1_basics.tex (26604B)
1 \subsection{Noncommutative Geometric Spaces\label{sec:1}} 2 \subsubsection{$*$-Algebra} 3 To grasp the idea of encoding geometrical data into a spectral triple we 4 introduce the first ingredient of a spectral triple, an unital $*$ algebra. 5 \begin{mydefinition} 6 A \textit{vector space} $A$ over $\mathbb{C}$ is called a 7 \textit{complex, unital algebra} if for all $a,b \in A$: 8 \begin{align} 9 A \times A \rightarrow A\\ 10 (a,\ b)\ &\mapsto \ a\cdot b, 11 \end{align} 12 with an identity element: 13 \begin{align} 14 1a = a1 =a. 15 \end{align} 16 Extending the definition, a $*$-algebra is an algebra $A$ with a \textit{conjugate linear map (involution)} $*:A\ \rightarrow A$, 17 $\forall a, b \in A$ satisfying 18 \begin{align} 19 (a\ b)^* &= b^*a^*,\\ 20 (a^*)^* &= a. 21 \end{align} 22 \end{mydefinition} 23 In the following all unital algebras are referred to as algebras. 24 25 \subsubsection{Finite Discrete Space} 26 Let us consider an example, a $*$-algebra of continuous functions $C(X)$ 27 on a discrete topological space $X$ with $N$ points. Functions of a 28 continuous $*$-algebra $C(X)$ assign values to $\mathbb{C}$ and for $f,\ g \in 29 C(X)$, $\lambda \in \mathbb{C}$ and $x \in X$ they provide the following structure: 30 \begin{itemize} 31 \item \textit{pointwise linear} 32 \begin{align} 33 (f + g)(x) &= f(x) + g(x),\\ 34 (\lambda\ f)(x) &= \lambda (f(x)), 35 \end{align} 36 \item \textit{pointwise multiplication} 37 \begin{align} 38 f\ g\ (x) = f(x)g(x), 39 \end{align} 40 \item \textit{pointwise involution} 41 \begin{align} 42 f^*(x) = \overline{f(x)}. 43 \end{align} 44 \end{itemize} 45 The $*$-algebra $C(X)$ is \textit{isomorphic} to a $*$-algebra $\mathbb{C}^N$ 46 with involution ($N$ number of points in $X$), we write $C(X) \simeq 47 \mathbb{C}^N$. Isomorphisms are bijective maps that preserve structure and 48 don't lose physical information. A function $f:X\ \rightarrow\ \mathbb{C}$ 49 can be represented with $N \times N$ diagonal matrices, where each diagonal 50 value represents the function value at the corresponding $i$-th point for $i 51 = 1,...,N$. Matrix multiplication and hermitian conjugation of 52 matrices we have a preserving structure. 53 54 Moreover we can \textit{map} between finite discrete spaces $X_1$ and $X_2$ with a 55 function 56 \begin{align} 57 \phi:\ X_1 \rightarrow\ X_2. 58 \end{align} 59 For every such map there exists a corresponding map 60 \begin{align} 61 \phi ^*:C(X_2)\ \rightarrow C(X_1), 62 \end{align} 63 which `pulls back' values even if $\phi$ is not bijective. 64 Note that the pullback does not map points back, but maps functions on an $*$-algebra $C(X)$. 65 The pullback, in literature often called a $*$-homomorphism or a $*$-algebra map under 66 pointwise product has the following properties 67 \begin{align} 68 \phi ^*(f\ g) &= \phi ^*(f)\ \phi ^*(g),\\ 69 \phi ^*(\overline{f}) &= \overline{\phi ^*(f)},\\ 70 \phi ^*(\lambda\ f + g) &= \lambda\ \phi ^*(f) + \phi ^*(g). 71 \end{align} 72 %------------ Exercise 73 The map $\phi :X_1\ \rightarrow \ X_2$ is an injective (surjective) map, 74 if only and if the corresponding pullback $\phi ^* :C(X_2)\ \rightarrow \ 75 C(X_1)$ is surjective (injective). To clarify let us say that $X_1$ has $n$ points and 76 $X_2$ with $m$ points. Then there are three different cases, first $n=m$ and 77 obviously $\phi$ is bijective and $\phi ^*$ too. Then $n > m$, in this case 78 $\phi$ assigns $n$ points to $m$ points when $n > m$, which is by definition 79 surjective. On the other hand $\phi ^*$ assigns $m$ points to $n$ points when 80 $n > m$, which is by definition injective. Lastly $n < m $, which is 81 completely analogous to the case $n > m$. 