ncg

bachelorthesis in physics
git clone git://popovic.xyz/ncg.git
Log | Files | Refs

week9.tex (18001B)


      1 \documentclass[a4paper]{article}
      2 
      3 \usepackage[T1]{fontenc}
      4 \usepackage[utf8]{inputenc}
      5 
      6 \usepackage{mathptmx}
      7 
      8 \usepackage{subcaption}
      9 \usepackage[shortlabels]{enumitem}
     10 \usepackage{amssymb}
     11 \usepackage{amsthm}
     12 \usepackage{mathtools}
     13 \usepackage{bbm}
     14 \usepackage{graphicx}
     15 \usepackage[colorlinks=true,naturalnames=true,plainpages=false,pdfpagelabels=true]{hyperref}
     16 \usepackage[parfill]{parskip}
     17 
     18 \usepackage{tikz}
     19 \usetikzlibrary{patterns,decorations.pathmorphing,positioning}
     20 
     21 \usepackage[framemethod=TikZ]{mdframed}
     22 
     23 \tikzstyle{titlered} =
     24     [draw=black, thick, fill=white,%
     25         text=black, rectangle,
     26         right, minimum height=.7cm]
     27 
     28 \newcounter{exercise}
     29 
     30 \renewcommand*\theexercise{Exercise~\arabic{exercise}}
     31 
     32 \makeatletter
     33 \mdfdefinestyle{exercisestyle}{%
     34     outerlinewidth=1em,%
     35     outerlinecolor=white,%
     36     leftmargin=-1em,%
     37     rightmargin=-1em,%
     38     middlelinewidth=1.2pt,%
     39     roundcorner=5pt,%
     40     linecolor=black,%
     41     backgroundcolor=blue!5,
     42     innertopmargin=1.2\baselineskip,
     43     skipabove={\dimexpr0.5\baselineskip+\topskip\relax},
     44     skipbelow={-1em},
     45     needspace=3\baselineskip,
     46     frametitlefont=\sffamily\bfseries,
     47     settings={\global\stepcounter{exercise}},
     48     singleextra={%
     49         \node[titlered,xshift=1cm] at (P-|O) %
     50             {~\mdf@frametitlefont{\theexercise}~};},%
     51     firstextra={%
     52             \node[titlered,xshift=1cm] at (P-|O) %
     53                     {~\mdf@frametitlefont{\theexercise}~};},
     54 }
     55 \makeatother
     56 
     57 \newenvironment{MyExercise}%
     58 {\begin{mdframed}[style=exercisestyle]}{\end{mdframed}}
     59 
     60 \theoremstyle{definition}
     61 \newtheorem{definition}{Definition}
     62 
     63 \theoremstyle{definition}
     64 \newtheorem{question}{Question}
     65 
     66 \theoremstyle{definition}
     67 \newtheorem{example}{Example}
     68 
     69 \theoremstyle{theorem}
     70 \newtheorem{theorem}{Theorem}
     71 
     72 \theoremstyle{theorem}
     73 \newtheorem{lemma}{Lemma}
     74 
     75 
     76 \theoremstyle{theorem}
     77 \newtheorem{proposition}{Proposition}
     78 
     79 \newtheorem*{idea}{Proof Idea}
     80 
     81 
     82 \title{University of Vienna\\ Faculty of Physics\\ \vspace{1.25cm}
     83 Notes on\\ Noncommutative Geometry and Particle Phyiscs}
     84 \author{Milutin Popovic \\ Supervisor: Dr. Lisa
     85 Glaser}
     86 \date{Week 9: 28.05 - 4.06}
     87 
     88 \begin{document}
     89 
     90     \maketitle
     91     \tableofcontents
     92     \newpage
     93 
     94 \section{Heat Kernel Expansion}
     95 \subsection{The Heat Kernel}
     96 The heat kernel $K(t; x, y; D)$ is the fundamental solution of the heat
     97 equation. It depends on the operator $D$ of Laplacian type.
