week9.tex (18001B)
1 \documentclass[a4paper]{article} 2 3 \usepackage[T1]{fontenc} 4 \usepackage[utf8]{inputenc} 5 6 \usepackage{mathptmx} 7 8 \usepackage{subcaption} 9 \usepackage[shortlabels]{enumitem} 10 \usepackage{amssymb} 11 \usepackage{amsthm} 12 \usepackage{mathtools} 13 \usepackage{bbm} 14 \usepackage{graphicx} 15 \usepackage[colorlinks=true,naturalnames=true,plainpages=false,pdfpagelabels=true]{hyperref} 16 \usepackage[parfill]{parskip} 17 18 \usepackage{tikz} 19 \usetikzlibrary{patterns,decorations.pathmorphing,positioning} 20 21 \usepackage[framemethod=TikZ]{mdframed} 22 23 \tikzstyle{titlered} = 24 [draw=black, thick, fill=white,% 25 text=black, rectangle, 26 right, minimum height=.7cm] 27 28 \newcounter{exercise} 29 30 \renewcommand*\theexercise{Exercise~\arabic{exercise}} 31 32 \makeatletter 33 \mdfdefinestyle{exercisestyle}{% 34 outerlinewidth=1em,% 35 outerlinecolor=white,% 36 leftmargin=-1em,% 37 rightmargin=-1em,% 38 middlelinewidth=1.2pt,% 39 roundcorner=5pt,% 40 linecolor=black,% 41 backgroundcolor=blue!5, 42 innertopmargin=1.2\baselineskip, 43 skipabove={\dimexpr0.5\baselineskip+\topskip\relax}, 44 skipbelow={-1em}, 45 needspace=3\baselineskip, 46 frametitlefont=\sffamily\bfseries, 47 settings={\global\stepcounter{exercise}}, 48 singleextra={% 49 \node[titlered,xshift=1cm] at (P-|O) % 50 {~\mdf@frametitlefont{\theexercise}~};},% 51 firstextra={% 52 \node[titlered,xshift=1cm] at (P-|O) % 53 {~\mdf@frametitlefont{\theexercise}~};}, 54 } 55 \makeatother 56 57 \newenvironment{MyExercise}% 58 {\begin{mdframed}[style=exercisestyle]}{\end{mdframed}} 59 60 \theoremstyle{definition} 61 \newtheorem{definition}{Definition} 62 63 \theoremstyle{definition} 64 \newtheorem{question}{Question} 65 66 \theoremstyle{definition} 67 \newtheorem{example}{Example} 68 69 \theoremstyle{theorem} 70 \newtheorem{theorem}{Theorem} 71 72 \theoremstyle{theorem} 73 \newtheorem{lemma}{Lemma} 74 75 76 \theoremstyle{theorem} 77 \newtheorem{proposition}{Proposition} 78 79 \newtheorem*{idea}{Proof Idea} 80 81 82 \title{University of Vienna\\ Faculty of Physics\\ \vspace{1.25cm} 83 Notes on\\ Noncommutative Geometry and Particle Phyiscs} 84 \author{Milutin Popovic \\ Supervisor: Dr. Lisa 85 Glaser} 86 \date{Week 9: 28.05 - 4.06} 87 88 \begin{document} 89 90 \maketitle 91 \tableofcontents 92 \newpage 93 94 \section{Heat Kernel Expansion} 95 \subsection{The Heat Kernel} 96 The heat kernel $K(t; x, y; D)$ is the fundamental solution of the heat 97 equation. It depends on the operator $D$ of Laplacian type. 98 \begin{align} 99 (\partial _t + D_x)K(t;x, y;D) =0 100 \end{align} 101 For a flat manifold $M = \mathbb{R}^n$ and $D = D_0 := -\Delta_\mu\Delta^\mu +m^2$ the 102 Laplacian with a mass term and the