82 %------------ Exercise 83 84 \begin{mydefinition} 85 A \textit{(complex) matrix algebra} A is a direct sum, for $n_i, N \in 86 \mathbb{N}$ 87 \begin{align} 88 A = \bigoplus _{i=1}^{N} M_{n_i}(\mathbb{C}). 89 \end{align} 90 The involution is the hermitian conjugate. A $*$ algebra with involution is referred to as 91 a matrix algebra 92 \end{mydefinition} 93 94 To summarize, from a topological discrete space $X$, we can construct a 95 $*$-algebra $C(X)$ which is isomorphic to a matrix algebra $A$. Then the 96 question instantly arises, if we can construct $X$ given $A$? For a matrix 97 algebra $A$, which in most cases is not commutative, the answer is generally 98 no. Hence there are two options. We can restrict ourselves to commutative 99 matrix algebras, which are the vast minority and not physically interesting. 100 Or we can allow more morphisms (isomorphisms) between matrix algebras. 101 102 \subsubsection{Finite Inner Product Spaces and Representations} 103 Until now we have looked at finite topological discrete spaces, moreover we can consider a 104 finite dimensional inner product space $H$ (finite Hilbertspaces), with inner product 105 $(\cdot,\cdot)\rightarrow \mathbb{C}$. We denote $L(H)$ as the $*$-algebra of operators on $H$ 106 equipped with a product given by composition and involution of the adjoint, $T \mapsto T^*$. 107 Then $L(H)$ is a \textit{normed vector space} with 108 \begin{align} 109 \|T\|^2 &= \sup_{h \in H}\big\{(T\ h,\ T\ h): (h,\ h) \leq 1\big|\ T 110 \in L(H)\big \},\\ 111 \|T\| &= \sup\big\{\sqrt{\lambda}:\; \lambda \text{ eigenvalue of } T\big\}. 112 \end{align} 113 The Hilbertspace allows us to define representations of $*$-algebras. 114 \begin{mydefinition} 115 The \textit{representation} of a finite dimensional $*$-algebra $A$ is a 116 pair $(H, \pi)$, where $H$ is a finite dimensional inner product space 117 and $\pi$ is a $*$-\textit{algebra map} 118 \begin{align} 119 \pi:A\ \rightarrow \ L(H). 120 \end{align} 121 We call the representation $(H, \pi)$ \textit{irreducible} if 122 \begin{itemize} 123 \item $H \neq \emptyset$, 124 \item only $\emptyset$ or $H$ is invariant under the action of $A$ on 125 $H$. 126 \end{itemize} 127 \end{mydefinition} 128 Here are some examples of reducible and irreducible representations 129 \begin{itemize} 130 \item For $A = M_n(\mathbb{C})$ the representation $H=\mathbb{C}^n$, $A$ acts as matrix multiplication\\ 131 $H$ is irreducible. 132 \item For $A = M_n(\mathbb{C})$ the representation $H=\mathbb{C}^n\oplus \mathbb{C}^n$, with $a \in A$ acting 133 in block form \\ $\pi: a \mapsto \big(\begin{smallmatrix} a & 0\\ 0 & a \end{smallmatrix}\big)$ is 134 reducible. 135 \end{itemize} 136 Naturally there are also certain equivalences between different 137 representations. 138 \begin{mydefinition} 139 Two representations of a $*$-algebra $A$, $(H_1, \pi _1)$ and 140 $(H_2, \pi _2)$ are called \textit{unitary equivalent} if there exists a map 141 $U: H_1 \rightarrow H_2$ such that. 142 \begin{align} 143 \pi _1(a) = U^* \pi _2(a) U 144 \end{align} 145 \end{mydefinition} 146 147 Furthermore we define a mathematical structure called the structure space, 148 which will become important later when speaking of the duality between a 149 spectral triple and a geometrical space. 