     98 \begin{align}
     99     (\partial _t + D_x)K(t;x, y;D) =0
    100 \end{align}
    101 For a flat manifold $M = \mathbb{R}^n$ and $D = D_0 := -\Delta_\mu\Delta^\mu +m^2$ the
    102 Laplacian with a mass term and the initial condition
    103 \begin{align}
    104     K(0;x,y;D) = \delta(x,y)
    105 \end{align}
    106 we have the standard fundamental solution
    107 \begin{align}\label{eq:standard}
    108     K(t;x,y;D_0) = (4\pi t)^{-n/2}\exp\left(-\frac{(x-y)^2}{4t}-tm^2\right)
    109 \end{align}
    110 Let us consider now a more general operator $D$ with a potential term or a
    111 guage field, the heat kernel reads then
    112 \begin{align}
    113     K(t;x,y;D) = \langle x|e^{-tD}|y\rangle.
    114 \end{align}
    115 We can expand it it in terms of $D_0$ and we still have the
    116 singularity from the equation \ref{eq:standard} as $t\rightarrow 0$ thus the
    117 expansion gives
    118 \begin{align}
    119     K(t;x,y;D) = K(t;x,y;D_0)\left(1 + tb_2(x,y) + t^2b_4(x,y) + \dots \right)
    120 \end{align}
    121 where $b_k(x,y)$ are regular in $y \rightarrow x$. They are called the heat
    122 kernel coefficients.
    123 
    124 \subsection{Example}
    125 Now let us consider a propagator $D^{-1}(x,y)$ defined through the heat kernel
    126 in an integral representation
    127 \begin{align}
    128     D^{-1} (x,y) = \int_0^\infty dt K(t;x,y;D).
    129 \end{align}
    130 We can integrate the expression formally if we assume the heat kernel vanishes
    131 for $t\rightarrow \infty$ we get
    132 \begin{align}
    133     D^{-1}(x,y) \simeq
    134     2(4\pi)^{-n/2}\sum_{j=0}\left(\frac{|x-y|}{2m}\right)^{-\frac{n}{2}+j+1}
    135     K_{-\frac{n}{2}+j+1}(|x-y|m)b_{2j}(x,y).
    136 \end{align}
    137 where $b_0 = 1$ and $K_\nu (z)$ is the Bessel function
    138 \begin{align}
    139     K_\nu(z) = \frac{1}{\pi} \int_0^\pi cos(\nu\tau-z\sin(\tau))d\tau
    140 \end{align}
    141 it solves the differential equation
    142 \begin{align}
    143     z^2 \frac{d^2K}{dz^2} + z \frac{dK}{dz} + (z^2 - \nu^2)=0.
    144 \end{align}
    145 By looking at integral approximation of the propagator we conclude
    146 that the singularities of $D^{-1}$ coincide with the singularities of the heat
    147 kernel coefficients.
    148 We consider now a generating functional in terns of $\det(D)$ which is called
    149 the one-loop effective action (quantum fields theory)
    150 \begin{align}
    151     W = \frac{1}{2}\ln(\det D)
    152 \end{align}
    153 we can relate $W$ with the heat kernel. For each eigenvalue $\lambda >0$ of $D$
    154 we can write the identity.
    155 \begin{align}
    156     \ln \lambda  = -\int_0^\infty \frac{e^{-t\lambda}}{t}dt
    157 \end{align}
    158 This expression is correct up to an infinite constant which does not depent on
    159 $\lambda$, because of this we can ignore it. Further more we use $\ln(\det D) =
    160 \text{Tr}(\ln D)$ and therefor we can write for $W$
    161 \begin{align}
    162     W = -\frac{1}{2} \int_0^\infty dt \frac{K(t, D)}{t}
    163 \end{align}
    164 where
    165 \begin{align}
    166     K(t, D) = \text{Tr}(e^{-tD}) = \int d^n x \sqrt{g}K(t;x,x;D).
    167 \end{align}
    168 The problem is now that the integral of $W$ is divergent at both limits. Yet
    169 the divergences at $t\rightarrow \infty$ are caused by $\lambda \leq 0$ of $D$
    170 (infrared divergences) and are just ignored. The divergences at $t\rightarrow 0$