initial condition 103 \begin{align} 104 K(0;x,y;D) = \delta(x,y) 105 \end{align} 106 we have the standard fundamental solution 107 \begin{align}\label{eq:standard} 108 K(t;x,y;D_0) = (4\pi t)^{-n/2}\exp\left(-\frac{(x-y)^2}{4t}-tm^2\right) 109 \end{align} 110 Let us consider now a more general operator $D$ with a potential term or a 111 guage field, the heat kernel reads then 112 \begin{align} 113 K(t;x,y;D) = \langle x|e^{-tD}|y\rangle. 114 \end{align} 115 We can expand it it in terms of $D_0$ and we still have the 116 singularity from the equation \ref{eq:standard} as $t\rightarrow 0$ thus the 117 expansion gives 118 \begin{align} 119 K(t;x,y;D) = K(t;x,y;D_0)\left(1 + tb_2(x,y) + t^2b_4(x,y) + \dots \right) 120 \end{align} 121 where $b_k(x,y)$ are regular in $y \rightarrow x$. They are called the heat 122 kernel coefficients. 123 124 \subsection{Example} 125 Now let us consider a propagator $D^{-1}(x,y)$ defined through the heat kernel 126 in an integral representation 127 \begin{align} 128 D^{-1} (x,y) = \int_0^\infty dt K(t;x,y;D). 129 \end{align} 130 We can integrate the expression formally if we assume the heat kernel vanishes 131 for $t\rightarrow \infty$ we get 132 \begin{align} 133 D^{-1}(x,y) \simeq 134 2(4\pi)^{-n/2}\sum_{j=0}\left(\frac{|x-y|}{2m}\right)^{-\frac{n}{2}+j+1} 135 K_{-\frac{n}{2}+j+1}(|x-y|m)b_{2j}(x,y). 136 \end{align} 137 where $b_0 = 1$ and $K_\nu (z)$ is the Bessel function 138 \begin{align} 139 K_\nu(z) = \frac{1}{\pi} \int_0^\pi cos(\nu\tau-z\sin(\tau))d\tau 140 \end{align} 141 it solves the differential equation 142 \begin{align} 143 z^2 \frac{d^2K}{dz^2} + z \frac{dK}{dz} + (z^2 - \nu^2)=0. 144 \end{align} 145 By looking at integral approximation of the propagator we conclude 146 that the singularities of $D^{-1}$ coincide with the singularities of the heat 147 kernel coefficients. 148 We consider now a generating functional in terns of $\det(D)$ which is called 149 the one-loop effective action (quantum fields theory) 150 \begin{align} 151 W = \frac{1}{2}\ln(\det D) 152 \end{align} 153 we can relate $W$ with the heat kernel. For each eigenvalue $\lambda >0$ of $D$ 154 we can write the identity. 155 \begin{align} 156 \ln \lambda = -\int_0^\infty \frac{e^{-t\lambda}}{t}dt 157 \end{align} 158 This expression is correct up to an infinite constant which does not depent on 159 $\lambda$, because of this we can ignore it. Further more we use $\ln(\det D) = 160 \text{Tr}(\ln D)$ and therefor we can write for $W$ 161 \begin{align} 162 W = -\frac{1}{2} \int_0^\infty dt \frac{K(t, D)}{t} 163 \end{align} 164 where 165 \begin{align} 166 K(t, D) = \text{Tr}(e^{-tD}) = \int d^n x \sqrt{g}K(t;x,x;D). 