150 \begin{mydefinition} 151 Let $A$ be a $*$-algebra then, $\hat{A}$ is called the structure space of all \textit{unitary equivalence classes 152 of irreducible representations of A}. 153 \end{mydefinition} 154 %------------- EXERCISE 155 Given a representation $(H, \pi)$ of a $*$-algebra $A$, the \textbf{commutant} $\pi (A)'$ of $\pi (A)$ is defined as a set 156 of operators in $L(H)$ that commute with all $\pi (a)$ 157 \begin{align} 158 \pi (A)' = \big\{T \in L(H):\ \pi(a)\ T = T\ \pi(a) \;\; \forall a\in 159 A\big\} 160 \end{align} 161 The commutant $\pi (A)'$ is also a $*$-algebra, since it has unital, 162 associative and involutive properties. The unitary property is given by 163 the unital operator of the $*$-algebra of operators $L(H)$, which exists 164 by definition because $H$ is a inner product space. Associativity is 165 given by the $*$-algebra of $L(H)$, where $L(H) \times L(H)~\mapsto 166 L(H)$, which is associative by definition. The involutive property is 167 also given by the $*$-algebra $L(H)$ with a map $*: L(H) \mapsto L(H)$ 168 only for a $T \in H$ that commutes with $\pi (a)$. 169 %------------- EXERCISE 170 171 %------------- EXERCISE 172 For a unital algebra $*$-algebra $A$, the matrices $M_n(A)$ with entries 173 in $A$ form a unital $*$-algebra, because the unitary operation in 174 $M_n(A)$ is given by the identity Matrix, which exists in every 175 entry in $M_n(A)$ and behaves like in $A$. Associativity is given by 176 matrix multiplication. Lastly, involution is given by the conjugate 177 transpose. 178 179 Consider a representation $\pi :A\ \rightarrow \ L(H)$ of a $*$-algebra 180 $A$ and set $H^n = H \oplus ... \oplus H$, $n$ times. Then we have the following 181 representation $\tilde{\pi}:M_n(A) \rightarrow L(H^n)$ for the Matrix 182 algebra with $\tilde{\pi}((a_{ij})) = (\tilde{\pi}(a_{ij})) \in M_n(A)$, 183 since a direct isomorphisms of $A \simeq M_n(A)$ and $H \simeq H^n$ 184 exists. Meaning $\tilde{\pi}$ is a valid reducible representation. 185 186 By looking at $\tilde{\pi}:M_n(A) \rightarrow L(H^n)$ a $*$ algebra 187 representation of $M_n(A)$. We see that $\pi: A \rightarrow L(H^n)$ is a representation of $A$. 188 The fact that $\tilde{\pi}$ and $\pi$ are unitary equivalent, there is 189 a map $U: H^n \rightarrow H^n$ given by $U=\mathbbm{1}_n$, thus 190 \begin{align} 191 \pi (a) &= \mathbbm{1}_n^*\ \tilde{\pi}((a_{ij})), \\ 192 \mathbbm{1}_n &= \tilde{\pi}((a_{ij})) = \pi (a_{ij}) 193 \Rightarrow a_{ij} = a\ \mathbbm{1}_n. 194 \end{align} 195 %------------- EXERCISE 196 197 198 With help of the structure space $\hat{A}$, a commutative matrix algebra can be used to reconstruct a discrete space. 199 Since $A \simeq \mathbb{C}^N$ all irreducible representation are of the form 200 \begin{align} 201 \pi _i:(\lambda_1,...,\lambda_N)\in \mathbb{C}^N \mapsto \lambda_i \in 202 \mathbb{C} 203 \end{align} 204 for $i = 1,...,N$, and thus $\hat{A} \simeq \{1,...,N\}$. 