ncg

bachelorthesis in physics
git clone git://popovic.xyz/ncg.git
Log | Files | Refs

1_basics.tex (26604B)


      1 \subsection{Noncommutative Geometric Spaces\label{sec:1}}
      2 \subsubsection{$*$-Algebra}
      3 To grasp the idea of encoding geometrical data into a spectral triple we
      4 introduce the first ingredient of a spectral triple, an unital $*$ algebra.
      5 \begin{mydefinition}
      6     A \textit{vector space} $A$ over $\mathbb{C}$ is called a
      7     \textit{complex, unital algebra} if for all $a,b \in A$:
      8             \begin{align}
      9             A \times A \rightarrow A\\
     10             (a,\ b)\ &\mapsto \ a\cdot b,
     11             \end{align}
     12     with an identity element:
     13             \begin{align}
     14             1a = a1 =a.
     15             \end{align}
     16     Extending the definition, a $*$-algebra is an algebra $A$ with a \textit{conjugate linear map (involution)} $*:A\ \rightarrow  A$,
     17     $\forall a, b \in A$ satisfying
     18     \begin{align}
     19         (a\ b)^* &= b^*a^*,\\
     20         (a^*)^* &= a.
     21     \end{align}
     22 \end{mydefinition}
     23 In the following all unital algebras are referred to as algebras.
     24 
     25 \subsubsection{Finite Discrete Space}
     26 Let us consider an example, a $*$-algebra of continuous functions $C(X)$
     27 on a discrete topological space $X$ with $N$ points. Functions of a
     28 continuous $*$-algebra $C(X)$ assign values to $\mathbb{C}$ and for $f,\ g \in
     29 C(X)$, $\lambda \in \mathbb{C}$ and $x \in X$ they provide the following structure:
     30 \begin{itemize}
     31     \item \textit{pointwise linear}
     32         \begin{align}
     33             (f + g)(x) &= f(x) + g(x),\\
     34             (\lambda\ f)(x) &= \lambda (f(x)),
     35         \end{align}
     36     \item \textit{pointwise multiplication}
     37         \begin{align}
     38         f\ g\ (x) = f(x)g(x),
     39         \end{align}
     40     \item \textit{pointwise involution}
     41         \begin{align}
     42         f^*(x) = \overline{f(x)}.
     43         \end{align}
     44 \end{itemize}
     45 The $*$-algebra $C(X)$ is \textit{isomorphic} to a $*$-algebra $\mathbb{C}^N$
     46 with involution ($N$ number of points in $X$), we write $C(X) \simeq
     47 \mathbb{C}^N$.  Isomorphisms are bijective maps that preserve structure and
     48 don't lose physical information.  A function $f:X\ \rightarrow\ \mathbb{C}$
     49 can be represented with $N \times N$ diagonal matrices, where each diagonal
     50 value represents the function value at the corresponding $i$-th point for $i
     51 = 1,...,N$. Matrix multiplication and hermitian conjugation of
     52 matrices we have a preserving structure.
     53 
     54 Moreover we can \textit{map} between finite discrete spaces $X_1$ and $X_2$ with a
     55 function
     56 \begin{align}
     57     \phi:\ X_1 \rightarrow\ X_2.
     58 \end{align}
     59 For every such map there exists a corresponding map
     60 \begin{align}
     61     \phi ^*:C(X_2)\ \rightarrow C(X_1),
     62 \end{align}
     63 which `pulls back' values even if $\phi$ is not bijective.
     64 Note that the pullback does not map points back, but maps functions on an $*$-algebra $C(X)$.
     65 The pullback, in literature often called a $*$-homomorphism or a $*$-algebra map under
     66 pointwise product has the following properties
     67 \begin{align}
     68     \phi ^*(f\ g) &= \phi ^*(f)\ \phi ^*(g),\\
     69     \phi ^*(\overline{f}) &= \overline{\phi ^*(f)},\\
     70     \phi ^*(\lambda\ f + g) &= \lambda\ \phi ^*(f) + \phi ^*(g).
     71 \end{align}
     72 %------------ Exercise
     73     The map $\phi :X_1\ \rightarrow \ X_2$ is an injective (surjective) map,
     74     if only and if the corresponding pullback $\phi ^* :C(X_2)\ \rightarrow \
     75     C(X_1)$ is surjective (injective). To clarify let us say that $X_1$ has $n$ points and
     76     $X_2$ with $m$ points. Then there are three different cases, first $n=m$ and
     77     obviously $\phi$ is bijective and $\phi ^*$ too. Then $n >  m$, in this case
     78     $\phi$ assigns $n$ points to $m$ points when $n >  m$, which is by definition
     79     surjective. On the other hand $\phi ^*$ assigns $m$ points to $n$ points when
     80     $n >  m$, which is by definition injective. Lastly $n < m $, which is
     81     completely analogous to the case $n > m$.
