ncg

bachelorthesis in physics
git clone git://popovic.xyz/ncg.git
Log | Files | Refs

main.tex (9481B)


      1 \documentclass[fleqn]{beamer}
      2 \beamertemplatenavigationsymbolsempty
      3 
      4 \usepackage[T1]{fontenc}
      5 \usepackage[utf8]{inputenc}
      6 
      7 \usepackage{amsmath,amssymb}
      8 \usepackage{graphicx}
      9 \usepackage{mathptmx}
     10 \usepackage{subcaption}
     11 \usepackage{amsthm}
     12 \usepackage{tikz}
     13 %\usepackage[colorlinks=true,naturalnames=true,plainpages=false,pdfpagelabels=true]{hyperref}
     14 \usetikzlibrary{patterns,decorations.pathmorphing,positioning, arrows, chains}
     15 
     16 \usepackage[backend=biber, sorting=none]{biblatex}
     17 \addbibresource{uni.bib}
     18 
     19 \setbeamertemplate{endpage}{%
     20     \begin{frame}
     21         \centering
     22         \Large \emph{Thank You!}
     23     \end{frame}
     24 }
     25 
     26 \AtEndDocument{\usebeamertemplate{endpage}}
     27 
     28 % vertical separator macro
     29 \newcommand{\vsep}{
     30   \column{0.0\textwidth}
     31     \begin{tikzpicture}
     32       \draw[very thick,black!10] (0,0) -- (0,7.3);
     33     \end{tikzpicture}
     34 }
     35 \setlength{\mathindent}{0pt}
     36 
     37 % Beamer theme
     38 \usetheme{UniVienna}
     39 \usefonttheme[onlysmall]{structurebold}
     40 \mode<presentation>
     41 \setbeamercovered{transparent=10}
     42 
     43 \title
     44 {Noncommutative Geometry}
     45 \subtitle{Bachelor's seminar}
     46 \author[Popovic Milutin]
     47 {Popovic Milutin \newline Supervisor: Dr. Lisa Glaser}
     48 \date{16. April 2021}
     49 
     50 \begin{document}
     51     \begin{frame}
     52         \titlepage
     53     \end{frame}
     54 
     55     \begin{frame}{Introduction}
     56         \begin{itemize}
     57             \item Noncommutative geometry (NCG) brings many\\
     58                 mathematical fields together (e.g. K-Theory, Differential Geometry)
     59             \item Physics application (spectral Standard Model)
     60             \item Gelfand-Naimark-Theorem in Functional Analysis in the 1940s \\
     61               duality between (classical) geometry and Algebra
     62         \end{itemize}
     63     \end{frame}
     64 
     65     \begin{frame}{Spaces and Algebras}
     66         Introduce:
     67         \begin{block}
     68             {Algebra}
     69             \centering
     70             Vectorspace with a multiplication operation\\
     71             (associative and possesses an identity element)
     72         \end{block}
     73         \begin{block}
     74             {Finite topological Space $X$ consisting of $N$ points. (discrete topology)}
     75             \begin{figure}[h!]
     76             \centering
     77             \begin{tikzpicture}[
     78                 dot/.style = {draw, circle, inner sep=0.05cm, fill},
     79                 smalldot/.style = {draw, circle, inner sep=0.015cm,fill},
     80                 ]
     81                 \node[dot] at (-3,0.) [label=below:$1$]{};
     82                 \node[dot] at (-1.5,0) [label=below:$2$]{};
     83                 \node[dot] at (2.1,0) [label=below:$N$]{};
     84                 \node[smalldot] at (-0.4,0) {};
     85                 \node[smalldot] at (0.1,0) {};
     86                 \node[smalldot] at (0.6,0) {};
     87                 \end{tikzpicture}
     88             \end{figure}
     89 
     90         \end{block}
     91         \begin{block}{Commutative algebra of continuous functions on $X$}
     92             \centering
     93              $C(X) = \{ f: X \rightarrow \mathbb{C}:\;\;
     94              \text{$f$ is continuous}\}$
     95         \end{block}
     96     \end{frame}
     97     \begin{frame}
     98         {Spaces and commutative Algebras}
     99         Results of the Theorem:
    100             \begin{itemize}
    101                 \item $X$ and $C(X)$ contain the same information (duality)
    102                 \item Construct $X$, given $C(X)$.
