ncg

bachelorthesis in physics
git clone git://popovic.xyz/ncg.git
Log | Files | Refs

week8.tex (27853B)


      1 \documentclass[a4paper]{article}
      2 
      3 \usepackage[T1]{fontenc}
      4 \usepackage[utf8]{inputenc}
      5 
      6 \usepackage{mathptmx}
      7 
      8 \usepackage{subcaption}
      9 \usepackage[shortlabels]{enumitem}
     10 \usepackage{amssymb}
     11 \usepackage{amsthm}
     12 \usepackage{mathtools}
     13 \usepackage{bbm}
     14 \usepackage{graphicx}
     15 \usepackage[colorlinks=true,naturalnames=true,plainpages=false,pdfpagelabels=true]{hyperref}
     16 \usepackage[parfill]{parskip}
     17 
     18 \usepackage{tikz}
     19 \usetikzlibrary{patterns,decorations.pathmorphing,positioning}
     20 
     21 \usepackage[framemethod=TikZ]{mdframed}
     22 
     23 \tikzstyle{titlered} =
     24     [draw=black, thick, fill=white,%
     25         text=black, rectangle,
     26         right, minimum height=.7cm]
     27 
     28 \newcounter{exercise}
     29 
     30 \renewcommand*\theexercise{Exercise~\arabic{exercise}}
     31 
     32 \makeatletter
     33 \mdfdefinestyle{exercisestyle}{%
     34     outerlinewidth=1em,%
     35     outerlinecolor=white,%
     36     leftmargin=-1em,%
     37     rightmargin=-1em,%
     38     middlelinewidth=1.2pt,%
     39     roundcorner=5pt,%
     40     linecolor=black,%
     41     backgroundcolor=blue!5,
     42     innertopmargin=1.2\baselineskip,
     43     skipabove={\dimexpr0.5\baselineskip+\topskip\relax},
     44     skipbelow={-1em},
     45     needspace=3\baselineskip,
     46     frametitlefont=\sffamily\bfseries,
     47     settings={\global\stepcounter{exercise}},
     48     singleextra={%
     49         \node[titlered,xshift=1cm] at (P-|O) %
     50             {~\mdf@frametitlefont{\theexercise}~};},%
     51     firstextra={%
     52             \node[titlered,xshift=1cm] at (P-|O) %
     53                     {~\mdf@frametitlefont{\theexercise}~};},
     54 }
     55 \makeatother
     56 
     57 \newenvironment{MyExercise}%
     58 {\begin{mdframed}[style=exercisestyle]}{\end{mdframed}}
     59 
     60 \theoremstyle{definition}
     61 \newtheorem{definition}{Definition}
     62 
     63 \theoremstyle{definition}
     64 \newtheorem{question}{Question}
     65 
     66 \theoremstyle{definition}
     67 \newtheorem{example}{Example}
     68 
     69 \theoremstyle{theorem}
     70 \newtheorem{theorem}{Theorem}
     71 
     72 \theoremstyle{theorem}
     73 \newtheorem{lemma}{Lemma}
     74 
     75 
     76 \theoremstyle{theorem}
     77 \newtheorem{proposition}{Proposition}
     78 
     79 \newtheorem*{idea}{Proof Idea}
     80 
     81 
     82 \title{University of Vienna\\ Faculty of Physics\\ \vspace{1.25cm}
     83 Notes on\\ Noncommutative Geometry and Particle Phyiscs}
     84 \author{Milutin Popovic \\ Supervisor: Dr. Lisa
     85 Glaser}
     86 \date{Week 8: 8.05 - 18.05}
     87 
     88 \begin{document}
     89 
     90     \maketitle
     91     \tableofcontents
     92     \newpage
     93 
     94     \section{Excurse}
     95     \textbf{Manifold:} A topological space that is locally Euclidean.
     96     \newline
     97     \textbf{Riemannian Manifold:}A Manifold equipped with a Riemannian
     98     Metric, a
     99     symmetric bilinear form on Vector Fields $\Gamma(TM)$
    100     \begin{align}
    101         &g: \Gamma(TM) \times \Gamma(TM) \rightarrow C(M) \\
    102         \text{with}& \nonumber\\
    103         &g(X, Y) \in \mathbb{R} \;\;\; \text{if $X, Y \in \mathbb{R}$}\\
    104         &\text{$g$ is $C(M)$-bilinear } \forall f\in C(M):\;\; g(fX, Y) =
    105         g(X,
    106         fY) = fg(X,Y)\\
    107         &g(X,X) \begin{cases}\geq 0  \;\;\; \forall X \\ = 0 \;\;\; \forall X
    108             =0
    109         \end{cases}
    110     \end{align}
    111     $g$ on $M$ gives rise to a distance function on $M$
    112     \begin{align}
    113         d_g(x, y) = \inf_\gamma \left\{\int_0^1(\dot{\gamma}(t),
    114         \dot{\gamma}(t))dt;\;\; \gamma(0) = x, \gamma(1) = y \right\}
    115     \end{align}
    116     Riemannian Manifold is called spin$^c$ if there exists a vector bundle $S
    117     \rightarrow M$ with an algebra bundle isomorphism
    118     \begin{align}
    119         \mathbb{C}\text{I}(TM) &\simeq \text{End}(S)\;\;\; &\text{($dim(M)$
    120         even)}\\
    121         \mathbb{C}\text{I}(TM)^\circ &\simeq \text{End}(S)\;\;\;
    122         &\text{($dim(M)$ odd)}\\
    123     \end{align}
    124     $(M,S)$ is called the \textbf{spin$^c$ structure on $M$}.