205 We can conclude that there is a duality between discrete spaces and 206 commutative matrix algebras. This duality is called the \textit{finite 207 dimensional Gelfand duality} 208 209 Our aim is to make a further generalization by constructing a duality between 210 finite dimensional spaces and \textit{equivalence classes} of matrix 211 algebras that preserves general non-commutativity of matrices. Equivalence 212 classes are described by a concept of isomorphisms between matrix 213 algebras called \textit{Morita Equivalence}. 214 215 \subsubsection{Algebraic Modules} 216 An important part of the Morita Equivalence are algebraic modules, later 217 extended by Hilbert bimodules. 218 \begin{mydefinition} 219 Let $A$, $B$ be algebras (need not be matrix algebras) 220 \begin{enumerate} 221 \item \textit{left} A-module is a vector space $E$, that carries a left 222 representation of $A$, that is $\exists$ a bilinear map $\gamma: A 223 \times E \rightarrow E$ with 224 \begin{align} 225 (a_1\ a_2)\cdot e = a_1 \cdot (a_2 \cdot e);\;\;\; a_1, a_2 \in 226 A, e \in E. 227 \end{align} 228 \item \textit{right} B-module is a vector space $F$, that carries a 229 right representation of $A$, that is there exists a bilinear map 230 $\gamma: F \times B \rightarrow F$ with 231 \begin{align} 232 f \cdot (b_1\ b_2)= (f \cdot b_1) \cdot b_2;\;\;\; b_1, b_2 \in B, f \in F 233 \end{align} 234 \item \textit{left} A-module and \textit{right} B-module is a 235 \textit{bimodule}, a vector space $E$ satisfying 236 \begin{align} 237 a \cdot (e \cdot b)= (a \cdot e) \cdot b;\;\;\; a \in A, b \in B, e \in E 238 \end{align} 239 \end{enumerate} 240 \end{mydefinition} 241 An $A$-\textbf{module homomorphism} is linear map $\phi: E\rightarrow F$ which respects the 242 representation of A, e.g.\ for left module. 243 \begin{align} 244 \phi (a\ e) = a \phi (e); \;\;\; a \in A, e \in E. 245 \end{align} 246 We will use the notation 247 \begin{itemize} 248 \item ${}_A E$, for left $A$-module $E$; 249 \item ${}_A E_B$, for right $B$-module $F$; 250 \item ${}_A E_B$, for $A$-$B$-bimodule $E$, simply bimodule. 251 \end{itemize} 252 %------------------- EXERCISE 253 From a simple observation, we see that an arbitrary representation $\pi : A 254 \rightarrow L(H)$ of a $*$-algebra A, turns H into a left module ${}_A H$. If 255 $_A H$ than $(a_1\ a_2) h = a_1 (a_2\ h)$ for $a_1, a_2 \in A$ and $h \in H$. We 256 take the representation of an $a \in A$, $\pi (a)$, and write 257 \begin{align} 258 \big(\pi(a_1)\ \pi(a_2)\big)h = \pi(a_1)\big(\pi(a_2)\ h\big) = 259 \big(T_1\ T_2\big) h = T_1 \big(T_2\ h\big) 260 \end{align} 261 For $T_1, T_2 \in L(H)$, which operate naturally from the left on $h$. 262 263 %------------------- EXERCISE 264 %------------------- EXERCISE 265 266 Furthermore notice that that an $*$-algebra $A$ is a bimodule ${}_A A_A$ with 267 itself, given by the map 268 \begin{align} 269 \gamma: A\times A\times A \rightarrow A, 270 \end{align} 271 which is the inner product of a $*$-algebra. 272 %------------------- EXERCISE 273 274 \subsubsection{Balanced Tensor Product and Hilbert Bimodules} 275 In this chapter we introduce the balanced tensor product later called the 276 Kasparov product. This operation allows us to naturally construct a bimodule 277 of a third algebra in chapter \ref{chap: kasparov product}. 278 \begin{mydefinition} 279 Let $A$ be an algebra, $E$ be a \textit{right} $A$-module and $F$ be a 280 \textit{left} $A$-module. The \textit{balanced tensor product} of $E$ and 281 $F$ forms a $A$-bimodule. 