ncg

bachelorthesis in physics
git clone git://popovic.xyz/ncg.git
Log | Files | Refs

2_finitencg.tex (27082B)


      1 \subsection{Finite Spectral Triples\label{sec:2}}
      2 \subsubsection{Metric on Finite Discrete Spaces}
      3 We can describe our finite discrete space $X$ by a structure space $\hat{A}$
      4 of a matrix algebra $A$. To establish a distance between two points in $X$ (as
      5 we would in a metric space) we use an array $\{d_{ij}\}_{i, j \in X}$ of
      6 \textit{real non-negative} entries in $X$ such that
      7 \begin{itemize}
      8     \item $d_{ij} = d_{ji}$             Symmetric
      9     \item $d_{ij} \leq d_{ik} d_{kj}$       Triangle Inequality
     10     \item $d_{ij} = 0$ for $i=j$
     11 \end{itemize}
     12 
     13 In the commutative case, the algebra $A$ is commutative and can describe the
     14 metric on $X$ in terms of algebraic data.
     15 \begin{mytheorem}
     16     Let $d_{ij}$ be a metric on $X$ a finite discrete space with $N$ points, $A = \mathbb{C}^N$
     17     with elements $a = (a(i))_{i=1}^N$ such that $\hat{A} \simeq X$. Then there exists a
     18     representation $\pi$ of $A$ on a finite-dimensional inner product space $H$ and a symmetric
     19     operator $D$ on $H$ such that
     20     \begin{equation}
     21         d_{ij} = \sup_{a\in A}\bigg\{\big|a(i)-a(j)\big| : |\big|\big[D,
     22             \pi(a)]\big|\big| \leq 1\bigg\}
     23     \end{equation}
     24 \end{mytheorem}
     25 
     26 \begin{proof}
     27     We claim that this would follow from the equality:
     28     \begin{equation}
     29         \big|\big|[D, \pi(a)]\big|\big| = \max_{k\neq l}
     30         \bigg\{\frac{1}{d_{kl}}\big|a(k) - a(l)\big|\bigg\}
     31         \label{induction}
     32     \end{equation}
     33     This can be proven with induction. Let us set $N=2$,
     34     $H=\mathbb{C}^2$, $\pi:A\rightarrow L(H)$ and a hermitian matrix $D$.
     35     \begin{align}
     36         \pi(a) =
     37         \begin{pmatrix}
     38             a(1) & 0 \\
     39             0 & a(2)
     40         \end{pmatrix}
     41         \;\;\;\;
     42         D =
     43         \begin{pmatrix}
     44             0 & (d_{12})^{-1} \\
     45             (d_{21})^{-1} & 0
     46         \end{pmatrix}
     47     \end{align}
     48     Then we compute the commutator
     49     \begin{align}
     50         \big|\big|[D, \pi(a)]\big|\big| = (d_{12})^{-1} \big| a(1) - a(2)\big|
     51     \end{align}
     52 
     53     For the case $A=\mathbb{C}^3$, we have $H = (\mathbb{C}^2)^{\oplus 3} = H_2
     54     \oplus H_2^1 \oplus H_2^2$. The representation $\pi (a)$ reads
     55     \begin{align}
     56         \pi((a(1), a(2), a(3)) &=
     57         \begin{pmatrix}
     58             a(1) & 0 \\ 0 & a(2)
     59         \end{pmatrix} \oplus
     60         \begin{pmatrix}
     61             a(1) & 0 \\ 0 & a(3)
     62         \end{pmatrix} \oplus
     63         \begin{pmatrix}
     64             a(2) & 0 \\ 0 & a(2)
     65         \end{pmatrix} \nonumber  \\
     66                                & = \text{diag}\big(a(1), a(2), a(1), a(3), a(2),
     67                                a(3)\big)
     68     \end{align}
     69     And the operator $D$ takes the form
     70     \begin{align}
     71         D &=
     72         \begin{pmatrix}
     73             0 & x_1 \\ x_1 & 0
     74         \end{pmatrix} \oplus
     75         \begin{pmatrix}
     76             0 & x_2 \\ x_2 & 0
     77         \end{pmatrix} \oplus
     78         \begin{pmatrix}
     79             0 & x_3 \\ x_3 & 0
     80         \end{pmatrix} \nonumber \\
     81         &=
     82         \begin{pmatrix}
     83             0   & x_1 & 0 & 0 & 0 & 0 \\
     84             x_1 & 0   & 0 & 0 & 0 & 0 \\
     85             0   & 0   & 0 & x_2 & 0 & 0 \\
     86             0   & 0   & x_2 & 0 & 0 & 0 \\
     87             0   & 0   & 0 & 0 & 0 & x_3 \\
     88             0   & 0   & 0 & 0 & x_3 & 0 \\
     89         \end{pmatrix}.