167 \end{align} 168 The problem is now that the integral of $W$ is divergent at both limits. Yet 169 the divergences at $t\rightarrow \infty$ are caused by $\lambda \leq 0$ of $D$ 170 (infrared divergences) and are just ignored. The divergences at $t\rightarrow 0$ 171 are cutoff at $t=\Lambda^{-2}$, thus we write 172 \begin{align} 173 W_\Lambda = -\frac{1}{2} \int_{\Lambda^{-2}}^\infty dt \frac{K(t, D)}{t}. 174 \end{align} 175 We can calculate $W_\Lambda$ at up to an order of $\lambda ^0$ 176 \begin{align} 177 W_\Lambda &= -(4\pi)^{-n/2} \int d^n x\sqrt{g}\bigg( 178 \sum_{2(j+l)<n}\Lambda^{n-2j-2l}b_{2j}(x,x) \frac{(-m^2)^l l!}{n-2j-2l} +\\ 179 &+ \sum_{2(j+l) =n }\ln(\Lambda) (-m^2)^l l! b_{2j}(x,x) 180 \mathcal{O}(\lambda^0) \bigg) 181 \end{align} 182 There is an divergence at $b_2(x,x)$ with $k\leq n$. Now we compute the limit 183 $\Lambda \rightarrow \infty$ 184 \begin{align} 185 -\frac{1}{2}(4\pi)^{n/2}m^n\int d^n x\sqrt{g} \sum_{2j>n} 186 \frac{b_{2j}(x,x)}{m^{2j}}\Gamma(2j-n) 187 \end{align} 188 here $\Gamma$ is the gamma function. 189 \subsection{Differential Geometry and Operators of Laplace Type} 190 Let $M$ be a $n$ dimensional compact Riemannian manifold with $\partial M = 0$. 191 Then consider a vector bundle $V$ over $M$ (i.e. there is a vector space to 192 each point on $M$), so we can define smooth functions. We want to look at 193 arbitrary differential operators $D$ of Laplace type on $V$, they have the general 194 from 195 \begin{align} 196 D = -(g^{\mu\nu} \partial_\mu\partial_\nu + a^\sigma\partial_\sigma +b) 197 \end{align} 198 where $a^\sigma, b$ are matrix valued functions on $M$ and $g^{\mu\nu}$ is the 199 inverse metric on $M$. There is a unique connection on $V$ and a unique 200 endomorphism (matrix valued function) $E$ on $V$, then we can rewrite $D$ in 201 terms of $E$ and covariant derivatives 202 \begin{align} 203 D = -(g^{\mu\nu} \nabla_\mu \nabla_\nu +E) 204 \end{align} 205 Where the covariant derivative consists of $\nabla = \nabla^{[R]} +\omega$ the 206 standard Riemannian covariant derivative $\nabla^{[R]}$ and a "gauge" bundle 207 $\omega$ (fluctuations). WE can write $E$ and $\omega$ in terms of geometrical 208 identities 209 \begin{align} 210 \omega_\delta &= \frac{1}{2}g_{\nu\delta}(a^\nu 211 +g^{\mu\sigma}\Gamma^\nu_{\mu\sigma}I_V)\\ 212 E &= b - g^{\nu\mu}(\partial_\mu \omega_\nu + \omega_\nu \omega_\mu - 213 \omega_\sigma \Gamma^\sigma_{\nu\mu}) 214 \end{align} 215 where $I_V$ is the identity in $V$ and the Christoffel symbol 216 \begin{align} 217 \Gamma^\sigma_{\mu\nu} = g^{\sigma\varrho} \frac{1}{2} (\partial_\mu 218 g_{\nu\varrho} + \partial_\nu g_{\mu\varrho} - \partial_\varrho g_{\mu\nu}) 219 \end{align} 220 Furthermore we remind ourselves of the Riemmanian curvature tensor, Ricci 221 Tensor and the Scalar curavture. 