    125     \newline
    126     $S$ is called the \textbf{spinor Bundle}.
    127     \newline
    128     $\Gamma(S)$ are the \textbf{spinors}.
    129 
    130     Riemannian spin$^c$ Manifold is called spin if there exists an
    131     anti-unitary
    132     operator $J_M:\Gamma(S) \rightarrow \Gamma(S)$ such that:
    133     \begin{enumerate}
    134         \item $J_M$ commutes with the action of real-valued  continuous
    135             functions
    136             on $\Gamma(S)$.
    137         \item $J_M$ commutes with $\text{Cliff}^-(M)$ (even case)\\
    138         $J_M$ commutes with $\text{Cliff}^-(M)^\circ$ (odd case)
    139     \end{enumerate}
    140     $(S, J_M)$ is called the \textbf{spin Structure on $M$}
    141     \newline
    142     $J_M$ is called the \textbf{charge conjugation}.
    143     \section{Noncommutative Geometry of Electrodynamics}
    144     \subsection{The Two-Point Space}
    145     Consider a two point space $X := \{x, y\}$. This space=an be described
    146     with
    147     the following spectral triple
    148     \begin{align}
    149         F_x := (C(X) = \mathbb{C}^2, H_F, D_F; J_F, \gamma _f).
    150     \end{align}
    151 
    152     Notes on the spectral triple:
    153     \begin{itemize}
    154         \item Action of $C(X)$ on $H_F$ is faithful ($\dim (H_F) \geq 2$)\\
    155             we choose $H_F = \mathbb{C}^2$
    156         \item $\gamma_F$ is the $\mathbb{Z}_2$ grading, which allows us to
    157             decompose $H_F = H_F^+ \oplus H_F^- = \mathbb{C} \oplus \mathbb{C}$\\
    158             where $H_F^{\pm} = \{ \psi \in H_F |\;\; \gamma _F \psi = \pm \psi\}$
    159             are the two eigenspaces
    160         \item $D_F$ interchanges between $H_F^\pm$, $D_F =
    161             \begin{pmatrix}0 & t \\ \bar{t} & 0\end{pmatrix}$ where $t \in
    162                 \mathbb{C}$
    163     \end{itemize}
    164 
    165     \begin{proposition}
    166         $F_x$ can only have a real structure if $D_F = 0$ in that case we
    167         have
    168         $KO-dim = 0, 2, 6$
    169     \end{proposition}
    170     \begin{proof}
    171         There are two diagram representations of $F_x$ at
    172         $\underbrace{\mathbb{C} \oplus \mathbb{C}}_{C(X)}$
    173         on $\underbrace{\mathbb{C} \oplus\mathbb{C}}_{H_F}$
    174 
    175         \begin{figure}[h!] \centering
    176         \begin{tikzpicture}[
    177             dot/.style = {draw, circle, inner sep=0.06cm},
    178             no/.style = {},
    179             ]
    180             \node[no](a) at (0,0) [label=left:$\textbf{1}^\circ$] {};
    181             \node[no](b) at (0, -1) [label=left:$\textbf{1}^\circ$] {};
    182             \node[no](c) at (1, 0.5) [label=above:$\textbf{1}$] {};
    183             \node[no](d) at (2, 0.5) [label=above:$\textbf{1}$] {};
    184             \node[dot](d0) at (2,0) [] {};
    185             \node[dot](d0) at (1,-1) [] {};
    186 
    187             \node[no](a1) at (6,0) [label=left:$\textbf{1}^\circ$] {};
    188             \node[no](b2) at (6, -1) [label=left:$\textbf{1}^\circ$] {};
    189             \node[no](c2) at (7, 0.5) [label=above:$\textbf{1}$] {};
    190             \node[no](d2) at (8, 0.5) [label=above:$\textbf{1}$] {};
    191             \node[dot](d0) at (7,0) [] {};
    192             \node[dot](d0) at (8,-1) [] {};
    193             \end{tikzpicture}
    194         \end{figure}
    195     If $F_x$ a real spectral triple then $D_F$ can only go vertically or
    196     horizontally $\Rightarrow D_F = 0$.  Furthermore the diagram on the
    197     left has KO-dimension 2 and 6, diagram on the right has KO-dimension
    198     0 and 4. Yet KO-dimension 4 is not allowed because
    199     $dim(H_F^\pm) = 1$ (see Lemma 3.8 Book), so $J_F^2 = -1$ is not
    200     allowed.