     90     \end{align}
     91     Then the norm of the commutator would be the largest eigenvalue
     92     \begin{align}\label{eq:skew matrix}
     93         &\big|\big|[D, \pi(a)]\big|\big| = \big|\big|D\pi(a) - \pi(a)D\big|\big|,
     94     \end{align}
     95     where the matrix in the norm from equation \eqref{eq:skew matrix} is a
     96     skew symmetric matrix. Its eigenvalues are $i\lambda_1, i\lambda_2,
     97     i\lambda_3, i\lambda_4$. The $\lambda$'s are on the upper and lower
     98     diagonal. The matrix norm would be the maximum of the norm with the
     99     larges eigenvalues:
    100     \begin{align}
    101         \big|\big|[D, \pi(a)]\big|\big| = \max_{a\in A}\bigg\{&x_1\big|a(2)-a(1)\big|,\nonumber\\ &x_2\big|(a(3)-a(1))\big|,\nonumber\\
    102         &x_3\big|(a(3)-a(2))\big|\bigg\}.
    103     \end{align}
    104     Hence the metric turns out to be
    105     \begin{align}
    106         d =
    107         \begin{pmatrix}
    108             0 & a(1)-a(2) & a(1)-a(3)\\
    109             a(2)-a(1) & 0 & a(2)-a(3)\\
    110             a(3)-a(1) & a(3)-a(2) & 0
    111         \end{pmatrix}.
    112     \end{align}
    113 
    114     Suppose this holds for $N$ with $\pi_N$, $H_N = \mathbb{C}^N$ and $D_N$.
    115     Then it has to hold for $N+1$ with $H_{N+1} = H_{N} \oplus \bigoplus_{i=1}^N
    116     H_N^i$, since the representation reads
    117     \begin{align}
    118         \pi_{N+1}(a(1),\dots,a(N+1)) &= \pi_N(a(1),\dots,a(N))
    119         \oplus
    120         \begin{pmatrix}
    121             a(1) & 0 \\
    122             0   & a(N+1)
    123         \end{pmatrix} \oplus \nonumber\\
    124          &\oplus \cdots \oplus
    125         \begin{pmatrix}
    126             a(N) & 0 \\
    127             0  1 & a(N+1)
    128         \end{pmatrix}.
    129     \end{align}
    130     And the operator $D_{N+1}$ is
    131     \begin{align}
    132         D_{N+1} &= D_N
    133         \oplus
    134         \begin{pmatrix}
    135             0 & (d_{1(N+1)})^{-1} \\
    136             (d_{1(N+1)})^{-1}   & 0
    137         \end{pmatrix}\oplus \nonumber \\
    138                 &\oplus \cdots \oplus
    139         \begin{pmatrix}
    140             0 & (d_{N(N+1)})^{-1} \\
    141             (d_{N(N+1)})^{-1}   & 0
    142         \end{pmatrix}.
    143     \end{align}
    144     From this follows equation \eqref{induction}.
    145     Hence we can continue the proof by setting for fixed $i, j$, $a(k) =
    146     d_{ik}$, which then gives $|a(i) - a(j)| = d_{ij}$ and thereby it follows
    147     that
    148     \begin{align}
    149         \frac{1}{d_{kl}} \big| a(k) - a(l) \big| =  \frac{1}{d_{kl}} \big|
    150         d_{ik} - d_{il} \big| \leq 1.
    151     \end{align}
    152 \end{proof}
    153 
    154 %---------------- EXERCISE
    155 To get a better understanding of the results of the theorem let us compute a
    156 metric on the space of three points given by $d_{ij} = \sup_{a\in A}\{|a(i) -
    157 a(j)|: ||[D, \pi(a)]|| \leq 1\}$ for the set of data $A = \mathbb{C}^3$ acting
    158 in the defining representation $H = \mathbb{C}^3$, and
    159 \begin{align}
    160     D =
    161     \begin{pmatrix}
    162         0 & d^{-1} & 0 \\ d^{-1} & 0 & 0 \\ 0 & 0 & 0
    163     \end{pmatrix},
    164 \end{align}
    165 for some $d \in \mathbb{R}$.
    166 From the data $A=\mathbb{C}^3$, $H=\mathbb{C}^3$ and $D$ we compute the
    167 commutator
    168 \begin{align}
    169     \big|\big|[D, \pi(a)]\big|\big| &= d^{-1}\left|\left|
    170 \begin{pmatrix}
    171     0 & a(2)-a(1) & 0 \\
    172     -(a(2)-a(1)) & 0 & 0 \\
    173     0 & 0 & 0
    174 \end{pmatrix} \right|\right|.
    175 \end{align}
    176 Hence the metric is
    177 \begin{align}
    178 d =
    179     \begin{pmatrix}
    180         0 & a(1)-a(2) & a(1)  \\
    181         a(2)-a(1) & 0 & a(2) \\
    182         -a(1) & -a(2) & 0
    183     \end{pmatrix}.