     82 %------------ Exercise
     83 
     84 \begin{mydefinition}
     85     A \textit{(complex) matrix algebra} A is a direct sum, for $n_i, N \in
     86     \mathbb{N}$
     87     \begin{align}
     88         A = \bigoplus _{i=1}^{N} M_{n_i}(\mathbb{C}).
     89     \end{align}
     90     The involution is the hermitian conjugate. A $*$ algebra with involution is referred to as
     91     a matrix algebra
     92 \end{mydefinition}
     93 
     94 To summarize, from a topological discrete space $X$, we can construct a
     95 $*$-algebra $C(X)$ which is isomorphic to a matrix algebra $A$. Then the
     96 question instantly arises, if we can construct $X$ given $A$? For a matrix
     97 algebra $A$, which in most cases is not commutative, the answer is generally
     98 no. Hence there are two options. We can restrict ourselves to commutative
     99 matrix algebras, which are the vast minority and not physically interesting.
    100 Or we can allow more morphisms (isomorphisms) between matrix algebras.
    101 
    102 \subsubsection{Finite Inner Product Spaces and Representations}
    103 Until now we have looked at finite topological discrete spaces, moreover we can consider a
    104 finite dimensional inner product space $H$ (finite Hilbertspaces), with inner product
    105 $(\cdot,\cdot)\rightarrow \mathbb{C}$. We denote $L(H)$ as the $*$-algebra of operators on $H$
    106 equipped with a product given by composition and involution of the adjoint, $T \mapsto T^*$.
    107 Then $L(H)$ is a \textit{normed vector space} with
    108 \begin{align}
    109     \|T\|^2 &= \sup_{h \in H}\big\{(T\ h,\ T\ h): (h,\ h) \leq 1\big|\ T
    110     \in L(H)\big \},\\
    111     \|T\| &= \sup\big\{\sqrt{\lambda}:\; \lambda \text{ eigenvalue of } T\big\}.
    112 \end{align}
    113 The Hilbertspace allows us to define representations of $*$-algebras.
    114 \begin{mydefinition}
    115     The \textit{representation} of a finite dimensional $*$-algebra $A$ is a
    116     pair $(H, \pi)$, where $H$ is a finite dimensional inner product space
    117     and $\pi$ is a $*$-\textit{algebra map}
    118     \begin{align}
    119         \pi:A\ \rightarrow \ L(H).
    120     \end{align}
    121     We call the representation $(H, \pi)$ \textit{irreducible} if
    122     \begin{itemize}
    123         \item $H \neq \emptyset$,
    124         \item only $\emptyset$ or $H$ is invariant under the action of $A$ on
    125             $H$.
    126     \end{itemize}
    127 \end{mydefinition}
    128 Here are some examples of reducible and irreducible representations
    129 \begin{itemize}
    130     \item For $A = M_n(\mathbb{C})$ the representation $H=\mathbb{C}^n$, $A$ acts as matrix multiplication\\
    131             $H$ is irreducible.
    132     \item For $A = M_n(\mathbb{C})$ the representation $H=\mathbb{C}^n\oplus \mathbb{C}^n$, with $a \in A$ acting
    133         in block form \\ $\pi: a \mapsto \big(\begin{smallmatrix} a & 0\\ 0 & a \end{smallmatrix}\big)$ is
    134             reducible.
    135 \end{itemize}
    136 Naturally there are also certain equivalences between different
    137 representations.
    138 \begin{mydefinition}
    139 Two representations of a $*$-algebra $A$, $(H_1, \pi _1)$ and
    140 $(H_2, \pi _2)$  are called \textit{unitary equivalent} if there exists a map
    141 $U: H_1 \rightarrow H_2$ such that.
    142     \begin{align}
    143         \pi _1(a) = U^* \pi _2(a) U
    144     \end{align}
    145 \end{mydefinition}
    146 
    147 Furthermore we define a mathematical structure called the structure space,
    148 which will become important later when speaking of the duality between a
    149 spectral triple and a geometrical space.
    150 \begin{mydefinition}
    151     Let $A$ be a $*$-algebra then, $\hat{A}$ is called the structure space of all \textit{unitary equivalence classes
    152     of irreducible representations of A}.