    171 are cutoff at $t=\Lambda^{-2}$, thus we write
    172 \begin{align}
    173     W_\Lambda = -\frac{1}{2} \int_{\Lambda^{-2}}^\infty dt \frac{K(t, D)}{t}.
    174 \end{align}
    175 We can calculate $W_\Lambda$ at up to an order of $\lambda ^0$
    176 \begin{align}
    177     W_\Lambda &= -(4\pi)^{-n/2} \int d^n x\sqrt{g}\bigg(
    178     \sum_{2(j+l)<n}\Lambda^{n-2j-2l}b_{2j}(x,x) \frac{(-m^2)^l l!}{n-2j-2l} +\\
    179     &+ \sum_{2(j+l) =n }\ln(\Lambda) (-m^2)^l l! b_{2j}(x,x)
    180     \mathcal{O}(\lambda^0) \bigg)
    181 \end{align}
    182 There is an divergence at $b_2(x,x)$ with $k\leq n$. Now we compute the limit
    183 $\Lambda \rightarrow \infty$
    184 \begin{align}
    185     -\frac{1}{2}(4\pi)^{n/2}m^n\int d^n x\sqrt{g} \sum_{2j>n}
    186     \frac{b_{2j}(x,x)}{m^{2j}}\Gamma(2j-n)
    187 \end{align}
    188 here $\Gamma$ is the gamma function.
    189 \subsection{Differential Geometry and Operators of Laplace Type}
    190 Let $M$ be a $n$ dimensional compact Riemannian manifold with $\partial M = 0$.
    191 Then consider a vector bundle $V$ over $M$ (i.e. there is a vector space to
    192 each point on $M$), so we can define smooth functions. We want to look at
    193 arbitrary differential operators $D$ of Laplace type on $V$, they have the general
    194 from
    195 \begin{align}
    196     D = -(g^{\mu\nu} \partial_\mu\partial_\nu + a^\sigma\partial_\sigma +b)
    197 \end{align}
    198 where $a^\sigma, b$ are matrix valued functions on $M$ and $g^{\mu\nu}$ is the
    199 inverse metric on $M$. There is a unique connection on $V$ and a unique
    200 endomorphism (matrix valued function) $E$ on $V$, then we can rewrite $D$ in
    201 terms of $E$ and covariant derivatives
    202 \begin{align}
    203     D = -(g^{\mu\nu} \nabla_\mu \nabla_\nu +E)
    204 \end{align}
    205 Where the covariant derivative consists of $\nabla = \nabla^{[R]} +\omega$ the
    206 standard Riemannian covariant derivative $\nabla^{[R]}$ and a "gauge" bundle
    207 $\omega$ (fluctuations). WE can write $E$ and $\omega$ in terms of geometrical
    208 identities
    209 \begin{align}
    210     \omega_\delta &= \frac{1}{2}g_{\nu\delta}(a^\nu
    211     +g^{\mu\sigma}\Gamma^\nu_{\mu\sigma}I_V)\\
    212     E &= b - g^{\nu\mu}(\partial_\mu \omega_\nu + \omega_\nu \omega_\mu -
    213     \omega_\sigma \Gamma^\sigma_{\nu\mu})
    214 \end{align}
    215 where $I_V$ is the identity in $V$ and the Christoffel symbol
    216 \begin{align}
    217     \Gamma^\sigma_{\mu\nu} = g^{\sigma\varrho} \frac{1}{2} (\partial_\mu
    218     g_{\nu\varrho} + \partial_\nu g_{\mu\varrho} - \partial_\varrho g_{\mu\nu})
    219 \end{align}
    220 Furthermore we remind ourselves of the Riemmanian curvature tensor, Ricci
    221 Tensor and the Scalar curavture.
    222 \begin{align}
    223     R^\mu_{\nu\varrho\sigma} &= \partial_\sigma \Gamma^{\mu}_{\nu\varrho}
    224     -\partial_\varrho \Gamma^\mu_{\nu\sigma}
    225     \Gamma^{\lambda}_{\nu\varrho}\Gamma^{\mu}_{\lambda\sigma}
    226     \Gamma^{\lambda}_{\nu\sigma}\Gamma^{\mu}_{\lambda\varrho}\\
    227     R_{\mu\nu} &:= R^{\sigma}_{\mu\nu\sigma}\\
    228     R &:= R^\mu_{\ \mu}
    229 \end{align}
    230 
    231 The we let $\{e_1, \dots, e_n\}$ be the local orthonormal frame of
    232 $TM$(tangent bundle $M$), which will be noted with flat indices $i,j,k,l
    233 \in\{1,\dots, n\}$, we use $e^k_\mu, e^\nu_j$ to transform between flat indices
    234 and curved indices $\mu, \nu, \varrho$.