    184 \end{align}
    185 %---------------- EXERCISE
    186 
    187 The translation of the metric on $X$ into algebraic data assumes commutativity
    188 in $A$, this can be extended to a noncommutative matrix algebra, by the
    189 following metric on a structure space $\hat{A}$ of a matrix algebra
    190 $M_{n_i}(\mathbb{C}$
    191 \begin{equation}
    192     d_{ij} = \sup_{a\in A}\big\{|\text{Tr}(a(i)) - \text{Tr}((a(j))|: ||[D,
    193     a]|| \leq 1\big\}.\label{eq:discretemetric}
    194 \end{equation}
    195 Equation \eqref{eq:discretemetric} is special case of the Connes' distance
    196 formula on a structure space of $A$.
    197 
    198 Finally we have all three ingredients to define a finite spectral triple, an
    199 mathematical structure which encodes finite discrete geometry into algebraic data.
    200 \begin{mydefinition}
    201     A \textit{finite spectral triple} is a tripe $(A, H, D)$, where $A$ is a unital $*$-algebra,
    202     faithfully represented on a finite-dimensional Hilbert space $H$, with a symmetric operator
    203     $D: H \rightarrow H$. (Note that $A$ is automatically a matrix algebra.)
    204 \end{mydefinition}
    205 
    206 \subsubsection{Properties of Matrix Algebras}
    207 \begin{mylemma}
    208     If $A$ is a unital C* algebra acting faithfully on a finite
    209     dimensional Hilbert space, then $A$ is a matrix algebra of the Form:
    210     \begin{align}
    211         A \simeq \bigoplus _{i=1}^N M_{n_i}(\mathbb{C}).
    212     \end{align}
    213     The wording 'acting faithfully on a Hilbertspace' means that the
    214     $*$-representation is injective, or for a $*$-homomorphism that means
    215     one-to-one correspondence
    216 \end{mylemma}
    217 \begin{proof}
    218     Since $A$ acts faithfully on a Hilbert
    219     space, this means that $A$ is a $*$ subalgebra of a matrix algebra $L(H) = M_{\dim
    220     (H)}(\mathbb{C})$. Hence it follows, that $A$ is isomorphic to a matrix
    221     algebra.
    222 \end{proof}
    223 
    224 A simple illustration would be $A = M_n(\mathbb{C})$ for the algebra and
    225 $H=\mathbb{C}^n$ for the Hilbertspace. Since $A$ acts on $H$ with matrix
    226 multiplication and standard inner product and the operator $D$ on $H$ is a
    227 hermitian $n\times n$ matrix.
    228 
    229 \begin{mydefinition}
    230     Given an finite spectral triple $(A, H, D)$, the $A$-bimodule of
    231     Connes' differential one-forms is
    232     \begin{align}\label{eq:connesoneforms}
    233         \Omega _D ^1 (A) := \left\{ \sum _k a_k[D, b_k]: a_k, b_k \in A
    234         \right\}.
    235     \end{align}
    236 \end{mydefinition}
    237 Additionally there is a map $d:A\rightarrow \Omega _D ^1 (A)$, $d = [D,
    238 \cdot]$, where $d$ is a derivation of the $*$-algebra in the sense that
    239 \begin{align}
    240     d(a\ b) = d(a)b + ad(b), \\
    241     d(a^*) = -d(a)^*.
    242 \end{align}
    243 Since we have $d(\cdot) = [D, \cdot]$, we can easily check the above equations
    244 \begin{align}
    245     d(a\ b) &= [D, a\ b] = [D, a]b + a[D,b]\nonumber\\
    246     &= d(a)\ b + a\ d(b).
    247 \end{align}
    248 And
    249 \begin{align}
    250     d(a^*) &= [D, a^*] = Da^* - a^*D \nonumber\\
    251     &=-(D^*\ a - a\ D^*) = -[D^*, a] \nonumber\\
    252     &= -d(a)^*.