    153 \end{mydefinition}
    154 %------------- EXERCISE
    155     Given a representation $(H, \pi)$ of a $*$-algebra $A$, the \textbf{commutant} $\pi (A)'$ of $\pi (A)$ is defined as a set
    156     of operators in $L(H)$ that commute with all $\pi (a)$
    157     \begin{align}
    158         \pi (A)' = \big\{T \in L(H):\ \pi(a)\ T = T\ \pi(a) \;\; \forall a\in
    159         A\big\}
    160     \end{align}
    161     The commutant $\pi (A)'$ is also a $*$-algebra, since it has unital,
    162     associative and involutive properties.  The unitary property is given by
    163     the unital operator of the $*$-algebra of operators $L(H)$, which exists
    164     by definition because $H$ is a inner product space. Associativity is
    165     given by the $*$-algebra of $L(H)$, where $L(H) \times L(H)~\mapsto
    166     L(H)$, which is associative by definition. The involutive property is
    167     also given by the $*$-algebra $L(H)$ with a map $*: L(H) \mapsto L(H)$
    168     only for a $T \in H$ that commutes with $\pi (a)$.
    169 %------------- EXERCISE
    170 
    171 %------------- EXERCISE
    172     For a unital algebra $*$-algebra $A$, the matrices $M_n(A)$ with entries
    173     in $A$ form a unital $*$-algebra, because the unitary operation in
    174     $M_n(A)$ is given by the identity Matrix, which exists in every
    175     entry in $M_n(A)$ and behaves like in $A$. Associativity is given by
    176     matrix multiplication. Lastly, involution is given by the conjugate
    177     transpose.
    178 
    179     Consider a representation $\pi :A\ \rightarrow \ L(H)$ of a $*$-algebra
    180     $A$ and set $H^n = H \oplus ... \oplus H$, $n$ times. Then we have the following
    181     representation $\tilde{\pi}:M_n(A) \rightarrow L(H^n)$ for the Matrix
    182     algebra with $\tilde{\pi}((a_{ij})) = (\tilde{\pi}(a_{ij})) \in M_n(A)$,
    183     since a direct isomorphisms of $A \simeq M_n(A)$ and $H \simeq H^n$
    184     exists. Meaning $\tilde{\pi}$ is a valid reducible representation.
    185 
    186     By looking at $\tilde{\pi}:M_n(A) \rightarrow L(H^n)$ a $*$ algebra
    187     representation of $M_n(A)$. We see that $\pi: A \rightarrow L(H^n)$ is a representation of $A$.
    188     The fact that $\tilde{\pi}$ and $\pi$ are unitary equivalent, there is
    189     a map $U: H^n \rightarrow H^n$ given by $U=\mathbbm{1}_n$, thus
    190     \begin{align}
    191         \pi (a) &= \mathbbm{1}_n^*\ \tilde{\pi}((a_{ij})), \\
    192         \mathbbm{1}_n &= \tilde{\pi}((a_{ij})) = \pi (a_{ij})
    193     \Rightarrow a_{ij} = a\ \mathbbm{1}_n.
    194     \end{align}
    195 %------------- EXERCISE
    196 
    197 
    198 With help of the structure space $\hat{A}$, a commutative matrix algebra can be used to reconstruct a discrete space.
    199 Since $A \simeq \mathbb{C}^N$ all irreducible representation are of the form
    200 \begin{align}
    201    \pi _i:(\lambda_1,...,\lambda_N)\in \mathbb{C}^N \mapsto \lambda_i \in
    202    \mathbb{C}
    203 \end{align}
    204 for $i = 1,...,N$, and thus $\hat{A} \simeq \{1,...,N\}$.
    205 We can conclude that there is a duality between discrete spaces and
    206 commutative matrix algebras. This duality is called the \textit{finite
    207 dimensional Gelfand duality}
    208 
    209 Our aim is to make a further generalization by constructing a duality between
    210 finite dimensional spaces and \textit{equivalence classes} of matrix
    211 algebras that preserves general non-commutativity of matrices. Equivalence
    212 classes are described by a concept of isomorphisms between matrix
    213 algebras called \textit{Morita Equivalence}.
    214 
    215 \subsubsection{Algebraic Modules}
    216 An important part of the Morita Equivalence are algebraic modules, later
    217 extended by Hilbert bimodules.