    201     \end{proof}
    202     \subsection{The product Space}
    203     Let $M$ be a 4-dim Riemannian spin Manifold, then we have the almost
    204     commutative manifold $M\times F_x$
    205     \begin{align}
    206         M\times F_x = (C^\infty(M, \mathbb{C}^2, L^2(S)\otimes \mathbb{C}^2,
    207         D_M\otimes 1 ; J_M\otimes J_F, \gamma_M \otimes \gamma_F)
    208     \end{align}
    209     ($J_M$ is missing need to choose)\newline
    210     $C^\infty(M, \mathbb{C}^2) \simeq C^\infty(M) \oplus  C^\infty(M)$
    211     (decomposition) and from Gelfand duality we we have
    212     \begin{align}
    213         N:= M\otimes X \simeq M\sqcup X
    214     \end{align}
    215     $H = L^2(S) \oplus L^2(S)$ (decomposition), such that for
    216     $\underbrace{a,b
    217     \in C^\infty(M)}_{(a, b) \in C^\infty(N)}$
    218     and $\underbrace{\psi, \phi \in L^2(S)}_{(\psi, \phi) \in H}$ we have
    219     \begin{align}
    220         (a, b)(\psi, \phi) = (a\psi, b\phi)
    221     \end{align}
    222     We can consider a distance formula on $M\times F_x$ by
    223     \begin{align}
    224         d_{D_F}(x,y) = \sup\left\{  |a(x) - a(y)|:a\in A_F, ||[D_F, a]|| \leq
    225         1 \right\}
    226     \end{align}
    227     Now lets calculate the distance between two points on the two point space
    228     $X=
    229     \{x, y\}$, between $x$ and $y$. Let $a \in \mathbb{C}^2 = C(X)$, $a$ is
    230     specified with two complex numbers $a(x)$ and $a(y)$
    231     \begin{align}
    232         &||[D_F , a]|| = ||(a(y) - a(x))\begin{pmatrix}0 &t\\\bar{t} &0
    233         \end{pmatrix}|| \leq 1\\
    234         &\Rightarrow |a(y) - a(x)|\leq \frac{1}{|t|}
    235     \end{align}
    236     Therefore the distance between two points $x$ and $y$ is
    237     \begin{align}
    238         d_{D_F} (x,y) = \frac{1}{|t|}
    239     \end{align}
    240     Note that if there exists $J_M$ (real structure) $\Rightarrow t=0$ then
    241     $d_{D_F}(x,y) \rightarrow \infty$!
    242     \newline
    243 
    244     Now let $p \in M$, then take two points on $N=M\times X$, $(p, x)$ and
    245     $(p,y)$ and $a \in C^\infty(N)$ is determined by $a_x(p):=a(p, x)$ and
    246     $a_y(p):=a(p, y)$. The distance between these two points is then
    247     \begin{align}
    248         d_{D_F\otimes 1}(n_1, n_2) =  \sup \left\{ |a(n_1) - a(n_2)|: a\in
    249         A, ||[D\otimes 1, a]||\right\}
    250     \end{align}
    251     \textbf{Remark}: If $n_1 = (p,x)$ and $n_2 = (q, x)$ for $p,q \in M$ then
    252     \begin{align}
    253         d_{D_M \otimes 1} (n_1, n_2) = |a_x(p) - a_x(q)| \;\;\; a_x\in
    254         C^\infty(M) \;\; \text{with} \;\; ||[D\otimes 1, a_x]|| \leq 1
    255     \end{align}
    256     The distance turns to the geodestic distance formula
    257     \begin{align}
    258         d_{D_M\otimes1}(n_1, n_2) = d_g(p, q)
    259     \end{align}
    260 
    261     However if $n_1 = (p, x)$ and $n_2 = (q, y)$ then the two conditions are
    262     $||[D_M, a_x]|| \leq 1$ and $||[D_M, a_y|| \leq 1$. They have no
    263     restriction which results in the distance being infinite! And $N =
    264     M\times X$ is given by two disjoint copies of M  which are separated by
    265     infinite distance
    266 
    267     \textbf{Note}: distance is only finite if $[D_F, a] \neq 1$. The
    268     commutator
    269     generates a scalar field say $\phi$ and the finiteness of the distance is
    270     related to the existence of scalar fields.