    253 \end{align}
    254 Furthermore $\Omega _D^1 (A)$ is an $A$-bimodule, which can be seen by
    255 rewriting the defining equation \eqref{eq:connesoneforms} into
    256 \begin{align}
    257     a\ (a_k[D, b_k])\ b &= a\ a_k(D\ b_k - b_k\ D)\ b = \nonumber\\
    258        &= a\ a_k(D\ b_k\ b - b_k\ D\ b)=\nonumber\\
    259        &= a\ a_k(D\ b_k\ b - b_k\ D\ b - b_k\
    260        b\ D +b_k\ b\ D)=
    261        \nonumber\\
    262        &= a\ a_k(D\ b_k\ b-b_k\ b\ D + b_k\ b\ D - b_k\ D\ b) = \nonumber \\
    263        &= a\ a_k [D, b_k\ b] + a\ a_k\ b [D, b]=\nonumber\\
    264        &= \sum _k\ a_k'\ [D, b_k']
    265 \end{align}
    266 
    267 \begin{mylemma}
    268     Let $\big(A, H, D\big) = \big(M_n(\mathbb{C}), \mathbb{C}^n, D\big)$, where
    269     $D$ is a hermitian $n\times n$ matrix. If $D$ is not a multiple of the
    270     identity then
    271     \begin{align}
    272         \Omega _D ^1 (A)  \simeq  M_n(\mathbb{C}) = A
    273     \end{align}
    274 \end{mylemma}
    275 \begin{proof}
    276     Assume $D = \sum _i \lambda _i e_{ii}$ is diagonal, $\lambda _i \in \mathbb{R}$ and
    277     $\{e_{ij}\}$ is the basis of $M_n(\mathbb{C})$. Then for fixed $i$, $j$ choose $k$
    278     such that $\lambda _k \neq \lambda _j$, hence we have
    279     \begin{align} \label{eq:basis}
    280         \left(\frac{1}{\lambda _k - \lambda _j} e_{ik}\right) [D, e_{kj}] =
    281         e_{ij},
    282     \end{align}
    283     for $e_{ij}\in \Omega _D ^1 (A)$ by the above definition
    284     \eqref{eq:connesoneforms}. Ultimately we have
    285     \begin{align}
    286         \Omega _D ^1
    287     (A) \subset L(\mathbb{C}^n) = H \simeq M_n(\mathbb{C}) = A
    288     \end{align}
    289 \end{proof}
    290 
    291 Consider an example
    292 \begin{align}
    293      \left(A=\mathbb{C}^2, H=\mathbb{C}^2,
    294          D = \begin{pmatrix} 0 & \lambda \\ \bar{\lambda} & 0
    295  \end{pmatrix}\right)
    296 \end{align}
    297 with $\lambda \neq 0$. We can show that $\Omega _D^1(A)
    298 \simeq M_2(\mathbb{C})$. The Hilbert Basis $D$ can be extended in terms of
    299 the basis of $M_2(\mathbb{C})$, plugging this into equation
    300 \eqref{eq:basis} will get us the same cyclic result and thus
    301 $\Omega _D^1(A) \simeq M_2(\mathbb{C})$.
    302 
    303 \subsubsection{Morphisms Between Finite Spectral Triples}
    304 Next we will define an equivalence relation between finite spectral triples, called
    305 spectral unitary equivalence. This equivalence relation is given by the unitarity of the
    306 two matrix algebras themselves, and an additional map $U$ which allows us to associate
    307 one operator to a second operator.
    308 \begin{mydefinition}
    309     Two finite spectral tripes $(A_1, H_1, D_1)$ and $(A_2, H_2, D_2)$ are
    310     called unitary equivalent if $A_1 = A_2$ and there exists a map $U:\ H_1
    311     \rightarrow H_2$ that satisfies
    312     \begin{align}
    313         U\ \pi_1(a)\ U^* &= \pi_2(a)\;\;\;\; \text{with} \;\;\; a \in A_1,\\
    314         U\ D_1\ U^* &= D_2.
    315     \end{align}
    316 \end{mydefinition}
    317 Notice that for any such $U$ we have the relation $(A, H, D) \sim (A, H,\ UDU^*)$.
    318 And hence
    319 \begin{align}
    320     U\ D\ U^* = D + U[D,\ U^*],
    321 \end{align}
    322 are of the form of elements in $\Omega _D^1 (A)$.
    323 
    324 %-------------- EXERCISE
    325 To make it clear that the above definition is an equivalence relation between
    326 finite spectral triples, we need to see if the relation satisfies
    327 reflexivity, symmetry and transitivity. Let us look then at three spectral
    328 triples $(A_1, H_1, D_1)$, $(A_2, H_2, D_2)$ and $(A_3, H_3, D_3)$.
    329 For reflexivity $(A_1, H_1, D_1) \sim (A_1, H_1, D_1)$. So there
    330 exists the unitary map $U: H_1 \rightarrow H_1$, which is the identity
    331 and always exists. On the other hand the symmetry condition requires
    332 \begin{align}
    333     (A_1, H_1, D_1) \sim (A_2, H_2, D_2) \Leftrightarrow
    334     (A_2, H_2, D_2) \sim (A_1, H_1, D_1).
    335 \end{align}
    336 Because $U$ is unitary we can rewrite for the representation for $A_1$
    337 \begin{align}
    338     &U\pi_1(a)U^* = \pi_2(a) \;\;\; | \cdot U^*\boxdot U\nonumber \\
    339     &U^*U\pi_1(a)U^*U = \pi_1(a) = U^*\pi_2(a)U.
    340 \end{align}
    341 The same relation applies for the symmetric operator $D$.
    342 Lastly for transitivity the condition is
    343 \begin{align}
    344     (A_1, H_1, D_1) &\sim (A_2, H_2, D_2) \;\;\; \text{and} \;\;\;
    345     (A_2, H_2, D_2) \sim (A_3, H_3, D_3) \nonumber\\
    346     &\Rightarrow (A_1, H_1, D_1) \sim (A_3, H_3, D_3).