    218 \begin{mydefinition}
    219     Let $A$, $B$ be algebras (need not be matrix algebras)
    220     \begin{enumerate}
    221         \item \textit{left} A-module is a vector space $E$, that carries a left
    222             representation of $A$, that is $\exists$ a bilinear map $\gamma: A
    223             \times E \rightarrow E$ with
    224             \begin{align}
    225                 (a_1\ a_2)\cdot e = a_1 \cdot (a_2 \cdot e);\;\;\; a_1, a_2 \in
    226                 A, e \in E.
    227             \end{align}
    228         \item \textit{right} B-module is a vector space $F$, that carries a
    229             right representation of $A$, that is there exists a bilinear map
    230             $\gamma: F \times B \rightarrow F$ with
    231             \begin{align}
    232                 f \cdot (b_1\ b_2)= (f \cdot b_1) \cdot b_2;\;\;\; b_1, b_2 \in B, f \in F
    233             \end{align}
    234         \item \textit{left} A-module and \textit{right} B-module is a
    235             \textit{bimodule}, a vector space $E$ satisfying
    236             \begin{align}
    237                 a \cdot (e \cdot b)= (a \cdot e) \cdot b;\;\;\;  a \in A, b \in B, e \in E
    238             \end{align}
    239     \end{enumerate}
    240 \end{mydefinition}
    241 An $A$-\textbf{module homomorphism} is linear map $\phi: E\rightarrow F$ which respects the
    242 representation of A, e.g.\ for left module.
    243 \begin{align}
    244     \phi (a\ e) = a \phi (e); \;\;\; a \in A, e \in E.
    245 \end{align}
    246 We will use the notation
    247 \begin{itemize}
    248     \item ${}_A E$, for left $A$-module $E$;
    249     \item ${}_A E_B$, for right $B$-module $F$;
    250     \item ${}_A E_B$, for $A$-$B$-bimodule $E$, simply bimodule.
    251 \end{itemize}
    252 %------------------- EXERCISE
    253 From a simple observation, we see that an arbitrary representation $\pi : A
    254 \rightarrow L(H)$ of a $*$-algebra A, turns H into a left module ${}_A H$.  If
    255 $_A H$ than $(a_1\ a_2) h = a_1 (a_2\ h)$ for $a_1, a_2 \in A$ and $h \in H$. We
    256 take the representation of an $a \in A$, $\pi (a)$, and write
    257 \begin{align}
    258     \big(\pi(a_1)\ \pi(a_2)\big)h = \pi(a_1)\big(\pi(a_2)\ h\big) =
    259     \big(T_1\ T_2\big) h = T_1 \big(T_2\ h\big)
    260 \end{align}
    261 For $T_1, T_2 \in L(H)$, which operate naturally from the left on $h$.
    262 
    263 %------------------- EXERCISE
    264 %------------------- EXERCISE
    265 
    266 Furthermore notice that that an $*$-algebra $A$ is a bimodule ${}_A A_A$ with
    267 itself, given by the map
    268 \begin{align}
    269     \gamma: A\times A\times A \rightarrow A,
    270 \end{align}
    271 which is the inner product of a $*$-algebra.
    272 %------------------- EXERCISE
    273 
    274 \subsubsection{Balanced Tensor Product and Hilbert Bimodules}
    275 In this chapter we introduce the balanced tensor product later called the
    276 Kasparov product. This operation allows us to naturally construct a bimodule
    277 of a third algebra in chapter \ref{chap: kasparov product}.
    278 \begin{mydefinition}
    279     Let $A$ be an algebra, $E$ be a \textit{right} $A$-module and $F$ be a
    280     \textit{left} $A$-module.  The \textit{balanced tensor product} of $E$ and
    281     $F$ forms a $A$-bimodule.
    282     \begin{align}
    283         E \otimes _A F := E \otimes F / \left\{\sum _i e_i a_i \otimes f_i -
    284         e_i \otimes a_i f_i : \;\;\; a_i \in A,\ e_i \in E,\ f_i \in F
    285     \right\}.
    286     \end{align}
    287 \end{mydefinition}
    288 The symbol $/$ denotes the quotient space. By careful examination we can say
    289 that the operation $\otimes _A$ takes two left/right modules and makes a
    290 bimodule. Additionally with the help of the tensor product of the two modules and the quotient
    291 space which takes out all the elements from the tensor product that don't
    292 preserver the left/right representation and that are duplicates.