    235 \begin{align}
    236     e^\mu_j e^\nu_k g_{\mu\nu} &= \delta_{jk}\\
    237     e^\mu_j e^\nu_k \delta^{jk} &= g^{\mu\nu} \\
    238     e^j_\mu e^\mu_k  &= \delta^j_k
    239 \end{align}
    240 
    241 The Riemannian part of the covariant derivative contains the standard
    242 Levi-Civita connection, so that for a $v_\nu$ we write
    243 \begin{align}
    244     \nabla_\mu^{[R]} v_\nu = \partial_\mu v_\nu -
    245     \Gamma^{\varrho}_{\mu\nu}v_\varrho.
    246 \end{align}
    247 The extended covariant derivative reads then
    248 \begin{align}
    249     \nabla_\mu v^j = \partial_\mu v^j + \sigma^{jk}_\mu v_k.
    250 \end{align}
    251 the condition $\nabla_\mu e^k_\nu = 0$ gives us the general connection
    252 \begin{align}
    253     \sigma^{kl}_\mu = e^\nu_l\Gamma^{\varrho}_{\mu\nu}e^k_\varrho - e^\nu_l
    254     \partial_\mu e^k_\nu
    255 \end{align}
    256 The we may define the field strength $\Omega_{\mu\nu}$ of the connection $\omega$
    257 \begin{align}
    258     \Omega_{\mu\nu} = \partial_\mu \omega_\nu -\partial_\nu \omega_\mu
    259     +\omega_\mu \omega_\nu -\omega_\nu\omega_\mu.
    260 \end{align}
    261 If we apply the covariant derivative on $\Omega$ we get
    262 \begin{align}
    263     \nabla_\varrho\Omega_{\mu\nu} = \partial_\varrho \Omega_{\mu\nu} -
    264     \Gamma^{\sigma}_{\varrho \mu} \Omega_{\sigma\mu} + [\omega_\varrho,
    265     \Omega_{\mu\nu}]
    266 \end{align}
    267 
    268 \subsection{Spectral Functions}
    269 Manifolds without $M$ boundary condition for the operator $e^{-tD}$ for $t>0$ is a
    270 trace class operator on $L^2(V)$, this means that for any smooth function $f$
    271 on $M$ we can define
    272 \begin{align}
    273     K(t,f,D) = \text{Tr}_{L^2}(fe^{-tD})
    274 \end{align}
    275 and we can rewrite
    276 \begin{align}
    277     K(t, f, D) = \int_M d^n x \sqrt{g} \text{Tr}_V(K(t;x,x;D)f(x)).
    278 \end{align}
    279 in terms of the Heat kernel $K(t;x,y;D)$ in the regular limit $y\rightarrow y$.
    280 We can write the Heat Kernel in terms of the spectrum of $D$. Say
    281 $\{\phi_\lambda\}$ is a ONB of eigenfunctions of $D$ corresponding to the
    282 eigenvalue $\lambda$
    283 \begin{align}
    284     K(t;x,y;D) = \sum_\lambda \phi^\dagger_\lambda(x)
    285     \phi_\lambda(y)e^{-t\lambda}.