    271     \subsection{$U(1)$ Gauge Group}
    272     Here we determine the Gauge theory corresponding to the almost
    273     commutative
    274     Manifold $M\times F_x$.
    275 
    276     \textbf{Gauge Group of a Spectral Triple}:
    277     \begin{align}
    278         \mathfrak{B}(A, H; J) := \{ U = uJuJ^{-1} | u\in U(A)\}
    279     \end{align}
    280     \begin{definition}
    281         A *-automorphism of a *-algebra $A$ is a linear invertible
    282         map
    283         \begin{align}
    284             &\alpha:A \rightarrow A\;\;\; \text{with}\\
    285             \nonumber\\
    286             &\alpha(ab) = \alpha(a)\alpha(b)\\
    287             &\alpha(a)^* = \alpha(a^*)
    288         \end{align}
    289         The \textbf{Group of automorphisms of the *-Algebra $A$} is
    290         $(A)$.\newline
    291         The automorphism $\alpha$ is called \textbf{inner} if
    292         \begin{align}
    293             \alpha(a) = u a u^* \;\;\; \text{for} \;\; U(A)
    294         \end{align}
    295         where $U(A)$ is
    296         \begin{align}
    297             U(A) = \{ u\in A|\;\; uu^* = u^*u=1\} \;\;\;
    298             \text{(unitary)}
    299         \end{align}
    300     \end{definition}
    301     The Gauge group is given by the quotient $U(A)/U(A_J)$.
    302     We want a nontrivial Gauge group so we need to choose $U(A_J) \neq
    303     U(A)$ which is the same as $U((A_F)_{J_F}) \neq
    304     U(A_F)$.
    305     We consider $F_x$ to be
    306     \begin{align}
    307         F_x := \left(\mathbb{C}^2,\mathbb{C}^2, D_F =\begin{pmatrix}
    308             0&0\\0&0\end{pmatrix}; J_f =\begin{pmatrix}
    309         0&C\\C&0\end{pmatrix},
    310                 \gamma_F = \begin{pmatrix}1&0\\0&-1\end{pmatrix}\right).
    311     \end{align}
    312     Here $C$ is the complex conjugation, and $F_X$ is a real even finite
    313         spectral triple (space) with $KO-dim=6$
    314 
    315     \begin{proposition}
    316         The Gauge group $\mathfrak{B}(F)$ of the two point space is given by
    317         $U(1)$.
    318     \end{proposition}
    319     \begin{proof}
    320         Note that $U(A_F) = U(1) \times U(1)$. We need to show that
    321         $U(\mathcal{A}_F)
    322         \cap U(A_F)_{J_F}) \simeq U(1)$, such that $\mathfrak{B}(F)
    323         \simeq U(1)$.\newline
    324 
    325         So for $a \in \mathbb{C}^2$ to be in $(A_F)_{J_F}$ it has
    326         to satisfy $J_F a^* J_F = a$.
    327         \begin{align}
    328             J_F a^* J^{-1} =
    329             \begin{pmatrix}0&C\\C&0\end{pmatrix}
    330                 \begin{pmatrix}\bar{a}_1&0\\0&\bar{a}_2\end{pmatrix}
    331             \begin{pmatrix}0&C\\C&0\end{pmatrix}
    332                 =
    333                 \begin{pmatrix}a_2&0\\0&a_1\end{pmatrix}
    334         \end{align}
    335         Which is only the case if $a_1 = a_2$. So we have
    336         $(A_F)_{J_F} \simeq \mathbb{C}$, whose unitary elements
    337         from $U(1)$ are contained in the diagonal subgroup of
    338         $U(\mathcal{A}_F)$.
    339     \end{proof}
    340 
    341     Now we need to find the exact from of the field $B_\mu$ to calculate the
    342     spectral action of a spectral triple. Since $(A_F)_{J_F} \simeq
    343     \mathbb{C}$ we find that $\mathfrak{h}(F) = \mathfrak{u}((A_F)_{J_F})
    344     \simeq i\mathbb{R}$. Where $\mathfrak{h}(F)$ is the Lie Algebra on $F$
    345     and $\mathfrak{u}((A_F)_{J_F})$ is the Lie algebra of the unitary group
    346     $(A_F)_{J_F}$.\newline
    347 
    348     An arbitrary hermitian field $A_\mu = -ia\partial _\mu b$  is given by
    349     two
    350     $U(1)$ Gauge fields $X_\mu^1, X_\mu^2 \in C^\infty(M, \mathbb{R})$.
    351     However $A_\mu$ appears in combination $A_\mu - J_F A_\mu J_F^{-1}$:
    352     \begin{align}
    353         B_\mu = A_\mu - J_F A_\mu J_F^{-1} =
    354         \begin{pmatrix}X_\mu^1&0\\0&X_\mu^2 \end{pmatrix}
    355             -
    356         \begin{pmatrix}X_\mu^2&0\\0&X_\mu^1 \end{pmatrix}
    357             =:
    358         \begin{pmatrix}Y_\mu&0\\0&-Y_\mu \end{pmatrix}=
    359             Y_\mu \otimes \gamma _F
    360     \end{align}
    361     where $Y_\mu$ the $U(1)$ Gauge field is defined as
    362     \begin{align}
    363         Y_\mu := X_\mu^1 - X_\mu^2 \in C^\infty(M, \mathbb{R}) = C^\infty(M,
    364         i\ u(1)).
    365     \end{align}
    366 
    367     \begin{proposition}
    368         The inner fluctuations of the almost-commutative manifold $M\times
    369         F_x$ described above are parametrized by a $U(1)$-gauge field $Y_\mu$
    370         as
    371         \begin{align}
    372             D \mapsto D' = D + \gamma ^\mu Y_\mu \otimes \gamma_F
    373         \end{align}
    374         The action of the gauge group $\mathfrak{B}(M\times F_X) \simeq
    375         C^\infty (M, U(1))$ on $D'$ is implemented by
    376         \begin{align}
    377             Y_\mu \mapsto Y_\mu - i\ u\partial_\mu u^*; \;\;\;\;\; (u\in
    378             \mathfrak{B}(M\times F_X)).