    293 \begin{mydefinition}
    294     Let $A$, $B$ be \textit{matrix algebras}. The \textit{Hilbert bimodule} for
    295     $(A, B)$ is given by an $A$-$B$-bimodule $E$ and by an $B$-valued
    296     \textit{inner product} $\langle \cdot,\cdot\rangle_E: E\times E \rightarrow
    297     B$, which satisfies the following conditions for $e, e_1, e_2 \in
    298     E,\ a \in A$ and $b \in B$
    299 \begin{align}
    300     \langle e_1,\ a\cdot e_2\rangle_E &= \langle a^*\cdot e_1,\ e_2\rangle_E
    301     \;\;\;\; & \text{sesquilinear in $A$},\\
    302     \langle e_1,\ e_2 \cdot b\rangle_E
    303              &= \langle e_1,\ e_2\rangle_E b \;\;\;\; & \text{scalar in $B$},\\
    304     \langle e_1,\ e_2\rangle_E &= \langle e_2,\ e_1\rangle^*_E \;\;\;\; &
    305     \text{hermitian}, \\
    306     \langle e,\ e\rangle_E &\ge 0 \;\;\;\; & \text{equality
    307     holds if and only if $e=0$}.
    308 \end{align}
    309 We denote $KK_f(A,\ B)$ as the set of all \textit{Hilbert bimodules} of $(A,\ B)$.
    310 \end{mydefinition}
    311 %-------------- EXERCISE
    312 
    313 And indeed the Hilbert bimodule extension takes a representation $\pi:\ A \
    314 \rightarrow L(H)$ of a matrix algebra $A$ and turns $H$ into a Hilbert bimodule for
    315 $(A, \mathbb{C})$, because the representation for a $a \in A$, $\pi(a)=T \in L(H)$ fulfills
    316 the conditions of the $\mathbb{C}$-valued inner product for $h_1, h_2 \in H$
    317 \begin{itemize}
    318     \item $\langle h_1,\ \pi(a)\ h_2\rangle _\mathbb{C} = \langle h_1,\ T\ h_2\rangle _\mathbb{C} =
    319         \langle T^* h_1, h_2\rangle _\mathbb{C}$, $T^*$ given by the adjoint,
    320     \item $\langle h_1,\ h_2\ \pi(a)\rangle _\mathbb{C} = \langle h_1,\ h_2\
    321         T\rangle _\mathbb{C} = \langle h_1,\ h_2\rangle _\mathbb{C}$ , $T$ acts
    322         from the left,
    323     \item $\langle h_1,\ h_2\rangle _\mathbb{C}^* = \langle h_2,\ h_1\rangle _\mathbb{C}$, hermitian because of the
    324         $\mathbb{C}$-valued inner product
    325     \item $\langle h_1,\ h_2\rangle  \ge 0$, $\mathbb{C}$-valued inner product.
    326 \end{itemize}
    327 %-------------- EXERCISE
    328 
    329 %-------------- EXERCISE
    330 Take again the $A-A$ bimodule given by an $*$-algebra $A$. By looking at the
    331 following inner product $\langle \cdot,\cdot\rangle_A:A \times A \rightarrow A$
    332 \begin{align}
    333     \langle a,\ a\rangle_A = a^*a' \;\;\;\; a,a'\in A.
    334     \label{eq:inner-product},
    335 \end{align}
    336 it becomes clear that $A \in KK_f(A,\ A)$.
    337 Simply checking the conditions in $\langle \cdot, \cdot\rangle _A$ for
    338 $a, a_1, a_2 \in~A$
    339 \begin{align}
    340     &\langle a_1,\ a\cdot a_2\rangle _A = a^* a\cdot a_2 =
    341         (a^*a_1)^*\ a_2 = \langle  a^*\ a_1,\ a_2\rangle, \\
    342    &\langle a_1,\ a_2 \cdot a\rangle _A = a^*_1\ (a_2\cdot a) =
    343     (a^*a_2)\cdot a = \langle a_1,\ a_2\rangle _A\ a,\\
    344    &\langle a_1,\ a_2\rangle _A^* = (a_1^*\ a_2)^* = a_2^*\
    345         (a_1^*)^* = a_2^*\ a_1 = \langle a_2,\ a_1\rangle.
    346 \end{align}
    347 
    348 %-------------- EXERCISE
    349 
    350 %-------------- EXAMPLE
    351 %As an for overview consider a $*$ homomorphism between two matrix
    352 %algebras $\phi:A\rightarrow B$, we can construct a Hilbert bimodule
    353 %$E_{\phi} \in KK_f(A, B)$ in the following way. We let $E_{\phi}$ be $B$ in
    354 %as an vector space and an inner product from above in equation
    355 %\eqref{eq:inner-product}, with $A$ acting on the left with $\phi$.