    286 \end{align}
    287 We have an asymtotic expansion at $t \rightarrow 0$  for the trace
    288 \begin{align}
    289     Tr_{L^2}(fe^{-tD}) \simeq \sum_{k\geq 0}t^{(k-n)/2}a_k(f,D).
    290 \end{align}
    291 where
    292 \begin{align}
    293     a_k(f,D) = (4\pi)^{-n/2} \int_M d^4x \sqrt{g} b_k(x,x) f(x)
    294 \end{align}
    295 \subsection{General Formulae}
    296 We consider a compact Riemmanian Manifold $M$ without boundary condition, a
    297 vector bundle $V$ over $M$ to define functions which carry discrete (spin or
    298 gauge) indices. An Laplace style operator $D$ over $V$ and smooth function $f$
    299 on $M$. There is an asymtotic expansion where the heat kernel coefficients
    300 \begin{enumerate}
    301     \item with odd index $k=2j+1$ vanish
    302         $a_{2j+1}(f,D) = 0$
    303     \item with even index are locally computable in terms of geometric
    304         invariants
    305 \end{enumerate}
    306 \begin{align}
    307     a_k(f,D) &= \text{Tr}_V\left(\int_M d^n x\sqrt{g}(f(x)a_k(x;D)\right) =\\
    308     &=\sum_I \text{Tr}_V\left(\int_M d^nx \sqrt{g}(fu^I \mathcal{A}^I_k(D))\right)
    309 \end{align}
    310 here $\mathcal{K}^I_k$ are all possible independent invariants of dimension
    311 $k$, constructed from $E, \Omega, R_{\mu\nu\varrho\sigma}$ and their
    312 derivatives, $u^I$ are some constants.
    313 
    314 If $E$ has dimension two, then the derivative has dimension one. So if $k=2$
    315 there are only two independent invariants, $E$ and $R$. This corresponds to the
    316 statement $a_{2j+1}=0$.
    317 
    318 If we consider $M = M_1 \times M_2$ with coordinates $x_1$ and $x_2$ and a
    319 decomposed Laplace style operator $D = D_1 \otimes 1 + 1 \otimes D_2$ we can
    320 separate everything, i.e.
    321 \begin{align}
    322     e^{-tD} &= e^{-tD_1} \otimes e^{-tD_2}\\
    323     f(x_1, x_2) &= f_1(x_1)f_2(x_2)\\
    324     a_k(x;D) &= \sum_{p+q=k} a_p(x_1; D_1)a_q(x_2;D_2)
    325 \end{align}
    326 Say the spectrum of $D_1$ is known, $l^2, l\in \mathbb{Z}$. We obtain the heat
    327 kernel asymmetries with the Poisson Summation formula
    328 \begin{align}
    329     K(t, D_1) &= \sum_{l\in\mathbb{Z}} e^{-tl^2} = \sqrt{\frac{\pi}{t}}
    330     \sum_{l\in\mathbb{Z}} e^{-\frac{\pi^2l^2}{t}} = \\
    331     &\simeq \sqrt{\frac{\pi}{t}} + \mathcal{O}(e^{-1/t}).
    332 \end{align}
    333 Note that the exponentially small terms have no effect on the heat kernel
    334 coefficients and that the only nonzero coefficient is $a_0(1, D_1) =
    335 \sqrt{\pi}$. Therefore we can write
    336 \begin{align}
    337     a_k(f(x^2), D) = \sqrt{\pi}\int_{M_2}
    338     d^{n-1}x\sqrt{g}\sum_I\text{Tr}_V\left(f(x^2)u^I_{(n-1)}
    339     \mathcal{A}^I_n(D_2)\right).
    340 \end{align}
    341 
    342 On the other had all geometric invariants associated with $D$ are in the $D_2$
    343 part. Thus all invariants are independent of $x_1$, so we can choose for $M_1$.
    344 Say $M_1 = S^1$ with $x\in (0, 2\pi)$ and $D_1=-\partial_{x_1}^2$ we may
    345 rewrite the heat kernel coefficients in
    346 \begin{align}
    347     a_k(f(x_2), D) &= \int_{S^1\times M_2}d^nx \sqrt{g} \sum_I
    348     \text{Tr}_V(f(x_2) u_{(n)}^I \mathcal{A}^I_k(D_2))=\\
    349     &= 2\pi \int_{M_2} d^nx\sqrt{g} \sum_I\text{Tr}_V(f(x_2) u_{(n)}^I
    350     \mathcal{A}^I_k(D_2)).