222 \begin{align} 223 R^\mu_{\nu\varrho\sigma} &= \partial_\sigma \Gamma^{\mu}_{\nu\varrho} 224 -\partial_\varrho \Gamma^\mu_{\nu\sigma} 225 \Gamma^{\lambda}_{\nu\varrho}\Gamma^{\mu}_{\lambda\sigma} 226 \Gamma^{\lambda}_{\nu\sigma}\Gamma^{\mu}_{\lambda\varrho}\\ 227 R_{\mu\nu} &:= R^{\sigma}_{\mu\nu\sigma}\\ 228 R &:= R^\mu_{\ \mu} 229 \end{align} 230 231 The we let $\{e_1, \dots, e_n\}$ be the local orthonormal frame of 232 $TM$(tangent bundle $M$), which will be noted with flat indices $i,j,k,l 233 \in\{1,\dots, n\}$, we use $e^k_\mu, e^\nu_j$ to transform between flat indices 234 and curved indices $\mu, \nu, \varrho$. 235 \begin{align} 236 e^\mu_j e^\nu_k g_{\mu\nu} &= \delta_{jk}\\ 237 e^\mu_j e^\nu_k \delta^{jk} &= g^{\mu\nu} \\ 238 e^j_\mu e^\mu_k &= \delta^j_k 239 \end{align} 240 241 The Riemannian part of the covariant derivative contains the standard 242 Levi-Civita connection, so that for a $v_\nu$ we write 243 \begin{align} 244 \nabla_\mu^{[R]} v_\nu = \partial_\mu v_\nu - 245 \Gamma^{\varrho}_{\mu\nu}v_\varrho. 246 \end{align} 247 The extended covariant derivative reads then 248 \begin{align} 249 \nabla_\mu v^j = \partial_\mu v^j + \sigma^{jk}_\mu v_k. 250 \end{align} 251 the condition $\nabla_\mu e^k_\nu = 0$ gives us the general connection 252 \begin{align} 253 \sigma^{kl}_\mu = e^\nu_l\Gamma^{\varrho}_{\mu\nu}e^k_\varrho - e^\nu_l 254 \partial_\mu e^k_\nu 255 \end{align} 256 The we may define the field strength $\Omega_{\mu\nu}$ of the connection $\omega$ 257 \begin{align} 258 \Omega_{\mu\nu} = \partial_\mu \omega_\nu -\partial_\nu \omega_\mu 259 +\omega_\mu \omega_\nu -\omega_\nu\omega_\mu. 260 \end{align} 261 If we apply the covariant derivative on $\Omega$ we get 262 \begin{align} 263 \nabla_\varrho\Omega_{\mu\nu} = \partial_\varrho \Omega_{\mu\nu} - 264 \Gamma^{\sigma}_{\varrho \mu} \Omega_{\sigma\mu} + [\omega_\varrho, 265 \Omega_{\mu\nu}] 266 \end{align} 267 268 \subsection{Spectral Functions} 269 Manifolds without $M$ boundary condition for the operator $e^{-tD}$ for $t>0$ is a 270 trace class operator on $L^2(V)$, this means that for any smooth function $f$ 271 on $M$ we can define 272 \begin{align} 273 K(t,f,D) = \text{Tr}_{L^2}(fe^{-tD}) 274 \end{align} 275 and we can rewrite 276 \begin{align} 277 K(t, f, D) = \int_M d^n x \sqrt{g} \text{Tr}_V(K(t;x,x;D)f(x)). 278 \end{align} 279 in terms of the Heat kernel $K(t;x,y;D)$ in the regular limit $y\rightarrow y$. 280 We can write the Heat Kernel in terms of the spectrum of $D$. Say 281 $\{\phi_\lambda\}$ is a ONB of eigenfunctions of $D$ corresponding to the 282 eigenvalue $\lambda$ 283 \begin{align} 284 K(t;x,y;D) = \sum_\lambda \phi^\dagger_\lambda(x) 285 \phi_\lambda(y)e^{-t\lambda}. 