    379         \end{align}
    380     \end{proposition}
    381 
    382 \section{Electrodynamics}
    383 Now we use the almost commutative Manifold and the abelian gauge group
    384 $U(1)$ to describe Electrodynamics. We arrive at a unified description of
    385 gravity and electrodynamics although in the classical level.
    386 \newline
    387 
    388 The almost commutative Manifold $M\times F_X$ describes a local gauge group
    389 $U(1)$. The inner fluctuations of the Dirac operator describe $Y_\mu$ the
    390 gauge field of $U(1)$. There arise two Problems:
    391 \newline
    392 (1): With $F_X$, $D_F$ must vanish, however this implies that the electrons
    393 are massless (this we do not want)
    394 \newline
    395 
    396 (2): The Euclidean action for a free Dirac field is
    397 \begin{align}
    398     S = - \int i \bar{\psi}(\gamma ^\mu\partial _\mu - m) \psi d^4x,
    399 \end{align}
    400 $\psi,\ \bar{\psi}$ must be considered as independent variables, which means
    401 $S_F$ need two independent Dirac Spinors. We write $\{e, \bar{e}\}$ for the
    402 ONB of $H_F$, where $\{e\}$ is the ONB of $H_F^+$ and $\{\bar{e}\}$ the ONB
    403 of $H_F^-$ with the real structure this gives us the following relations
    404 \begin{align}
    405     J_F e &= \bar{e} \;\;\;\;\;\; J_F \bar{e} = e \\
    406     \gamma_F e &= e  \;\;\;\;\;\;   \gamma_F \bar{e} = \bar{e}.
    407 \end{align}
    408 The total Hilbertspace is $H = L^2(S) \otimes H_F$, with $\gamma _F$ we can
    409 decompose $L^2(S) = L^2(S)^+ \oplus L^2(S)^-$, so with $\gamma = \gamma _M
    410 \otimes \gamma _F$ we can obtain the positive eigenspace $H^+$
    411 \begin{align}
    412     H^+ = L^2(S)^+ \otimes H_F^+ \oplus L^(S)^- \otimes H_F^-.
    413 \end{align}
    414 For a $\xi \i H^+$ we can write
    415 \begin{align}
    416     \xi = \psi _L \otimes e + \psi _R \otimes \bar{e}
    417 \end{align}
    418 where $\psi _L \in L^2(S)^+$ and $\psi _R \in L^2(S)^-$ are the two Wheyl
    419 spinors. We denote that $\xi$ is only determined by one Dirac spinor $\psi :=
    420 \psi_L + \psi _R$, \textbf{but we require two independent spinors}. This is
    421 too much restriction for $F_X$.
    422 \subsection{The Finite Space}
    423 Here we solve the two problems by enlarging(doubling) the Hilbertspace. This
    424 is done by introducing multiplicities in Krajewski Diagrams which will also
    425 allow us to choose a nonzero Dirac operator which will connect the two
    426 vertices (next chapter).
    427 \newline
    428 
    429 We start of with the same algebra $C^\infty(M, \mathbb{C}^2)$, corresponding
    430 to space $N= M\times X \simeq M\sqcup M$.
    431 \newline
    432 
    433 The Hilbertspace will describe four particles,
    434 \begin{itemize}
    435     \item left handed electrons
    436     \item right handed positrons
    437 \end{itemize}
    438 Thus we have $\{ \underbrace{e_R, e_L}_{\text{left-handed}},
    439 \underbrace{\bar{e}_R, \bar{e}_L}_{\text{right-handed}}\}$ the ONB for $H_F
    440 \mathbb{C}^4$.
    441 \newline
    442 Then with $J_F$ we interchange particles with antiparticles we have the
    443 following properties
    444 \begin{align}
    445     &J_F e_R = \bar{e}_R \;\;\;\;\; &J_F e_L = \bar{e_L} \\
    446     &\gamma _F e_R = -e_R \;\;\;\;\; &\gamma_F e_L = e_L \\
    447     \text{and}& \nonumber \\
    448     &J_F^2 = 1 \;\;\;\;\; & J_F \gamma_F  = - \gamma_F J_F
    449 \end{align}
    450 This corresponds to KO-dim$= 6$. Then $\gamma_F$ allows us to can decompose
    451 $H$
    452 \begin{align}
    453     H_F = \underbrace{H_F^+}_{\text{ONB } \{e_L, \bar{e}_L\}}
    454     \oplus \underbrace{H_F^-}_{\text{ONB } \{e_R, \bar{e}_R\}}.
    455 \end{align}
    456 Alternatively we can decompose $H$ into the eigenspace of particles and their
    457 antiparticles (electrons and positrons) which we will use going further.