    351 \end{align}
    352 Computing the two equations above we see that
    353 \begin{align}
    354     u_{(n)}^I = \sqrt{4\pi} u^I_{(n+1)}
    355 \end{align}
    356 
    357 \subsection{Heat Kernel Coefficients}
    358 To calculate the heat kernel coefficients we need the following variational
    359 equations
    360 \begin{align}
    361     &\frac{d}{d\varepsilon}|_{\varepsilon=0}a_k(1, e^{-2\varepsilon f}D) =
    362     (n-k) a_k(f, D),\label{eq:var1}\\
    363     &\frac{d}{d\varepsilon}|_{\varepsilon=0}a_k(1, D-\varepsilon F) =
    364     a_{k-2}(F,D),\label{eq:var2}\\
    365     &\frac{d}{d\varepsilon}|_{\varepsilon=0}a_k(e^{-2\varepsilon f}F,
    366     e^{-2\varepsilon f}D) =
    367     0\label{eq:var3}.
    368 \end{align}
    369 To prove the equation \ref{eq:var1} we differentiate
    370 \begin{align}
    371     \frac{d}{d\varepsilon}|_{\varepsilon=0} \text{Tr}(\exp(-e^{-2\varepsilon
    372     f}tD) = \text{Tr}(2ftDe^{-tD}) = -2t\frac{d}{dt}\text{Tr}(fe^{-tD}))
    373 \end{align}
    374 then we expand both sides in $t$ and get \ref{eq:var1}. Equation \ref{eq:var2}
    375 is derived similarly. For equation \ref{eq:var3} we consider the following
    376 operator
    377 \begin{align}
    378     D(\varepsilon,\delta) = e^{-2\varepsilon f}(D-\delta F)
    379 \end{align}
    380 for $k=n$ we use equation \ref{eq:var1} and we get
    381 \begin{align}
    382     \frac{d}{d\varepsilon}|_{\varepsilon=0}a_n(1,D(\varepsilon,\delta)) =0
    383 \end{align}
    384 then we take the variation in terms of $\delta$, evaluated at $\delta =0$ and
    385 swap the differentiation, allowed by theorem of Schwarz
    386 \begin{align}
    387     0 &=
    388     \frac{d}{d\delta}|_{\delta=0}\frac{d}{d\varepsilon}|_{\varepsilon=0}a_n(1,
    389     D(\varepsilon,\delta)) =
    390     \frac{d}{d\varepsilon}|_{\varepsilon=0}\frac{d}{d\delta}|_{\delta=0}a_n(1,
    391     D(\varepsilon,\delta)) =\\
    392     &=a_{n-2} ( e^{-2\varepsilon f}F, e^{-2\varepsilon f}D)
    393 \end{align}
    394 which proves equation \ref{eq:var3}. With this we calculate the constants $u^I$
    395 and we can write the first three heat kernel coefficients as
    396 \begin{align}
    397     a_0(f, D) &= (4\pi)^{-n/2}\int_Md^n x\sqrt{g} \text{Tr}_V(a_0 f)\\
    398     a_2(f, D) &= (4\pi)^{-n/2}\frac{1}{6}\int_Md^n
    399     x\sqrt{g}\text{Tr}_V)(f\alpha _1 E+\alpha _2 R)\\
    400     a_4(f, D) &= (4\pi)^{-n/2}\frac{1}{360}\int_Md^n
    401     x\sqrt{g}\text{Tr}_V(f(\alpha_3 E_{,kk} + \alpha_4 RE + \alpha_5 E^2
    402     \alpha_6 R_{,kk} + \\
    403     &+\alpha_7 R^2 + \alpha_8 R_{ij}R_{ij} + \alpha_9
    404     R_{ijkl}R_{ijkl} +\alpha_{10} \Omega_{ij}\Omega{ij})).
    405 \end{align}
    406 The constants $\alpha_I$ do not depend on the dimension $n$ of the Manifold and
    407 we can compute them with our variational identities.