286 \end{align} 287 We have an asymtotic expansion at $t \rightarrow 0$ for the trace 288 \begin{align} 289 Tr_{L^2}(fe^{-tD}) \simeq \sum_{k\geq 0}t^{(k-n)/2}a_k(f,D). 290 \end{align} 291 where 292 \begin{align} 293 a_k(f,D) = (4\pi)^{-n/2} \int_M d^4x \sqrt{g} b_k(x,x) f(x) 294 \end{align} 295 \subsection{General Formulae} 296 We consider a compact Riemmanian Manifold $M$ without boundary condition, a 297 vector bundle $V$ over $M$ to define functions which carry discrete (spin or 298 gauge) indices. An Laplace style operator $D$ over $V$ and smooth function $f$ 299 on $M$. There is an asymtotic expansion where the heat kernel coefficients 300 \begin{enumerate} 301 \item with odd index $k=2j+1$ vanish 302 $a_{2j+1}(f,D) = 0$ 303 \item with even index are locally computable in terms of geometric 304 invariants 305 \end{enumerate} 306 \begin{align} 307 a_k(f,D) &= \text{Tr}_V\left(\int_M d^n x\sqrt{g}(f(x)a_k(x;D)\right) =\\ 308 &=\sum_I \text{Tr}_V\left(\int_M d^nx \sqrt{g}(fu^I \mathcal{A}^I_k(D))\right) 309 \end{align} 310 here $\mathcal{K}^I_k$ are all possible independent invariants of dimension 311 $k$, constructed from $E, \Omega, R_{\mu\nu\varrho\sigma}$ and their 312 derivatives, $u^I$ are some constants. 313 314 If $E$ has dimension two, then the derivative has dimension one. So if $k=2$ 315 there are only two independent invariants, $E$ and $R$. This corresponds to the 316 statement $a_{2j+1}=0$. 317 318 If we consider $M = M_1 \times M_2$ with coordinates $x_1$ and $x_2$ and a 319 decomposed Laplace style operator $D = D_1 \otimes 1 + 1 \otimes D_2$ we can 320 separate everything, i.e. 321 \begin{align} 322 e^{-tD} &= e^{-tD_1} \otimes e^{-tD_2}\\ 323 f(x_1, x_2) &= f_1(x_1)f_2(x_2)\\ 324 a_k(x;D) &= \sum_{p+q=k} a_p(x_1; D_1)a_q(x_2;D_2) 325 \end{align} 326 Say the spectrum of $D_1$ is known, $l^2, l\in \mathbb{Z}$. We obtain the heat 327 kernel asymmetries with the Poisson Summation formula 328 \begin{align} 329 K(t, D_1) &= \sum_{l\in\mathbb{Z}} e^{-tl^2} = \sqrt{\frac{\pi}{t}} 330 \sum_{l\in\mathbb{Z}} e^{-\frac{\pi^2l^2}{t}} = \\ 331 &\simeq \sqrt{\frac{\pi}{t}} + \mathcal{O}(e^{-1/t}). 332 \end{align} 333 Note that the exponentially small terms have no effect on the heat kernel 334 coefficients and that the only nonzero coefficient is $a_0(1, D_1) = 335 \sqrt{\pi}$. Therefore we can write 336 \begin{align} 337 a_k(f(x^2), D) = \sqrt{\pi}\int_{M_2} 338 d^{n-1}x\sqrt{g}\sum_I\text{Tr}_V\left(f(x^2)u^I_{(n-1)} 339 \mathcal{A}^I_n(D_2)\right). 340 \end{align} 341 342 On the other had all geometric invariants associated with $D$ are in the $D_2$ 343 part. Thus all invariants are independent of $x_1$, so we can choose for $M_1$. 