282 \begin{align} 283 E \otimes _A F := E \otimes F / \left\{\sum _i e_i a_i \otimes f_i - 284 e_i \otimes a_i f_i : \;\;\; a_i \in A,\ e_i \in E,\ f_i \in F 285 \right\}. 286 \end{align} 287 \end{mydefinition} 288 The symbol $/$ denotes the quotient space. By careful examination we can say 289 that the operation $\otimes _A$ takes two left/right modules and makes a 290 bimodule. Additionally with the help of the tensor product of the two modules and the quotient 291 space which takes out all the elements from the tensor product that don't 292 preserver the left/right representation and that are duplicates. 293 \begin{mydefinition} 294 Let $A$, $B$ be \textit{matrix algebras}. The \textit{Hilbert bimodule} for 295 $(A, B)$ is given by an $A$-$B$-bimodule $E$ and by an $B$-valued 296 \textit{inner product} $\langle \cdot,\cdot\rangle_E: E\times E \rightarrow 297 B$, which satisfies the following conditions for $e, e_1, e_2 \in 298 E,\ a \in A$ and $b \in B$ 299 \begin{align} 300 \langle e_1,\ a\cdot e_2\rangle_E &= \langle a^*\cdot e_1,\ e_2\rangle_E 301 \;\;\;\; & \text{sesquilinear in $A$},\\ 302 \langle e_1,\ e_2 \cdot b\rangle_E 303 &= \langle e_1,\ e_2\rangle_E b \;\;\;\; & \text{scalar in $B$},\\ 304 \langle e_1,\ e_2\rangle_E &= \langle e_2,\ e_1\rangle^*_E \;\;\;\; & 305 \text{hermitian}, \\ 306 \langle e,\ e\rangle_E &\ge 0 \;\;\;\; & \text{equality 307 holds if and only if $e=0$}. 308 \end{align} 309 We denote $KK_f(A,\ B)$ as the set of all \textit{Hilbert bimodules} of $(A,\ B)$. 310 \end{mydefinition} 311 %-------------- EXERCISE 312 313 And indeed the Hilbert bimodule extension takes a representation $\pi:\ A \ 314 \rightarrow L(H)$ of a matrix algebra $A$ and turns $H$ into a Hilbert bimodule for 315 $(A, \mathbb{C})$, because the representation for a $a \in A$, $\pi(a)=T \in L(H)$ fulfills 316 the conditions of the $\mathbb{C}$-valued inner product for $h_1, h_2 \in H$ 317 \begin{itemize} 318 \item $\langle h_1,\ \pi(a)\ h_2\rangle _\mathbb{C} = \langle h_1,\ T\ h_2\rangle _\mathbb{C} = 319 \langle T^* h_1, h_2\rangle _\mathbb{C}$, $T^*$ given by the adjoint, 320 \item $\langle h_1,\ h_2\ \pi(a)\rangle _\mathbb{C} = \langle h_1,\ h_2\ 321 T\rangle _\mathbb{C} = \langle h_1,\ h_2\rangle _\mathbb{C}$ , $T$ acts 322 from the left, 323 \item $\langle h_1,\ h_2\rangle _\mathbb{C}^* = \langle h_2,\ h_1\rangle _\mathbb{C}$, hermitian because of the 324 $\mathbb{C}$-valued inner product 325 \item $\langle h_1,\ h_2\rangle \ge 0$, $\mathbb{C}$-valued inner product. 326 \end{itemize} 327 %-------------- EXERCISE 328 329 %-------------- EXERCISE 330 Take again the $A-A$ bimodule given by an $*$-algebra $A$. By looking at the 331 following inner product $\langle \cdot,\cdot\rangle_A:A \times A \rightarrow A$ 332 \begin{align} 333 \langle a,\ a\rangle_A = a^*a' \;\;\;\; a,a'\in A. 334 \label{eq:inner-product}, 335 \end{align} 336 it becomes clear that $A \in KK_f(A,\ A)$. 337 Simply checking the conditions in $\langle \cdot, \cdot\rangle _A$ for 338 $a, a_1, a_2 \in~A$ 339 \begin{align} 340 &\langle a_1,\ a\cdot a_2\rangle _A = a^* a\cdot a_2 = 341 (a^*a_1)^*\ a_2 = \langle a^*\ a_1,\ a_2\rangle, \\ 342 &\langle a_1,\ a_2 \cdot a\rangle _A = a^*_1\ (a_2\cdot a) = 343 (a^*a_2)\cdot a = \langle a_1,\ a_2\rangle _A\ a,\\ 344 &\langle a_1,\ a_2\rangle _A^* = (a_1^*\ a_2)^* = a_2^*\ 345 (a_1^*)^* = a_2^*\ a_1 = \langle a_2,\ a_1\rangle. 