    347 \end{align}
    348 Therefore the two unitary maps $U_{12}:H_1 \rightarrow H_2$ and
    349 $U_{23}: H_2 \rightarrow H_3$ are
    350 \begin{align}
    351     U_{23}\ U_{12}\ \pi_1(a)\ U^*_{12}\ U^*_{23} &= U_{23}\
    352     \pi_2(a)\ U_{23}^*\nonumber \\
    353     &= \pi_3(a), \\
    354     U_{23}\ U_{12}\ D_1\ U^*_{12}\ U^*_{23} &= U_{23}\
    355     D_2 U_{23}^* \nonumber\\
    356     &= D_3.
    357 \end{align}
    358 %-------------- EXERCISE
    359 
    360 In order to extend the equivalence relation we take a look at Morita
    361 equivalence of Matrix Algebras.
    362 \begin{mydefinition}
    363     Let $A$ be an algebra. We say that $I \subset A$, as a vector space, is a
    364     right(left) ideal if $a\ b \in I$ for $a \in A$ and $b\in I$ (or $b\ a \in
    365     I$, $b\in I$, $a\in A$). We call a left-right ideal simply an ideal.
    366 \end{mydefinition}
    367 
    368 Given a Hilbert bimodule $E \in KK_f(B, A)$ and $(A, H, D)$ we construct
    369 a finite spectral triple on $B$, $(B, H', D')$
    370 \begin{equation}
    371     H' = E \otimes _A H.
    372 \end{equation}
    373 We might define $D'$ with
    374 \begin{align}
    375     D'(e \otimes \xi) = e\otimes D\xi
    376 \end{align}
    377 Although this would not satisfy the ideal defining the balanced tensor
    378 product over $A$, which is generated by elements of the form
    379 \begin{align}
    380     e\ a \otimes \xi - e\otimes a\ \xi, \;\;\;\;\; e\in E, a\in A, \xi \in
    381     H.
    382 \end{align}
    383 This inherits the left action on $B$ from $E$ and has a $\mathbb{C}$
    384 valued inner product space. $B$ also satisfies the ideal
    385 \begin{equation}
    386     D'(e\otimes \xi) = e \otimes D\ \xi + \nabla (e)\ \xi, \;\;\;\; e\in
    387     E, a\in A,
    388 \end{equation}
    389 where $\nabla$ is called the \textit{connection on the right A-module E}
    390 associated with the  derivation $d=[D, \cdot]$. The connection needs to
    391 satisfy the \textit{Leibniz Rule}
    392 \begin{equation}
    393     \nabla(ae) = \nabla(e)a + e \otimes [D, a], \;\;\;\;\;  e\in E,\; a\in A.
    394 \end{equation}
    395 Hence $D'$ is well defined on $E \otimes _A H$
    396 \begin{align}
    397     D'(e\ a \otimes \xi - e \otimes a\ \xi) &=  D'(e\ a \otimes \xi) - D'(e
    398     \otimes \xi) \nonumber\\
    399     &= e\ a\otimes D\ \xi + \nabla(a\ e)\ \xi - e \otimes D(a\ \xi) - \nabla
    400     (e)\ a\ \xi \nonumber\\
    401     &= 0.
    402 \end{align}
    403 With the information thus far we can prove the following theorem
    404 \begin{mytheorem}
    405     If $(A, H, D)$ is a finite spectral triple and $E \in KK_f(B, A)$,
    406     then $(V, E\otimes _A H, D')$ is a finite spectral triple, provided that
    407     $\nabla$ satisfies the compatibility condition
    408     \begin{equation}
    409         \langle e_1, \nabla e_2 \rangle _E - \langle \nabla e_1, e_2
    410         \rangle _E = d\langle e_1, e_2 \rangle _E \;\;\;\; e_1, e_2 \in E
    411     \end{equation}
    412 \end{mytheorem}
    413 \begin{proof}
    414     The computation for $E\otimes _A H$ is above . The only thing left is to
    415     show is, that $D'$ is a symmetric operator. We can prove this by
    416     computing for $e_1, e_2 \in E$ and $\xi _1, \xi _2 \in H$ then
    417     \begin{align}
    418         \langle e_1 \otimes \xi _1, D'(e_2 \otimes \xi_2)\rangle _{E\otimes _A H} &=
    419         \langle \xi _1, \langle e_1, \nabla e_2\rangle _E\ \xi _2\rangle
    420         \langle \xi _1 , \langle e_1, e_2\rangle _E\ D\ \xi_2\rangle_H  \nonumber\\
    421         &= \langle \xi _1, \langle \nabla e_1, e_2\rangle _E\ \xi _2\rangle _H + \langle \xi _1, d\langle e_1, e_2\rangle  _E
    422         \ \xi _2\rangle _H \nonumber\\
    423         &+ \langle D\ \xi _1,\langle e_1, e_2\rangle _E\ \xi _2\rangle _H -
    424         \langle \xi _1, [D, \langle e_1, e_2\rangle _E]\ \xi
    425         _2 \rangle _H \nonumber\\
    426         &= \langle D'(e_1 \otimes \xi _1), e_2 \otimes \xi _2\rangle _{E \otimes _A H}
    427     \end{align}
    428 \end{proof}
    429 
    430 Let us examine the scenario where we consider the difference of connections $\nabla$ and
    431 $\nabla'$ on a right $A$-module $E$. Since both connections need to satisfy
    432 the Leibniz rule, the difference also should
    433     \begin{align}
    434         \nabla(ea)-\nabla'(ea)&=\nabla(e) + e\otimes[D, a]\nonumber\\
    435         &-(\nabla'(e)a + e\otimes[D',a])\nonumber\\
    436         &=\bar{\nabla}a + e\otimes(Da-aD-D'a+aD')\nonumber\\
    437         &=\bar{\nabla}a + e\otimes((D-D')a-a(D-D'))\nonumber\\
    438         &=\bar{\nabla}a + e\otimes[D', a]\nonumber\\
    439         &=\bar{\nabla}(ea).