344 Say $M_1 = S^1$ with $x\in (0, 2\pi)$ and $D_1=-\partial_{x_1}^2$ we may 345 rewrite the heat kernel coefficients in 346 \begin{align} 347 a_k(f(x_2), D) &= \int_{S^1\times M_2}d^nx \sqrt{g} \sum_I 348 \text{Tr}_V(f(x_2) u_{(n)}^I \mathcal{A}^I_k(D_2))=\\ 349 &= 2\pi \int_{M_2} d^nx\sqrt{g} \sum_I\text{Tr}_V(f(x_2) u_{(n)}^I 350 \mathcal{A}^I_k(D_2)). 351 \end{align} 352 Computing the two equations above we see that 353 \begin{align} 354 u_{(n)}^I = \sqrt{4\pi} u^I_{(n+1)} 355 \end{align} 356 357 \subsection{Heat Kernel Coefficients} 358 To calculate the heat kernel coefficients we need the following variational 359 equations 360 \begin{align} 361 &\frac{d}{d\varepsilon}|_{\varepsilon=0}a_k(1, e^{-2\varepsilon f}D) = 362 (n-k) a_k(f, D),\label{eq:var1}\\ 363 &\frac{d}{d\varepsilon}|_{\varepsilon=0}a_k(1, D-\varepsilon F) = 364 a_{k-2}(F,D),\label{eq:var2}\\ 365 &\frac{d}{d\varepsilon}|_{\varepsilon=0}a_k(e^{-2\varepsilon f}F, 366 e^{-2\varepsilon f}D) = 367 0\label{eq:var3}. 368 \end{align} 369 To prove the equation \ref{eq:var1} we differentiate 370 \begin{align} 371 \frac{d}{d\varepsilon}|_{\varepsilon=0} \text{Tr}(\exp(-e^{-2\varepsilon 372 f}tD) = \text{Tr}(2ftDe^{-tD}) = -2t\frac{d}{dt}\text{Tr}(fe^{-tD})) 373 \end{align} 374 then we expand both sides in $t$ and get \ref{eq:var1}. Equation \ref{eq:var2} 375 is derived similarly. For equation \ref{eq:var3} we consider the following 376 operator 377 \begin{align} 378 D(\varepsilon,\delta) = e^{-2\varepsilon f}(D-\delta F) 379 \end{align} 380 for $k=n$ we use equation \ref{eq:var1} and we get 381 \begin{align} 382 \frac{d}{d\varepsilon}|_{\varepsilon=0}a_n(1,D(\varepsilon,\delta)) =0 383 \end{align} 384 then we take the variation in terms of $\delta$, evaluated at $\delta =0$ and 385 swap the differentiation, allowed by theorem of Schwarz 386 \begin{align} 387 0 &= 388 \frac{d}{d\delta}|_{\delta=0}\frac{d}{d\varepsilon}|_{\varepsilon=0}a_n(1, 389 D(\varepsilon,\delta)) = 390 \frac{d}{d\varepsilon}|_{\varepsilon=0}\frac{d}{d\delta}|_{\delta=0}a_n(1, 391 D(\varepsilon,\delta)) =\\ 392 &=a_{n-2} ( e^{-2\varepsilon f}F, e^{-2\varepsilon f}D) 393 \end{align} 394 which proves equation \ref{eq:var3}. With this we calculate the constants $u^I$ 395 and we can write the first three heat kernel coefficients as 396 \begin{align} 397 a_0(f, D) &= (4\pi)^{-n/2}\int_Md^n x\sqrt{g} \text{Tr}_V(a_0 f)\\ 398 a_2(f, D) &= (4\pi)^{-n/2}\frac{1}{6}\int_Md^n 399 x\sqrt{g}\text{Tr}_V)(f\alpha _1 E+\alpha _2 R)\\ 400 a_4(f, D) &= (4\pi)^{-n/2}\frac{1}{360}\int_Md^n 401 x\sqrt{g}\text{Tr}_V(f(\alpha_3 E_{,kk} + \alpha_4 RE + \alpha_5 E^2 402 \alpha_6 R_{,kk} + \\ 403 &+\alpha_7 R^2 + \alpha_8 R_{ij}R_{ij} + \alpha_9 404 R_{ijkl}R_{ijkl} +\alpha_{10} \Omega_{ij}\Omega{ij})). 