346 \end{align} 347 348 %-------------- EXERCISE 349 350 %-------------- EXAMPLE 351 %As an for overview consider a $*$ homomorphism between two matrix 352 %algebras $\phi:A\rightarrow B$, we can construct a Hilbert bimodule 353 %$E_{\phi} \in KK_f(A, B)$ in the following way. We let $E_{\phi}$ be $B$ in 354 %as an vector space and an inner product from above in equation 355 %\eqref{eq:inner-product}, with $A$ acting on the left with $\phi$. 356 %\begin{align} 357 % a\cdot b = \phi(a)\ b 358 %\end{align} 359 %for $a\in A, b\in E_{\phi}$. 360 %-------------- EXAMPLE 361 362 \subsubsection{Kasparov Product and Morita Equivalence\label{chap: kasparov 363 product}} 364 \begin{mydefinition} 365 Let $E \in KK_f(A, B)$ and $F \in KK_F(B, D)$ the \textit{Kasparov product} is defined as 366 with the balanced tensor product 367 \begin{align} 368 F \circ E := E \otimes _B F. 369 \end{align} 370 Then $F\circ E \in KK_f(A,D)$ is equipped with a $D$-valued inner product 371 \begin{align} 372 \langle e_1 \otimes f_1,\ e_2 \otimes f_2\rangle _{E\otimes _B F} = 373 \langle f_1,\langle e_1,\ e_2\rangle _E f_2\rangle _F 374 \end{align} 375 \end{mydefinition} 376 377 %-------------- EXERCISE 378 The Kasparov product for $*$-algebra homomorphism $\phi: A \rightarrow B$ and 379 $\psi: B \rightarrow C$ are isomorphisms in the sense that 380 \begin{align} 381 E_{\psi} \circ E_{\phi}\ \equiv\ E_{\phi} \otimes _B E_{\psi}\ 382 \simeq\ 383 E_{\psi \circ \phi} \in KK_f(A,C). 384 \end{align} 385 386 The direct computation for $a \in A$, $b\in B$, and $c\in C$ which is $\psi 387 \circ \phi$ shows us 388 \begin{align} 389 a \cdot b \cdot c = \psi(\phi (a) \cdot b) \cdot c 390 \end{align} 391 An interesting case arises when looking at $E_{\text{id}_A} \simeq A \in 392 KK_f(A,A)$, where $\text{id}_A$ is the identity in $A$. Let $E_{\phi}$ be $A$ 393 with a natural right representation. It follows that $E_{\phi}\simeq A$, where 394 an inner product, acting from the left on $A$ for $\phi$, $a', a\in A$ reads 395 \begin{align} 396 a'\ a = (\phi(a')\ a) \in A, 397 \end{align} 398 which is satisfied only by $\phi = \text{id}_A$. 399 400 \begin{mydefinition} 401 Let $A$, $B$ be \textit{matrix algebras}. They are called \textit{Morita equivalent} if there 402 exists an $E \in KK_f(A, B)$ and an $F \in KK_f(B, A)$ such that 403 \begin{align} 404 E \otimes _B F \simeq A \;\;\; \text{and} \;\;\; F \otimes _A E \simeq 405 B, 406 \end{align} 407 where $\simeq$ denotes the isomorphism between Hilbert bimodules and note 408 that $A$ or $B$ is a bimodule by itself. 409 \end{mydefinition} 410 411 Since we land in the same space as we started, the modules $E$ and $F$ are 412 each others inverse in regards to the Kasparov Product. More clearly, in the 413 definition we have $E \in KK_f(A, B)$. Naturally we start from $A$ and $E 414 \otimes _B F$, which lands in $A$. On the other hand we have $F \in KK_f(B, 415 D)$ and start from $B$, $F \otimes _A E$, which lands in $B$. 416 417 %------------- EXERCISE 418 By definition $E \otimes _B F$ is a $A-D$ bimodule. Since 419 \begin{align} 420 E \otimes _B F = E \otimes F / \bigg\{\sum_i\ e_i\ b_i \otimes f_i - e_i 421 \otimes b_i\ f_i\ \big|\;\; e_i \in E_i,\ b_i \in B,\ f_i \in F\bigg\}, 422 \end{align} 423 the last part takes out all tensor product elements of $E$ and $F$ that don't 424 preserver the left/right representation and that are duplicates. 