    103                 \item Translate geometrical properties of $X$ to algebraic data\\
    104                     (metric, differential forms, vector fields, curvature, etc.)
    105             \end{itemize}
    106     \end{frame}
    107 
    108     \begin{frame}{Geometry as a Spectral Triple}
    109         \begin{block}
    110             {\centering The Spectral Triple}
    111             \centering
    112             $(\;A,\;\; H,\;\; D\;)$
    113         \end{block}
    114         \begin{itemize}
    115             \item $A$ - Algebra
    116             \item $H$ - Hilbertspace
    117             \item $D$ - self adjoint Operator acting on $H$
    118         \end{itemize}
    119     \end{frame}
    120 
    121     \begin{frame}{Geometry as a Spectral Triple}
    122         \begin{block}
    123             {The Spectral Triple of a Circle $\mathbb{S}^1$}
    124         \centering
    125                 $ (\; C^{\infty}(\mathbb{S}^1),\;\; L^2(\mathbb{S}^1),\;\; -i\frac{d}{dt} \;)$
    126         \end{block}
    127     \end{frame}
    128 
    129     \begin{frame}{Introducing the Metric}
    130         \begin{itemize}
    131             \item The metric describes distances between points on a space
    132         \end{itemize}
    133   \begin{columns}[T]
    134     \column{0.4\textwidth}
    135         \begin{block}{\centering Discrete Metric}
    136             \centering
    137             $
    138                 d_{ij} =
    139                 \begin{cases}
    140                     0\;\;\; \text{if}\;\;\; i = j \\
    141                     1\;\;\; \text{if}\;\;\; i \neq j
    142                 \end{cases}
    143             $
    144       \end{block}
    145 
    146     \column{0.4\textwidth}
    147     \begin{block}{\centering Minkowski Metric}
    148         \centering
    149         $
    150             \eta _{\mu \nu} =
    151                 \begin{pmatrix}
    152                     -1 & 0 & 0 & 0 \\
    153                     0 & 1 & 0 & 0 \\
    154                     0 & 0 & 1 & 0 \\
    155                     0 & 0 & 0 & 1
    156                 \end{pmatrix}
    157         $
    158     \end{block}
    159     \end{columns}
    160 
    161     \begin{figure}[h!] \centering
    162     \begin{tikzpicture}[
    163         dot/.style = {draw, circle, inner sep=0.05cm, fill},
    164         smalldot/.style = {draw, circle, inner sep=0.015cm,fill},
    165         ]
    166         \node[dot](m1) at (-3,0.) [label=left:$1$] {};
    167         \node[dot](m2) at (-1.5, 2) [label=above right:$2$] {};
    168         \node[dot](m3) at (2.1,0) [label=right:$3$] {};
    169 
    170         \draw[<->, >=stealth](m1) -- ++(m2) node [midway, fill=white] {$d_{12}$};
    171         \draw[<->, >=stealth](m2) -- ++(m3) node [midway, fill=white] {$d_{23}$};
    172         \draw[<->, >=stealth](m3) -- ++(m1) node [midway, fill=white] {$d_{13}$};
    173         \end{tikzpicture}
    174         \end{figure}
    175 
    176     \end{frame}
    177 
    178 
    179     \begin{frame}{Algebraic Formulation of the Metric}
    180         \begin{itemize}
    181         \item Utilize results of the Gelfand-Naimark Theorem
    182         \item Characterize the Metric with\\
    183             \begin{itemize}
    184                 \item[\bullet] commutative Algebra
    185                 \item[\bullet] finite-dimensional Hilbertspace $H$
    186                 \item[\bullet] symmetric operator $D$
    187             \end{itemize}
    188         \end{itemize}
    189         \begin{block}{Metric with $(A, H, D)$ on finite Space (commutative case)}
    190             \centering
    191             $d_{ij} = \sup_{a \in A}\{ |a(i) - a(j)| : ||[D, a]|| \leq 1\}$
    192         \end{block}