    458 \begin{align}
    459     H_F = \underbrace{H_{e}}_{\text{ONB } \{e_L, e_R\}} \oplus
    460     \underbrace{H_{\bar{e}}}_{\text{ONB } \{\bar{e}_L, \bar{e}_R\}}
    461 \end{align}
    462 Now the action of $a \in A = \mathbb{C}^2$ on $H$ with respect to the ONB
    463 $\{e_L, e_R, \bar{e}_L, \bar{e}_R\}$ is represented by
    464 \begin{align}
    465     a =
    466     \begin{pmatrix}a_1 & a_2 \end{pmatrix} \mapsto
    467         \begin{pmatrix}
    468             a_1 &0 &0 &0\\
    469              0&a_1 &0 &0\\
    470             0 &0 &a_2 &0\\
    471             0 &0 &0 &a_2\\
    472         \end{pmatrix}
    473 \end{align}
    474 Do note that this action commutes wit the grading and that
    475 $[a, b^\circ] = 0$ with $b:= J_F b^*J_F$  because both the left and the right
    476 action is given by diagonal matrices.
    477 \begin{proposition}
    478     The data
    479     \begin{align}
    480         \left( \mathbb{C}^2, \mathbb{C}^2, D_F=0; J_F =
    481         \begin{pmatrix}
    482             0 & C \\ C &0
    483         \end{pmatrix},
    484         \gamma _F =
    485         \begin{pmatrix}
    486             1 & 0 \\ 0 &-1
    487         \end{pmatrix}
    488         \right)
    489     \end{align}
    490     defines a real even spectral triple of KO-dimension 6.
    491 \end{proposition}
    492 This spectral triple can be represented in the following Krajewski diagram,
    493 with two nodes of multiplicity two
    494     \begin{figure}[h!] \centering
    495     \begin{tikzpicture}[
    496         dot/.style = {draw, circle, inner sep=0.06cm},
    497         bigdot/.style = {draw, circle, inner sep=0.09cm},
    498         no/.style = {},
    499         ]
    500         \node[no](a) at (0,0) [label=left:$\textbf{1}^\circ$] {};
    501         \node[no](b) at (0, -1) [label=left:$\textbf{1}^\circ$] {};
    502         \node[no](c) at (0.5, 0.5) [label=above:$\textbf{1}$] {};
    503         \node[no](d) at (1.5, 0.5) [label=above:$\textbf{1}$] {};
    504         \node[dot](d0) at (1.5,0) [] {};
    505         \node[dot](d0) at (0.5,-1) [] {};
    506         \node[bigdot](d0) at (1.5,0) [] {};
    507         \node[bigdot](d0) at (0.5,-1) [] {};
    508         \end{tikzpicture}
    509     \end{figure}
    510 \subsection{A noncommutative Finite Dirac Operator}
    511 Add a non-zero Dirac Operator to $F_{ED}$. From the Krajewski Diagram, we see
    512 that edges only exist between the multiple vertices. So we construct a Dirac
    513 operator mapping between the two vertices.
    514 \begin{align}\label{dirac}
    515     D_F =
    516     \begin{pmatrix}
    517     0 & d & 0 & 0 \\
    518     \bar{d} & 0 & 0 & 0 \\
    519     0 & 0 & 0 & \bar{d} \\
    520     0 & 0 & d & 0
    521     \end{pmatrix}
    522 \end{align}
    523 We can now consider the finite space $F_{ED}$.
    524 \begin{align}
    525     F_{ED} := (\mathbb{C}^2, \mathbb{C}^4, D_F; J_F, \gamma_F)
    526 \end{align}
    527 where $J_F$ and $\gamma_F$ like before, $D_F$ like above.
    528 \subsection{The almost-commutative Manifold}
    529 The almost commutative manifold $M\times F_{ED}$ has KO-dim$=2$, it is the
    530 following spectral triple
    531 \begin{align}
    532     M\times F_{ED} := \left(C^\infty(M,\mathbb{C}^2),\ L^2(S)\otimes
    533     \mathbb{C}^4,\
    534     D_M\otimes 1 +\gamma _M \otimes D_F;\; J_M\otimes J_F,\ \gamma_M\otimes
    535     \gamma _F\right)
    536 \end{align}
    537 
    538 The algebra decomposition is like before
    539 \begin{align}
    540     C^\infty(M, \mathbb{C}^2) = C^\infty (M) \oplus C^\infty (M)
    541 \end{align}
    542 
    543 The Hilbertspace decomposition is
    544 \begin{align}
    545     H = (L^2(S) \otimes H_e ) \oplus (L^2(S) \otimes H_{\bar{e}}).
    546 \end{align}
    547 Here we have the one component of the algebra acting on $L^2(S) \otimes H_e$,
    548 and the other one acting on $L^2(S) \otimes H_{\bar{e}}$
    549 \newline
    550 
    551 The derivation of the gauge theory is the same for $F_{ED}$ as for $F_X$, we
    552 have $\mathfrak{B}(F) \simeq U(1)$ and for $B_\mu = A_\mu - J_F A_\mu
    553 J_F^{-1}$
    554 \begin{align} \label{field}
    555     B_\mu =
    556     \begin{pmatrix}
    557         Y_\mu & 0 & 0 & 0 \\
    558         0 & Y_\mu& 0 & 0 \\
    559         0 & 0 & Y_\mu& 0 \\
    560         0 & 0 & 0 & Y_\mu
    561     \end{pmatrix} \;\;\;\;\;\ \text{for} \;\;\ Y_\mu (x) \in \mathbb{R}.
