    563     M_k(\mathbb{C})$ for $k \geq 1$. Thus we have
    564     \begin{align}
    565         A \cap iA =
    566         \begin{cases}
    567             \{0\} \;\;\;\; \text{if $A = M_k(\mathbb{C})$}\\
    568             A+iA = M_k(\mathbb{C})
    569         \end{cases}
    570     \end{align}
    571     Furthermore $A$ is a fixed point algebra of an anti-linear automorphism
    572     $\alpha$ of $M_k(\mathbb{C})$ with $\alpha(a+ib) = a-ib$ for $a, b \in A$.
    573     Implement $\alpha$ by an anti-linear isometry $I$ on $\mathbb{C}^n$ such
    574     that $\alpha (x) = I\times I^{-1}\;\;\;\ \forall x\in M_k(\mathbb{C})$.
    575     Now since $\alpha^2 = 1$, $I^2$ commutes with $M_k(\mathbb{C})$ and is
    576     proportional to a complex scalar $I^2 = \pm 1 $ and A is the commutant of
    577     $I$
    578     \begin{itemize}
    579         \item if $I^2 = 1 \;\;\ \Rightarrow \;\; \exists \;\;\ \{e_i\}$ ONB of
    580             $\mathbb{C}^k$ with $Ie_i = e_i$, then $A=M_k(\mathbb{R})$
    581         \item if $I^2 = -1 \;\;\ \Rightarrow \;\; \exists \;\;\ \{e_i,f_i\}$ ONB of
    582             $\mathbb{C}^k$ with $Ie_i = f_i$, ($k$ even)\\
    583             Therefor $I$ must be a $k/2 \times k/2$ matrix because of commutation with
    584             $M_k(\mathbb{C})$, then $A = M_{k/2} (\mathbb{H})$
    585     \end{itemize}
    586 \end{proof}
    587 The Krajewski diagrams can also classify real algebras, as long as we take
    588 $\mathbb{F}_i$ for each $i$ into account. That is we enhance the set $\Lambda$
    589 to be
    590 \begin{align}
    591     \Lambda = \{ \textbf{n}_1 \mathbb{F}_1,\dots, \textbf{n}_N \mathbb{F}_N\}
    592 \end{align}
    593 Reducing in to the previous $\Lambda$ if all $\mathbb{F}_i = \mathbb{C}$.
    594 \section{Classification of Irreducible Geometries}
    595 Classify irreducible real spectral triples based on $M_N(\mathbb{C} \oplus
    596 M_N(\mathbb{C})$ for some $N$
    597 \begin{definition}
    598     A finite real spectral triple $(A, H, D; J, \gamma)$ is called irreducible
    599     if the triple $(A, H, J)$ is irreducible, that is when
    600     \begin{enumerate}
    601         \item The representation of $A$ and $J$ on $H$ are irreducible
    602         \item The action of $A$ on $H$ has a separating vector
    603     \end{enumerate}
    604 \end{definition}
    605 
    606 \begin{theorem}
    607     Let $(A, H, D; J, \gamma)$ be an irreducible finite real spectral triple of
    608     KO-dimension 6. Then exists a positive integer $N$ such that $A \simeq
    609     M_N(\mathbb{C}) \oplus M_N(\mathbb{C})$.
    610 \end{theorem}
    611 \begin{proof}
    612     Let $(A, H, D; J, \gamma)$ be an arbitrary finite real spectral triple,
    613     corresponding to
    614     \begin{align}
    615         &A = \bigoplus_i^{N} M_{n_i}(\mathbb{C})\\
    616         &H = \bigoplus_{i,j=1}^N \mathbb{C}^{n_i} \otimes
    617         \mathbb{C}^{n_j\circ} \otimes V_{ij}
    618     \end{align}
    619     Remember that each $\mathbb{C}^{n_i} \otimes \mathbb{C}^{n_j}$ is a
    620     irreducible representation of $A$. In order for $H$ to support the real
    621     structure $J$ we need both $\mathbb{C}^{n_i} \otimes \mathbb{C}^{n_j}$
    622     and $\mathbb{C}^{n_j} \otimes \mathbb{C}^{n_i}$. With Lemma \ref{lemma}
    623     with $J^2 = 1$ with multiplicity $dim(V_{ij}) = 1$ we have such a
    624     structure. Hence
    625     \begin{align}
    626         H = \mathbb{C}^{n_i} \otimes \mathbb{C}^{n_j} \oplus \mathbb{C}^{n_j}
    627         \otimes \mathbb{C}^{n_i}
    628     \end{align}
    629     For $i,j \in \{1, \dots, N\}$
    630     \newline
    631 
    632     For the second condition (existence of the separating vector). The
    633     representations of $A$ in $H$ are only faithful if $A = M_{n_i}(\mathbb{C})
    634     \oplus M_{n_j}(\mathbb{C})$. The stronger condition applies $n_i = n_j$
    635     then we have $A' \xi = H$ with the commutant of $A$ and $\xi \in H$ the
    636     separating vector. Normally since $A' = M_{n_j}(\mathbb{C}) \oplus
    637     M_{n_i}(\mathbb{C})$ with $dim(A') = n_i^2 + n_j^2$ and $dim(H) = 2n_i n_j$
    638     we have a equality $n_i = n_j$.
    639 \end{proof}
    640 \end{document}
    641 
    642 
    643 
    644 
    645