425 426 Additionally $\langle \cdot,\cdot\rangle _{E\oplus _B F}$ defines a $D$ valued 427 inner product, as $\langle e_1,\ e_2\rangle _E \in B$ and $\langle f_1,\ f_2\rangle _F \in C$ by 428 definition. So for $\langle e_1,\ e_2\rangle _E =b$ we have 429 \begin{align} 430 \langle e_1 \otimes f_1,\ e_2 \otimes f_2\rangle _{E\otimes _B F} = \langle 431 f_1,\ \langle e_1,\ e_2\rangle _E\ f_2\rangle _F = \langle f_1,\ b\ f_2\rangle _F \in C 432 \end{align} 433 %------------- EXERCISE 434 %------------- EXAMPLE 435 Picking up the example of $(A, A)$, the Hilbert bimodule $A$, we can 436 consider an $E \in KK_f(A,B)$ for 437 \begin{align} 438 E \circ A = A\oplus _A E \simeq E. 439 \end{align} 440 We conclude, that $_A A_A$ is the identity element in the Kasparov product (up 441 to isomorphism). 442 %------------- EXAMPLE 443 %------------- EXAMPLE 444 Let us examine another example for $E = \mathbb{C}^n$, which is a 445 $(M_n(\mathbb{C}), \mathbb{C})$ Hilbert bimodule with the standard $\mathbb{C}$ 446 inner product. Further let $F = \mathbb{C}^n$, which is a $(\mathbb{C}, 447 M_n(\mathbb{C}))$ Hilbert bimodule by right matrix multiplication with 448 $M_n(\mathbb{C})$ valued inner product, we can write 449 \begin{align} 450 \langle v_1, v_2\rangle =\bar{v_1}v_2^t \;\; \in M_n(\mathbb{C}). 451 \end{align} 452 If we take the Kasparov product of $E$ and $F$ 453 \begin{align} 454 F\circ E\ &=\ E\otimes _{\mathbb{C}}F\ \;\;\;\;\;\; \simeq \ 455 M_n(\mathbb{C}),\\ 456 E\circ F\ &=\ F\otimes _{M_n(\mathbb{C})}E\ \simeq\ \mathbb{C}, 457 \end{align} 458 we see that $M_n(\mathbb{C})$ and $\mathbb{C}$ are Morita equivalent! 459 %------------- EXAMPLE 460 461 \begin{mylemma} 462 Two matrix algebras are Morita Equivalent if, and only if their their structure spaces 463 are isomorphic as discreet spaces (have the same cardinality / same number 464 of elements). 465 \end{mylemma} 466 \begin{proof} 467 Let $A$, $B$ be \textit{Morita equivalent}. Then there exist the modules 468 $_A E_B$ and $_B F_A$ with 469 \begin{align} 470 E \otimes _B F \simeq A \;\;\; \text{and} \;\;\; F \otimes _A E \simeq 471 B. 472 \end{align} 473 Also consider $[(\pi _B, H)] \in \hat{B}$. We can construct a 474 representation of $A$, which reads 475 \begin{align} 476 \pi _A \rightarrow L(E \otimes _B H)\;\;\; \text{with} \;\;\; \pi _A(a) 477 (e \otimes v) = a e \otimes w 478 \end{align} 479 Vice versa, we have $[(\pi _A, W)] \in \hat{A}$ and we can construct $\pi _B$ 480 as 481 \begin{align} 482 \pi _B: B \rightarrow L(F \otimes _A W) \;\;\; \text{and}\;\;\; \pi 483 _B(b) (f\otimes w) = bf\otimes w. 484 \end{align} 485 Now we need to show that the representation $\pi _A$ is irreducible if and 486 only if $\pi _B$ is irreducible. For $(\pi _B, H)$ to be irreducible, we 487 need $H \neq \emptyset$ and only $\emptyset$ or $H$ to be invariant under 488 the Action of $B$ on $H$. Than $E\otimes _B H$ and $E\otimes _B H \simeq A$ 489 cannot be empty, because $E$ preserves left representation of $A$. 490 491 Lastly we need to check if the association of the class $[\pi _A]$ to $[\pi 492 _B]$ is independent of the choice of representatives $\pi _A$ and $\pi _B$. 493 The important thing is that $[\pi _A] \in \hat{A}$ respectively $[\pi _B] \in 494 \hat{B}$, hence any choice of representation is irreducible, because the 495 structure space denotes all unitary equivalence classes of irreducible 496 representations. 