    440     \end{align}
    441 Therefore $\nabla-\nabla'$ is a right $A$-linear map
    442 $E \rightarrow E\otimes _A \Omega _D^1(A)$.
    443 
    444 To get a better grasp of the results let us construct a finite spectral
    445 triple $(A, H', D')$ from $(A, H, D)$. The derivation $d(\cdot):A \rightarrow
    446 A\otimes _A \Omega_D^1(A)=\Omega_D^1(A)$ is a connection on $A$, i.e.\ considered a
    447 right $A$-module
    448 \begin{align}
    449         \nabla(e \cdot a) =  d(a),
    450 \end{align}
    451 hence $A\otimes_A H\simeq H$. Next we can construct the operator $D'$
    452 for the connection $d(\cdot)$
    453 \begin{align}
    454     D'(a\xi) = a(D\xi) + (\nabla a) \xi = D(a\xi).
    455 \end{align}
    456 By using the identity element in the connection relation we conclude
    457 \begin{align}
    458    \nabla (e\cdot a) = \nabla(e) a + 1 \otimes d(a)=d(a) \nabla(e) a,
    459 \end{align}
    460 thus any connection $\nabla: A\rightarrow A\otimes_A \Omega_D^1(A)$ is
    461 given by
    462 \begin{align}\label{eq: unique connection}
    463     \nabla = d + \omega,
    464 \end{align}
    465 where $\omega \in \Omega_D^1(A)$. This becomes clear when looking at the
    466 difference operator $D'$ with the connection on $A$, which is given by
    467 \begin{align}
    468     D'(a\otimes \xi) &= D'(a \xi) = a(D\xi) + (\nabla a)\xi \nonumber \\
    469                      &=a(D\xi) + \nabla(e \cdot a) \xi \nonumber\\
    470                      &= D(a\xi) + \nabla(e) (a\xi),
    471 \end{align}
    472 hence any such connection is of the form as in equation \eqref{eq: unique connection}
    473 
    474 %\subsubsection{Graphing Finite Spectral Triples}
    475 %\begin{mydefinition}
    476 %    A \textit{graph} is a ordered pair $(\Gamma ^{(0)}, \Gamma ^{(1)})$.
    477 %    Where $\Gamma ^{(0)}$ is the set of vertices (nodes) and $\Gamma ^{(1)}$
    478 %    a set of pairs of vertices (edges)
    479 %\end{mydefinition}
    480 %\begin{figure}[h!]
    481 %    \centering
    482 %\begin{tikzpicture}[
    483 %        mass/.style = {draw,circle, minimum size=0.2cm, inner sep=0pt, thick},
    484 %        spring/.style = {decorate,decoration={zigzag, pre length=1cm,post length=1cm,segment length=5pt}},]
    485 %        \node[mass] (m1) at (1,1.5) {};
    486 %        \node[mass] (m2) at (-1,1.5) {};
    487 %        \node[mass] (m3) at (0,0) {};
    488 %
    489 %        \draw (m1) -- (m2);
    490 %        \draw (m1) -- (m3);
    491 %        \draw (m2) -- (m3);
    492 %    \end{tikzpicture}
    493 %    \caption{A simple graph with three vertices and three edges}
    494 %\end{figure}
    495 %%\begin{MyExercise}
    496 %%    \textbf{
    497 %%    Show that any finite-dimensional faithful representation $H$ of a matrix
    498 %%    algebra $A$ is completely reducible. To do that show that the complement
    499 %%    $W^{\perp}$ of an $A$-submodule $W\subset H$ is also an $A$-submodule
    500 %%    of $H$.
    501 %%}\newline
    502 %%
    503 %%    $A\simeq \bigoplus_{i=1}^N M_{n_i}(\mathbb{C})$ is the matrix algebra
    504 %%    then $H$ is a Hilbert $A$-bimodule and $W$ a submodule of $A$.
    505 %%    Because we have $H = W \cup W^{\perp}$, then $W^{\perp}$ is naturally a
    506 %%    $A$-submodule, because elements in $W^{\perp}$ need to satisfy the
    507 %%    bimodularity.