    356 %\begin{align}
    357 %    a\cdot b = \phi(a)\ b
    358 %\end{align}
    359 %for $a\in A, b\in E_{\phi}$.
    360 %-------------- EXAMPLE
    361 
    362 \subsubsection{Kasparov Product and Morita Equivalence\label{chap: kasparov
    363 product}}
    364 \begin{mydefinition}
    365     Let $E \in KK_f(A, B)$ and $F \in KK_F(B, D)$ the \textit{Kasparov product} is defined as
    366     with the balanced tensor product
    367     \begin{align}
    368         F \circ E := E \otimes _B F.
    369     \end{align}
    370     Then $F\circ E \in KK_f(A,D)$ is equipped with a $D$-valued inner product
    371     \begin{align}
    372         \langle e_1 \otimes f_1,\ e_2 \otimes f_2\rangle _{E\otimes _B F} =
    373         \langle f_1,\langle e_1,\ e_2\rangle _E f_2\rangle _F
    374     \end{align}
    375 \end{mydefinition}
    376 
    377 %-------------- EXERCISE
    378 The Kasparov product for $*$-algebra homomorphism $\phi: A \rightarrow B$ and
    379 $\psi: B \rightarrow C$ are isomorphisms in the sense that
    380 \begin{align}
    381                 E_{\psi} \circ E_{\phi}\ \equiv\ E_{\phi} \otimes _B E_{\psi}\
    382                 \simeq\
    383                 E_{\psi \circ \phi} \in KK_f(A,C).
    384 \end{align}
    385 
    386 The direct computation for $a \in A$, $b\in B$, and $c\in C$ which is $\psi
    387 \circ \phi$ shows us
    388 \begin{align}
    389 a \cdot b \cdot c = \psi(\phi (a) \cdot b) \cdot c
    390 \end{align}
    391 An interesting case arises when looking at $E_{\text{id}_A} \simeq A \in
    392 KK_f(A,A)$, where $\text{id}_A$ is the identity in $A$. Let $E_{\phi}$ be $A$
    393 with a natural right representation. It follows that $E_{\phi}\simeq A$, where
    394 an inner product, acting from the left on $A$ for $\phi$, $a', a\in A$ reads
    395 \begin{align}
    396     a'\ a = (\phi(a')\ a) \in A,
    397 \end{align}
    398 which is satisfied only by $\phi = \text{id}_A$.
    399 
    400 \begin{mydefinition}
    401     Let $A$, $B$ be \textit{matrix algebras}. They are called \textit{Morita equivalent} if there
    402     exists an $E \in KK_f(A, B)$ and an $F \in KK_f(B, A)$ such that
    403     \begin{align}
    404         E \otimes _B F \simeq A \;\;\; \text{and} \;\;\; F \otimes _A E \simeq
    405         B,
    406     \end{align}
    407     where $\simeq$ denotes the isomorphism between Hilbert bimodules and note
    408     that $A$ or $B$ is a bimodule by itself.
    409 \end{mydefinition}
    410 
    411 Since we land in the same space as we started, the modules $E$ and $F$ are
    412 each others inverse in regards to the Kasparov Product. More clearly, in the
    413 definition we have $E \in KK_f(A, B)$. Naturally we start from $A$ and $E
    414 \otimes _B F$, which lands in $A$. On the other hand we have $F \in KK_f(B,
    415 D)$ and start from $B$, $F \otimes _A E$, which lands in $B$.
    416 
    417 %------------- EXERCISE
    418 By definition  $E \otimes _B F$ is a $A-D$ bimodule. Since
    419 \begin{align}
    420     E \otimes _B F = E \otimes F / \bigg\{\sum_i\ e_i\ b_i \otimes f_i - e_i
    421         \otimes b_i\ f_i\ \big|\;\; e_i \in E_i,\ b_i \in B,\ f_i \in F\bigg\},
    422 \end{align}
    423 the last part takes out all tensor product elements of $E$ and $F$ that don't
    424 preserver the left/right representation and that are duplicates.