405 \end{align} 406 The constants $\alpha_I$ do not depend on the dimension $n$ of the Manifold and 407 we can compute them with our variational identities. 408 409 The first coefficient $\alpha_0$ can be seen from the heat kernel expanion of 410 the Laplacian on $S^1$ (above), $\alpha_0 = 1$. For $\alpha_1$ we use 411 \ref{eq:var2}, for $k = 2$ 412 \begin{align} 413 \frac{1}{6} \int_M d^n x\sqrt{g} \text{Tr}_V(\alpha_1F) = \int_M d^n 414 x\sqrt{g} \text{Tr}_V(F), 415 \end{align} 416 thus we conclude that $\alpha_1 = 6$. Now we take $k=4$ 417 \begin{align} 418 \frac{1}{360}\int_Md^n x \sqrt{g}\text{Tr}_V(\alpha_4 F R + 2\alpha_5 F E) 419 = \frac{1}{6} \int_Md^n x\sqrt{g}\text{Tr}_V(\alpha_1 FE + \alpha_2 FR), 420 \end{align} 421 thus $\alpha_4 = 60\alpha_2$ and $\alpha_5 = 180$. 422 423 Furthermore we apply \ref{eq:var3} to $n=4$ 424 \begin{align} 425 \frac{d}{d\varepsilon}|_{\varepsilon=0} a_2(e^{-2\varepsilon f}F, 426 e^{-2\varepsilon f}D) = 0. 427 \end{align} 428 By collecting the terms with $\text{Tr}_V(\int_Md^nx\sqrt{g}(Ff_{,jj}))$ we 429 obtain $\alpha_1 = 6\alpha_2$, that is $\alpha_2 = 1$, so $\alpha_4 = 60$. 430 431 Now we let $M=M_1\times M_2$ and split $D = -\Delta_1 -\Delta_2$, where 432 $\Delta_{1/2}$ are Laplacians for $M_1, M_2$, then we can decompose the heat 433 kernel coefficients for $k=4$ 434 \begin{align} 435 a_4(1,-\Delta_1-\Delta_2) =& a_4(1, -\Delta_1) a_0(1, -\Delta_2) 436 +a_2(1,-\Delta_1) a_2(1,-\Delta_2) \\&+ a_0(1,-\Delta_1) a_4(1,-\Delta_2) 437 \end{align} 438 with $E=0$ and $\Omega =0$ and by calculating the terms with $R_1R_2$ (scalar 439 curvature of $M_{1/2}$) we obtain $\frac{2}{360}\alpha_7 = 440 (\frac{\alpha_2}{6})^2$, thus $\alpha_7 = 5$. 441 442 For $n=6$ we get 443 \begin{align} 444 0 &= \text{Tr}_V(\int_Md^nx\sqrt{g} 445 (F(-2\alpha_3-10\alpha_4+4\alpha_5)f_{,kk}E +\\ 446 &+(2\alpha_3 + 10\alpha_6)f_{,iijj}+\\ 447 &+(2\alpha_4 -2\alpha_6 - 20\alpha_7 -2\alpha_8)f_{,ii}R\\ 448 &+(-8\alpha_8 -8\alpha_6)f_{,ij}R_{ij})) 449 \end{align} 450 we obtain $\alpha_3 = 60$, $\alpha_6=12$, $\alpha_8 = -2$ and $\alpha_9 = 2$ 451 452 For $\alpha_{10}$ we use the Gauss-Bonnet theorem to get $\alpha_{10}=30$, 453 which is left out because it is a lengthy computation. 454 455 Summarizing we get for the heat kernel coefficients 456 \begin{align} 457 \alpha_0(f, D) &= (4\pi)^{-n/2}\int_M d^n x \sqrt{g} \text{Tr}_V(f)\\ 458 \alpha_2(f, D) &= (4\pi)^{-n/2}\frac{1}{6}\int_M d^n x \sqrt{g} 459 \text{Tr}_V(f(6E+R))\\ 460 \alpha_4(f, D) &= (4\pi)^{-n/2}\frac{1}{360}\int_M d^n x \sqrt{g} 461 \text{Tr}_V(f(60E_{,kk}+60RE+ 180E^2 +\\ 462 &+12R_{,kk} + 5R^2 - 2 R_{ij}R_{ij} 463 2R_{ijkl}R_{ijkl} +30\Omega_{ij}\Omega_{ij}))\\ 464 \end{align} 465 466 467 468 469 470 471 472 473 474 \end{document}