    508 %%\end{MyExercise}
    509 %\begin{mydefinition}
    510 %    A $\Lambda$-decorated graph is given by an ordered pair $(\Gamma,
    511 %    \Lambda)$ of a finite graph $\Gamma$ and a set of positive integers
    512 %    $\Lambda$ with the labeling
    513 %    \begin{itemize}
    514 %        \item of the vetices $v\in \Gamma ^{(0)}$ given by $n(\nu) \in
    515 %            \Lambda$
    516 %        \item of the edges $e = (\nu _1, \nu _2) \in \Gamma ^{(1)}$ by
    517 %            operators
    518 %            \begin{itemize}
    519 %                \item $D_e: \mathbb{C}^{n(\nu _1)} \rightarrow
    520 %                    \mathbb{C}^{n(\nu _2)}$
    521 %                \item and $D_e^*: \mathbb{C}^{n(\nu _2)} \rightarrow
    522 %                    \mathbb{C}^{n(\nu _1)}$ its conjugate traspose
    523 %                    (pullback?)
    524 %            \end{itemize}
    525 %    \end{itemize}
    526 %    such that
    527 %    \begin{equation}
    528 %        n(\Gamma ^{(0)}) = \Lambda
    529 %    \end{equation}
    530 %\end{mydefinition}
    531 %\begin{question}
    532 %    Would then $D_e$ be the pullback?
    533 %\end{question}
    534 %\begin{question}
    535 %    These graphs are important in the next chapter I should look
    536 %    into it more, I don't understand much here, specific
    537 %    how to construct them with the abstraction of a spectral triple...
    538 %\end{question}
    539 %
    540 %The operator $D_e$ between $\textbf{n}_i$ and $\textbf{n}_j$ add up to
    541 %$D_{ij}$
    542 %\begin{align}
    543 %    D_{ij} = \sum\limits_{\substack{e = (\nu _1, \nu _2) \\ n(\nu _1) =
    544 %    \textbf{n}_i \\ n(\nu _2) = \textbf{n}_j}} D_e
    545 %\end{align}
    546 %
    547 %\begin{mytheorem}
    548 %    There is a on to one correspondence between finite spectral triples
    549 %    modulo unitary equivalence and $\Lambda$-decorated graphs, given by
    550 %    associating a finite spectral triples $(A, H, D)$ to  a $\Lambda$ decorated
    551 %    graph $(\Gamma, \Lambda)$ in the following way:
    552 %    \begin{equation}
    553 %        A = \bigoplus _{n\in \Lambda} M_n(\mathbb{C}); \;\;\;
    554 %        H = \bigoplus _{\nu \in \Gamma ^{(0)}} \mathbb{C}^{n(\nu)}; \;\;\;
    555 %        D = \sum _{e \in \Gamma ^{(1)}} D_e + D_e^*
    556 %    \end{equation}
    557 %\end{mytheorem}
    558 %    \begin{figure}[h!]
    559 %    \centering
    560 %    \begin{tikzpicture}[
    561 %        mass/.style = {draw,circle, minimum size=0.3cm, inner sep=0pt, thick},
    562 %    ]
    563 %
    564 %    \node[mass, label={\textbf{n}}] (m1) at (1,0) {};
    565 %    \draw (m1) to [out=330, in=210, looseness=25] node[above] {$D_e$} (m1);
    566 %    \end{tikzpicture}
    567 %    \caption{A $\Lambda$-decorated Graph of $(M_n(\mathbb{C}), \mathbb{C}^n,
    568 %    D = D_e + D_e^*)$}
    569 %\end{figure}
    570 %
    571 %%\begin{MyExercise}
    572 %%    \textbf{
    573 %%    Draw a $\Lambda$ decorated graph corresponding to the spectral triple
    574 %%    $(A=\mathbb{C}^3, H=\mathbb{C}^3, D=\begin{pmatrix}0 & \lambda & 0\\
    575 %%    \bar{\lambda} &0 &0 \\ 0&0&0\end{pmatrix})$
    576 %%}\newline
    577 %%
    578 %%\centering
    579 %%\begin{tikzpicture}[
    580 %%        mass/.style = {draw,circle, minimum size=0.4cm, inner sep=0pt, thick},
    581 %%        spring/.style = {decorate,decoration={zigzag, pre length=1cm,post length=1cm,segment length=5pt}},]
    582 %%        \node[mass] (m1) at (-1,1.5) {\textbf{1}};
    583 %%        \node[mass] (m2) at (1,1.5) {\textbf{2}};
    584 %%        \node[mass] (m3) at (3,1.5) {\textbf{3}};
    585 %%
    586 %%        \draw[style=thick, -] (1.1,1.7) -- (-1.1,1.7);
    587 %%        \draw[style=thick, -] (1.1,1.3) -- (-1.1,1.3);
    588 %%    \end{tikzpicture}
    589 %%    %    \captionof{figure}{Solution}
    590 %%\end{MyExercise}
    591 %%\begin{MyExercise}
    592 %%    \textbf{