    425 
    426 Additionally $\langle \cdot,\cdot\rangle _{E\oplus _B F}$ defines a $D$ valued
    427 inner product, as $\langle e_1,\ e_2\rangle _E \in B$ and $\langle f_1,\ f_2\rangle _F \in C$ by
    428 definition. So for $\langle e_1,\ e_2\rangle _E =b$ we have
    429 \begin{align}
    430     \langle e_1 \otimes f_1,\ e_2 \otimes f_2\rangle _{E\otimes _B F} = \langle
    431     f_1,\ \langle e_1,\ e_2\rangle _E\ f_2\rangle _F = \langle f_1,\ b\ f_2\rangle _F \in C
    432 \end{align}
    433 %------------- EXERCISE
    434 %------------- EXAMPLE
    435 Picking up the example of $(A, A)$, the Hilbert bimodule $A$, we can
    436 consider an $E \in KK_f(A,B)$ for
    437 \begin{align}
    438     E \circ A = A\oplus _A E \simeq E.
    439 \end{align}
    440 We conclude, that $_A A_A$ is the identity element in the Kasparov product (up
    441 to isomorphism).
    442 %------------- EXAMPLE
    443 %------------- EXAMPLE
    444 Let us examine another example for $E = \mathbb{C}^n$, which is a
    445 $(M_n(\mathbb{C}), \mathbb{C})$ Hilbert bimodule with the standard $\mathbb{C}$
    446 inner product. Further let $F = \mathbb{C}^n$, which is a $(\mathbb{C},
    447 M_n(\mathbb{C}))$ Hilbert bimodule by right matrix multiplication with
    448 $M_n(\mathbb{C})$ valued inner product, we can write
    449     \begin{align}
    450         \langle v_1, v_2\rangle =\bar{v_1}v_2^t \;\; \in M_n(\mathbb{C}).
    451     \end{align}
    452 If we take the Kasparov product of $E$ and $F$
    453    \begin{align}
    454        F\circ E\ &=\  E\otimes _{\mathbb{C}}F\ \;\;\;\;\;\; \simeq \
    455         M_n(\mathbb{C}),\\
    456         E\circ F\ &=\ F\otimes _{M_n(\mathbb{C})}E\ \simeq\ \mathbb{C},
    457     \end{align}
    458 we see that $M_n(\mathbb{C})$ and $\mathbb{C}$ are Morita equivalent!
    459 %------------- EXAMPLE
    460 
    461 \begin{mylemma}
    462     Two matrix algebras are Morita Equivalent if, and only if their their structure spaces
    463     are isomorphic as discreet spaces (have the same cardinality / same number
    464     of elements).
    465 \end{mylemma}
    466 \begin{proof}
    467     Let $A$, $B$ be \textit{Morita equivalent}. Then there exist the modules
    468     $_A E_B$ and $_B F_A$ with
    469     \begin{align}
    470         E \otimes _B F \simeq A \;\;\; \text{and} \;\;\; F \otimes _A E \simeq
    471         B.
    472     \end{align}
    473     Also consider $[(\pi _B, H)] \in \hat{B}$. We can construct a
    474     representation of $A$, which reads
    475     \begin{align}
    476         \pi _A \rightarrow L(E \otimes _B H)\;\;\; \text{with} \;\;\; \pi _A(a)
    477         (e \otimes v) = a e \otimes w
    478     \end{align}
    479     Vice versa, we have $[(\pi _A, W)] \in \hat{A}$ and we can construct $\pi _B$
    480     as
    481     \begin{align}
    482         \pi _B: B \rightarrow L(F \otimes _A W) \;\;\; \text{and}\;\;\; \pi
    483         _B(b) (f\otimes w) = bf\otimes w.
    484     \end{align}
    485     Now we need to show that the representation $\pi _A$ is irreducible if and
    486     only if $\pi _B$ is irreducible. For $(\pi _B, H)$ to be irreducible, we
    487     need $H \neq \emptyset$ and only $\emptyset$ or $H$ to be invariant under
    488     the Action of $B$ on $H$. Than $E\otimes _B H$ and $E\otimes _B H \simeq A$
    489     cannot be empty, because $E$ preserves left representation of $A$.
    490 
    491     Lastly we need to check if the association of the class $[\pi _A]$ to $[\pi
    492     _B]$ is independent of the choice of representatives $\pi _A$ and $\pi _B$.
    493     The important thing is that $[\pi _A] \in \hat{A}$ respectively $[\pi _B] \in
    494     \hat{B}$, hence any choice of representation is irreducible, because the
    495     structure space denotes all unitary equivalence classes of irreducible
    496     representations.