497 498 Note that the statements $E \simeq H$ and $F \simeq W$ are not particularly 499 true, since all infinite dimensional Hilbertspaces are isomorphic. Here 500 we are looking at finite dimensional Hilbertspaces. Another thing to keep 501 in mind, is that for $[\pi _B, H] \in \hat{B}$ and looking at algebraic 502 bimodules, we know that $H$ is a bimodule of $B$, hence $E \otimes _B 503 H\simeq A$, and for $[\pi _A, W]$, which is the same. 504 Finally we can conclude, that these maps are each others inverses, thus 505 $\hat{A} \simeq \hat{B}$. 506 \end{proof} 507 508 \begin{mylemma} 509 The matrix algebra $M_n(\mathbb{C})$ has a unique irreducible 510 representation (up to isomorphism) given by the defining representation on 511 $\mathbb{C}^n$. 512 \end{mylemma} 513 \begin{proof} 514 We know $\mathbb{C}^n$ is a irreducible representation of $A= 515 M_n(\mathbb{C})$. Let $H$ be irreducible and of dimension $k$, then we 516 define a map 517 \begin{align} 518 \phi : A\oplus...\oplus A &\rightarrow H^* \\ 519 (a_1,...,a_k)&\mapsto e^1\circ a_1^t+...+e^k\circ a_k^t, 520 \end{align} 521 where $\{e^1,...,e^k\}$ is the basis of the dual space $H^*$ and 522 $(\circ)$ being the pre-composition of elements in $H^*$ and $A$ acting on $H$. 523 This forms a morphism of $M_n(\mathbb{C})$ modules, provided a matrix $a \in A$ 524 acts on $H^*$ with $v\mapsto v\circ a^t$ ($v\in H^*$). Furthermore this 525 morphism is surjective, thus making the pullback $\phi ^*:H\mapsto (A^k)^*$ 526 injective. Now identify $(A^k)^*$ with $A^k$ as a $A$-module and note that 527 $A=M_n(\mathbb{C}) \simeq \oplus ^n \mathbb{C}^n$ as a n A module. It follows 528 that $H$ is a submodule of $A^k \simeq \oplus ^{nk}\mathbb{C}$. By 529 irreducibly $H \simeq \mathbb{C}$. 530 \end{proof} 531 532 %---------------- EXAMPLE 533 Let us look at an example, two matrix algebras $A$, and $B$. 534 \begin{align} 535 A = \bigoplus ^N_{i=1} M_{n_i}(\mathbb{C}), \;\;\; 536 B = \bigoplus ^M_{j=1} M_{m_j}(\mathbb{C}). 537 \end{align} 538 Let $\hat{A} \simeq \hat{B}$, this implies $N=M$. Further define $E$ with $A$ 539 acting by block-diagonal matrices on the first tensor and B acting in the same 540 manner on the second tensor. Define $F$ vice versa, ultimately reading 541 \begin{align} 542 E:= \bigoplus _{i=1}^N \mathbb{C}^{n_i} \otimes \mathbb{C}^{m_i}, \;\;\; 543 F:= \bigoplus _{i=1}^N \mathbb{C}^{m_i} \otimes \mathbb{C}^{n_i}. 544 \end{align} 545 When we calculate the Kasparov product we get the following 546 \begin{align} 547 E \otimes _B F &\simeq \bigoplus _{i=1}^N (\mathbb{C}^{n_i}\otimes\mathbb{C}^{m_i}) 548 \otimes _{M_{m_i}(\mathbb{C})} (\mathbb{C}^{m_i}\otimes\mathbb{C}^{n_i}) \\ 549 &\simeq \bigoplus _{i=1}^N \mathbb{C}^{n_i}\otimes 550 \left(\mathbb{C}^{m_i}\otimes _{M_{m_i}(\mathbb{C})}\mathbb{C}^{m_i}\right) 551 \oplus \mathbb{C}^{n_i} \\ 552 &\simeq \bigoplus _{i=1}^N 553 \mathbb{C}^{m_i}\otimes\mathbb{C}^{n_i} \simeq A. 554 \end{align} 555 On the other hand we get 556 \begin{align} 557 F \otimes _A E \simeq B. 558 \end{align} 559 %---------------- EXAMPLE 560 561 To summarize, there is a duality between finite spaces and Morita equivalence 562 classes of matrix algebras. Furthermore by replacing $*$-homomorphism $A\rightarrow B$ 563 with Hilbert bimodules $(A,B)$ we introduce a richer structure of morphism 564 between matrix algebras.