    562 \end{align}
    563 We have one single $U(1)$ gauge field $Y_\mu$, carrying the action of the
    564 gauge group
    565 \begin{align}
    566    \text{$\mathfrak{B}$}(M\times F_{ED}) \simeq C^\infty(M, U(1))
    567 \end{align}
    568 
    569 Our space $N = M\times X \simeq M\sqcup M$ consists of two compies of $M$.
    570 If $D_F = 0$ we have infinite distance between the two copies. Now we have $D_F$
    571 nonzero but $[D_F, a] = 0$ $\forall a \in A$ which still yields infinite
    572 distance.
    573 \begin{question}
    574     What does this imply (physically, mathematically)? Why can we continue
    575     even thought we have infinite distance between the same manifold? What do
    576     we get if we fix this?
    577 \end{question}
    578 \subsection{The Spectral Action}
    579 Here we calculate the Lagrangian of the almost commutative Manifold $M\times
    580 F_{ED}$, which corresponds to the Lagrangian of Electrodynamics on a curved
    581 background Manifold (+ gravitational Lagrangian). It consists of the spectral
    582 action $S_b$ (bosonic) and of the fermionic action $S_f$.
    583 
    584 The simples spectral action of a spectral triple $(A, H, D)$ is given by the
    585 trace of some function of $D$, we also allow inner fluctuations of the Dirac
    586 operator $D_\omega = D + \omega + \varepsilon' J\omega J^{-1}$ where $\omega =
    587 \omega ^* \in \Omega_D^1(A)$.
    588 \begin{definition}
    589     Let $f:\mathbb{R} \rightarrow \mathbb{R}$ be a suitable function
    590     \textbf{positive and even}. The spectral action is then
    591     \begin{align}
    592         S_b [\omega] := \text{Tr}f(\frac{D_\omega}{\Lambda})
    593     \end{align}
    594     where $\Lambda$ is a real cutoff parameter. The minimal condition on $f$
    595     is that $f(\frac{D_\omega}{\Lambda})$ is  a traclass operator, which mean
    596     that it should be compact operator with well defined finite trace
    597     independent of the basis. The subscript $b$ of $S_b$ refers to bosonic,
    598     because in physical applications $\omega$ will describe bosonic fields.
    599 
    600     Furthermore there is a topological spectral action, defined with the
    601     grading $\gamma$
    602     \begin{align}
    603         S_{\text{top}}[\omega] := \text{Tr}(\gamma\
    604         f(\frac{D_\omega}{\Lambda})).
    605     \end{align}
    606 \end{definition}
    607 \begin{definition}
    608     The fermionic action is defined by
    609     \begin{align}
    610         S_f[\omega, \psi] = (J\tilde{\psi}, D_\omega \tilde{\psi})
    611     \end{align}
    612     with $\tilde{\psi} \in H_{cl}^+ := \{\tilde{\psi}: \psi \in H^+\}$.
    613     $H_{cl}^+$ is the set of Grassmann variables in $H$ in the +1-eigenspace
    614     of the grading $\gamma$.
    615 \end{definition}
    616 The grasmann variables are a set of Basis vectors of a vector space, they
    617 form a unital algebra over a vector field say $V$ where the generators are anti commuting, that is for
    618 $\theta _i, \theta _j$ some Grassmann variables we have
    619 \begin{align}
    620     &\theta _i \theta _j = -\theta _j \theta _i \\
    621     &\theta _i x = x\theta _j \;\;\;\; x\in V \\
    622     &(\theta_i)^2 = 0 \;\;\; (\theta _i \theta _i = -\theta _i \theta _i)
    623 \end{align}
    624 \begin{proposition}
    625     The spectral action of the almost commutative manifold $M$ with $\dim(M)
    626     =4$ with a fluctuated Dirac operator is.
    627     \begin{align}
    628         \text{Tr}(f\frac{D_\omega}{\Lambda}) \sim \int_M \mathcal{L}(g_{\mu\nu},
    629          B_\mu, \Phi) \sqrt{g}\ d^4x + O(\Lambda^{-1})
    630     \end{align}
    631     with
    632     \begin{align}
    633         \mathcal{L}(g_{\mu\nu}, B_\mu, \Phi) =
    634         N\mathcal{L}_M(g_{\mu\nu})
    635         \mathcal{L}_B(B_\mu)+
    636         \mathcal{L}_\phi(g_{\mu\nu}, B_\mu, \Phi)
    637     \end{align}
    638     where $N=4$ and $\mathcal{L}_M$ is the Lagrangian of the spectral triple
    639     $(C^\infty(M) , L^2(S), D_M)$
    640     \begin{align}\label{lagr}
    641         \mathcal{L}_M(g_{\mu\nu}) := \frac{f_4 \Lambda ^4}{2\pi^2} -
    642         \frac{f_2 \Lambda^2}{24\pi ^2}s - \frac{f(0)}{320\pi^2} C_{\mu\nu
    643         \varrho \sigma}C^{\mu\nu \varrho \sigma}.