    408 
    409 The first coefficient $\alpha_0$ can be seen from the heat kernel expanion of
    410 the Laplacian on $S^1$ (above), $\alpha_0 = 1$. For $\alpha_1$ we use
    411 \ref{eq:var2}, for $k = 2$
    412 \begin{align}
    413     \frac{1}{6} \int_M d^n x\sqrt{g} \text{Tr}_V(\alpha_1F) = \int_M d^n
    414     x\sqrt{g} \text{Tr}_V(F),
    415 \end{align}
    416 thus we conclude that $\alpha_1 = 6$. Now we take $k=4$
    417 \begin{align}
    418     \frac{1}{360}\int_Md^n x \sqrt{g}\text{Tr}_V(\alpha_4 F R + 2\alpha_5 F E)
    419     = \frac{1}{6} \int_Md^n x\sqrt{g}\text{Tr}_V(\alpha_1 FE + \alpha_2 FR),
    420 \end{align}
    421 thus $\alpha_4 = 60\alpha_2$ and $\alpha_5 = 180$.
    422 
    423 Furthermore we apply \ref{eq:var3} to $n=4$
    424 \begin{align}
    425     \frac{d}{d\varepsilon}|_{\varepsilon=0} a_2(e^{-2\varepsilon f}F,
    426     e^{-2\varepsilon f}D) = 0.
    427 \end{align}
    428 By collecting the terms with $\text{Tr}_V(\int_Md^nx\sqrt{g}(Ff_{,jj}))$ we
    429 obtain $\alpha_1 = 6\alpha_2$, that is $\alpha_2 = 1$, so $\alpha_4 = 60$.
    430 
    431 Now we let $M=M_1\times M_2$ and split $D = -\Delta_1 -\Delta_2$, where
    432 $\Delta_{1/2}$ are Laplacians for $M_1, M_2$, then we can decompose the heat
    433 kernel coefficients for $k=4$
    434 \begin{align}
    435     a_4(1,-\Delta_1-\Delta_2) =& a_4(1, -\Delta_1) a_0(1, -\Delta_2)
    436     +a_2(1,-\Delta_1) a_2(1,-\Delta_2) \\&+ a_0(1,-\Delta_1) a_4(1,-\Delta_2)
    437 \end{align}
    438 with $E=0$ and $\Omega =0$ and by calculating the terms with $R_1R_2$  (scalar
    439 curvature of $M_{1/2}$) we obtain $\frac{2}{360}\alpha_7 =
    440 (\frac{\alpha_2}{6})^2$, thus $\alpha_7 = 5$.
    441 
    442 For $n=6$ we get
    443 \begin{align}
    444     0 &= \text{Tr}_V(\int_Md^nx\sqrt{g}
    445     (F(-2\alpha_3-10\alpha_4+4\alpha_5)f_{,kk}E +\\
    446     &+(2\alpha_3 + 10\alpha_6)f_{,iijj}+\\
    447     &+(2\alpha_4 -2\alpha_6 - 20\alpha_7 -2\alpha_8)f_{,ii}R\\
    448     &+(-8\alpha_8 -8\alpha_6)f_{,ij}R_{ij}))
    449 \end{align}
    450 we obtain $\alpha_3 = 60$, $\alpha_6=12$, $\alpha_8 = -2$ and $\alpha_9 = 2$
    451 
    452 For $\alpha_{10}$ we use the Gauss-Bonnet theorem to get $\alpha_{10}=30$,
    453 which is left out because it is a lengthy computation.
    454 
    455 Summarizing we get for the heat kernel coefficients
    456 \begin{align}
    457     \alpha_0(f, D) &= (4\pi)^{-n/2}\int_M d^n x \sqrt{g} \text{Tr}_V(f)\\
    458     \alpha_2(f, D) &= (4\pi)^{-n/2}\frac{1}{6}\int_M d^n x \sqrt{g}
    459     \text{Tr}_V(f(6E+R))\\
    460     \alpha_4(f, D) &= (4\pi)^{-n/2}\frac{1}{360}\int_M d^n x \sqrt{g}
    461     \text{Tr}_V(f(60E_{,kk}+60RE+ 180E^2 +\\
    462     &+12R_{,kk} + 5R^2 - 2 R_{ij}R_{ij}
    463     2R_{ijkl}R_{ijkl} +30\Omega_{ij}\Omega_{ij}))\\
    464 \end{align}
    465 
    466 
    467 
    468 
    469 
    470 
    471 
    472 
    473 
    474 \end{document}