    193     \end{frame}
    194 
    195     \begin{frame}{Algebraic Formulation of the Metric}
    196      In the noncommutative Case:
    197         \begin{itemize}
    198             \item replace Algebra with matrix Algebra (noncommutative)
    199             \item define in terms of invariants
    200         \end{itemize}
    201         \begin{block}{Metric with $(A, H, D)$ on finite Space (noncommutative case)}
    202             \centering
    203             $d_{ij} = \sup_{a \in A}\{ |\text{Tr}(a(i)) - \text{Tr}(a(j))| :||[D, a]|| \leq 1\}$
    204         \end{block}
    205     \end{frame}
    206 
    207     \begin{frame}{Algebraic Formulation of the Metric}
    208         \begin{itemize}
    209             \item describe the Metric on a Manifold $M$
    210             \item We need \\
    211                 \begin{itemize}
    212                     \item[\bullet] $C^\infty(M)$ - Algebra
    213                     \item[\bullet] $L^2(S)$ - Hilbertspace
    214                     \item[\bullet] $D$ - Dirac Operator
    215                 \end{itemize}
    216         \end{itemize}
    217         \begin{block}{Metric with $(C^\infty(M),\;\; L^2(S),\;\; D)$ on a Manifod}
    218             \centering
    219             $d(x, y) = \sup_{f \in C^\infty(M) }\{ |f(x) - f(y)| :
    220             ||[D, f]|| \leq 1\}$
    221         \end{block}
    222     \begin{figure}[h!] \centering
    223     \begin{tikzpicture}[
    224         dot/.style = {draw, circle, inner sep=0.06cm, fill},
    225         smalldot/.style = {draw, circle, inner sep=0.015cm,fill},
    226         ]
    227         \node[dot](b) at (0,0) [label=below left:$x$] {};
    228         \node[dot](a) at (2, 0) [label=below right:$y$] {};
    229         \node[dot](a) at (5, 0) [label=below left:$x$] {};
    230         \node[dot](a) at (8, 0) [label=below right:$y$] {};
    231         %        \node[dot](m3) at (2.1,0) [label=right:$3$] {};
    232 
    233          \draw[<->, >=stealth, line width=0.4mm, style=dashed](0, 0.2) -- ++(2, 0) {};
    234          \draw[line width=0.5mm] (-0.3, 0) -- (2.3, 0) {};
    235 
    236          \draw[line width=0.5mm] (4.7, 0) -- (8.3, 0) {};
    237          \draw[<->, >=stealth, line width=0.4mm, style=dashed](8, 2) -- (8, 0.1) {};
    238          \draw[line width=0.5mm] (5, 0) -- (8, 2) node [pos=.75, label=:$f$] {} ;
    239         \end{tikzpicture}
    240         \end{figure}
    241     \end{frame}
    242 
    243 %\begin{frame}{Noncommutative Case}
    244 %    \begin{itemize}
    245 %        \item Introduce a richer geometry
    246 %        \item From finite topological space to a Manifold with noncommutativity
    247 %            \item From finite to general spectral triples with a \\
    248 %                self adjoint Operator (Dirac Operator)
    249 %        \end{itemize}
    250 %    \end{frame}
    251 
    252     \begin{frame}{Applications In Physics}
    253         \begin{itemize}
    254             \item NCG of the Quantum Hall Effect
    255             \item NCG of the Standard Model
    256                 \begin{itemize}
    257                     \item[\bullet] going to noncommutative Manifolds
    258                     \item[\bullet] obtain Standard Model gauge fields (scalar Higgs filed)
    259                     \item[\bullet] minimal coupling to gravity
    260                     \item[\bullet] construct the Full Lagrangian
    261                 \end{itemize}
    262         \end{itemize}
    263     \end{frame}
    264 
    265     \begin{frame}{Bibliography}
    266         \nocite{ncgwalter}
    267         \nocite{liealgebra}
    268         \nocite{ncg4pages}
    269         \nocite{ncgshort}
    270         \printbibliography
    271     \end{frame}
    272 \end{document}
    273