    644     \end{align}
    645     Here $C^{\mu\nu \varrho \sigma}$ is defined in terms of the Riemannian
    646     curvature tensor $R_{\mu\nu \varrho \sigma}$ and the Ricci tensor
    647     $R_{\nu\sigma} = g^{\mu\varrho} R_{\mu\nu \varrho\sigma}$.
    648 
    649 
    650     Furthermore $\mathcal{L}_B$ describes the kinetic term of the gauge field
    651     \begin{align}
    652         \mathcal{L}_B(B_\mu) := \frac{f(0)}{24\pi^2}
    653         \text{Tr}(F_{\mu\nu}F^{\mu\nu}).
    654     \end{align}
    655     Last $\mathcal{L}_\phi$ is the scalar-field Lagrangian with a boundary
    656     term.
    657     \begin{align}
    658         \mathcal{L}_\phi(g_{\mu\nu}, B_\mu, \Phi) :=
    659         &-\frac{2f_2\Lambda^2}{4\pi^2}\text{Tr}(\Phi^2) + \frac{f(0)}{8\pi^2}
    660         \text{Tr}(\Phi^4) + \frac{f(0)}{24\pi^2} \Delta(\text{Tr}(\Phi^2))\\
    661         &+ \frac{f(0)}{48\pi^2}s\text{Tr}(\Phi^2)
    662         \frac{f(0)}{8\pi^2}\text{Tr}((D_\mu \Phi)(D^\mu \Phi)).
    663     \end{align}
    664 \end{proposition}
    665 \begin{proof}
    666     Will maybe be filled in if I go through the last two chapters in the
    667     book and understand the proof.
    668     \textbf{PROOF: in week10.pdf}
    669 \end{proof}
    670 
    671 Here on we go and calculate the spectral action of $M\times F_{ED}$
    672 \begin{proposition}
    673     The Spectral action of $M\times F_{ED}$ is
    674     \begin{align}
    675         \text{Tr}(f\frac{D_\omega}{\Lambda}) \sim \int_M \mathcal{L}(g_{\mu\nu},
    676          Y_\mu) \sqrt{g}\ d^4x + O(\Lambda^{-1})
    677     \end{align}
    678     where the Lagrangian is
    679     \begin{align}
    680         \mathcal{L}(g_{\mu\nu}, Y_\mu) =
    681         4\mathcal{L}_M(g_{\mu\nu})+
    682         \mathcal{L}_Y(Y_\mu)+
    683         \mathcal{L}_\phi(g_{\mu\nu}, d)
    684     \end{align}
    685         here the $d$ in $\mathcal{L}_\phi$ is from $D_F$ in equation
    686         \ref{dirac}. The Lagrangian $\mathcal{L}_M$ is like in equation
    687         \ref{lagr}. The Lagrangian $\mathcal{L}_Y$ is the kinetic term of the
    688         $U(1)$ gauge field $Y_\mu$
    689     \begin{align}
    690         \mathcal{L}_Y(Y_\mu):= \frac{f(0)}{6\pi^2}
    691         Y_{\mu\nu}Y^{\mu\nu}\;\;\;\;\;\;\;\;\text{with}\;\;\;  Y_{\mu\nu} =
    692         \partial_\mu Y_\nu -
    693         \partial_\nu Y_\mu.
    694     \end{align}
    695     Then there is $\mathcal{L}_\phi$, which has two constant terms
    696     (disregarding the boundary term) that add up to the Cosmological Constant
    697     and a term that for the Einstein-Hilbert action
    698     \begin{align}
    699         \mathcal{L}_\phi(g_{\mu\nu}, d) := \frac{2f_2 \Lambda ^2}{\pi^2}
    700         |d|^2 + \frac{f(0)}{2\pi^2} |d|^4 + \frac{f(0)}{12\pi ^2} s |d|^2.
    701     \end{align}
    702 \end{proposition}
    703 \begin{proof}
    704     The Trace of $\mathbb{C}^4$ (the Hilbertspace) gives $N=4$. With $B_\mu$
    705     like in equation \ref{field} we have $\text{Tr}(F_{\mu\nu}
    706     F^{\mu\nu})=4Y_{\mu\nu}Y^{\mu\nu}$. This provides $\mathcal{L}_Y$.
    707     Furthermore we have $\Phi^2 = D_F^2 = |d|^2$ and $\mathcal{L}_\phi$ only
    708     give numerical contributions to the cosmological constant and the
    709     Einstein-Hilbert action.
    710 
    711     The proof is relying itself on just plugging the terms into the previous
    712     proposition, for which I didn't write the proof for.
    713 \end{proof}
    714 \end{document}