    497 
    498     Note that the statements $E \simeq H$ and $F \simeq W$ are not particularly
    499     true, since all infinite dimensional Hilbertspaces are isomorphic.  Here
    500     we are looking at finite dimensional Hilbertspaces. Another thing to keep
    501     in mind, is that for $[\pi _B, H] \in \hat{B}$ and looking at algebraic
    502     bimodules, we know that $H$ is a bimodule of $B$, hence $E \otimes _B
    503     H\simeq A$, and for $[\pi _A, W]$, which is the same.
    504     Finally we can conclude, that these maps are each others inverses, thus
    505     $\hat{A} \simeq \hat{B}$.
    506 \end{proof}
    507 
    508 \begin{mylemma}
    509     The matrix algebra $M_n(\mathbb{C})$ has a unique irreducible
    510     representation (up to isomorphism) given by the defining representation on
    511     $\mathbb{C}^n$.
    512 \end{mylemma}
    513 \begin{proof}
    514     We know $\mathbb{C}^n$ is a irreducible representation of $A=
    515     M_n(\mathbb{C})$. Let $H$ be irreducible and of dimension $k$, then we
    516     define a map
    517     \begin{align}
    518         \phi : A\oplus...\oplus A &\rightarrow H^* \\
    519     (a_1,...,a_k)&\mapsto e^1\circ a_1^t+...+e^k\circ a_k^t,
    520     \end{align}
    521 where $\{e^1,...,e^k\}$ is the basis of the dual space $H^*$ and
    522 $(\circ)$ being the pre-composition of elements in $H^*$ and $A$ acting on $H$.
    523 This forms a morphism of $M_n(\mathbb{C})$ modules, provided a matrix $a \in A$
    524 acts on $H^*$ with $v\mapsto v\circ a^t$ ($v\in H^*$).  Furthermore this
    525 morphism is surjective, thus making the pullback $\phi ^*:H\mapsto (A^k)^*$
    526 injective.  Now identify $(A^k)^*$ with $A^k$ as a $A$-module and note that
    527 $A=M_n(\mathbb{C}) \simeq \oplus ^n \mathbb{C}^n$ as a n A module.  It follows
    528 that $H$ is a submodule of $A^k \simeq \oplus ^{nk}\mathbb{C}$. By
    529 irreducibly $H \simeq \mathbb{C}$.
    530 \end{proof}
    531 
    532 %---------------- EXAMPLE
    533 Let us look at an example, two matrix algebras $A$, and $B$.
    534 \begin{align}
    535     A = \bigoplus ^N_{i=1} M_{n_i}(\mathbb{C}), \;\;\;
    536     B = \bigoplus ^M_{j=1} M_{m_j}(\mathbb{C}).
    537 \end{align}
    538 Let $\hat{A} \simeq \hat{B}$, this implies $N=M$. Further define $E$ with $A$
    539 acting by block-diagonal matrices on the first tensor and B acting in the same
    540 manner on the second tensor. Define $F$ vice versa, ultimately reading
    541 \begin{align}
    542     E:= \bigoplus _{i=1}^N \mathbb{C}^{n_i} \otimes \mathbb{C}^{m_i}, \;\;\;
    543     F:= \bigoplus _{i=1}^N \mathbb{C}^{m_i} \otimes \mathbb{C}^{n_i}.
    544 \end{align}
    545 When we calculate the Kasparov product we get the following
    546 \begin{align}
    547     E \otimes _B F &\simeq \bigoplus _{i=1}^N (\mathbb{C}^{n_i}\otimes\mathbb{C}^{m_i})
    548         \otimes _{M_{m_i}(\mathbb{C})} (\mathbb{C}^{m_i}\otimes\mathbb{C}^{n_i}) \\
    549                    &\simeq \bigoplus _{i=1}^N \mathbb{C}^{n_i}\otimes
    550                    \left(\mathbb{C}^{m_i}\otimes _{M_{m_i}(\mathbb{C})}\mathbb{C}^{m_i}\right)
    551                     \oplus \mathbb{C}^{n_i} \\
    552                    &\simeq \bigoplus _{i=1}^N
    553                    \mathbb{C}^{m_i}\otimes\mathbb{C}^{n_i} \simeq A.
    554 \end{align}
    555 On the other hand we get
    556 \begin{align}
    557     F \otimes _A E \simeq B.
    558 \end{align}
    559 %---------------- EXAMPLE
    560 
    561 To summarize, there is a duality between finite spaces and Morita equivalence
    562 classes of matrix algebras. Furthermore by replacing $*$-homomorphism $A\rightarrow B$
    563 with Hilbert bimodules $(A,B)$ we introduce a richer structure of morphism
    564 between matrix algebras.