    593 %%    Use $\Lambda$-decorated graphs to classify all finite spectral triples
    594 %%    (modulo unitary equivalence) on the matrix algebra
    595 %%    $A=\mathbb{C}\oplus M_2(\mathbb{C})$
    596 %%}\newline
    597 %%
    598 %%    \centering
    599 %%\begin{tikzpicture}[
    600 %%        mass/.style = {draw,circle, minimum size=0.4cm, inner sep=0pt, thick},
    601 %%        spring/.style = {decorate,decoration={zigzag, pre length=1cm,post length=1cm,segment length=5pt}},]
    602 %%        \node[mass] (m1) at (-1,1) {\textbf{1}};
    603 %%        \node[mass] (m2) at (1,1) {\textbf{2}};
    604 %%        \node[mass] (m3) at (3,1) {\textbf{3}};
    605 %%
    606 %%        \node[mass] (m4) at (-1,0) {\textbf{1}};
    607 %%        \node[mass] (m5) at (1,0) {\textbf{2}};
    608 %%        \node[mass] (m6) at (3,0) {\textbf{3}};
    609 %%
    610 %%        \node[mass] (m7) at (-1,-1) {\textbf{1}};
    611 %%        \node[mass] (m8) at (1,-1) {\textbf{2}};
    612 %%        \node[mass] (m9) at (3,-1) {\textbf{3}};
    613 %%
    614 %%        \node[mass] (m10) at (-1,-2) {\textbf{1}};
    615 %%        \node[mass] (m11) at (1,-2) {\textbf{2}};
    616 %%        \node[mass] (m12) at (3,-2) {\textbf{3}};
    617 %%
    618 %%        \draw[style=thick, -] (1.1,0.2) -- (-1.1,0.2);
    619 %%        \draw[style=thick, -] (1.1,-0.2) -- (-1.1,-0.2);
    620 %%        \draw[style=thick, -] (m7) to [out=330, in=210, looseness=10] node[above] {} (m7);
    621 %%        \draw[style=thick, -] (m10) -- (m11) ;
    622 %%
    623 %%\end{tikzpicture}
    624 %%%    \captionof{figure}{Solution $A=M_3(\mathbb{C})$}
    625 %%\end{MyExercise}
    626 %\subsubsection{Graph Construction of Finite Spectral Triples}
    627 %\textbf{Algebra:}We know if a acts on a finite dimensional Hilbert space then
    628 %this C* algebra is isomorphic to a matrix algebra so $A \simeq
    629 %\bigoplus_{i=1}^{N}M_{n_i}(\mathbb{C})$. Where $i\in
    630 %\hat{A}$ represents an equivalence class and runs from $1$ to $N$,
    631 %thus $\hat{A}\simeq\{1,\dots, N\}$. We label equivalence classes by
    632 %$\textbf{n}_i$, then $\hat{A}\simeq\{\textbf{n}_1,\dots,\textbf{n}_N\}$.
    633 %\newline
    634 %
    635 %\textbf{Hilbert Space:} Since every Hilbert space that acts faithfully on a
    636 %C* algebra is completely reducible, it is isomorphic to the composition
    637 %of irreducible representations. $H \simeq \bigoplus_{i=1}^N\mathbb{C}^{n_i}
    638 %\otimes V_i$. Where all $V_i$'s are Vector spaces, their dimension is the
    639 %multiplicity of the representation landed by $\textbf{n}_i$ to $V_i$ itself
    640 %by the multiplicity space.
    641 %\newline
    642 %
    643 %\textbf{Finite Dirac Operator:} $D_{ij}$ is connecting nodes $\textbf{n}_i$
    644 %and $\textbf{n}_j$, with a symmetric map $D_{ij}:\mathbb{C}^{n_i}\otimes V_i
    645 %\rightarrow \mathbb{C}^{n_j}\otimes V_j$
    646 %\newline
    647 %
    648 %To draw a graph, draw nodes in position $\textbf{n}_i\in \hat{A}$.
    649 %Multiple nodes at the same position represent multiplicities in $H$.
    650 %Draw lines between nodes to represent $D_{ij}$.
    651 %
    652 %\begin{figure}[h!]
    653 %    \centering
    654 %\begin{tikzpicture}
    655 %    \node[draw, label=above:{$\textbf{n}_1$},circle, thick] at (-3,0) {};
    656 %    \node[label=above:{$\dots$}] at (-2,0) {};
    657 %    \node[draw, label=above:{$\textbf{n}_i$},circle, thick] at (-1,0) {};
    658 %    \node[label=above:{$\dots$}] at (0,0) {};
    659 %    \node[draw, label=above:{$\textbf{n}_j$},circle, thick] at (1,0) {};
    660 %    \node[draw, label=above:{},circle, thick, inner sep=0cm, minimum
    661 %    size=0.2cm]  at (1,0) {};
    662 %    \node[label=above:{$\dots$}] at (2,0) {};
    663 %    \node[draw, label=above:{$\textbf{n}_N$},circle, thick] at (3,0) {};
    664 %
    665 %        \draw[style=thick, -] (-1,-0.2) -- (1,-0.2);
    666 %        \draw[style=thick, -] (-1,0.2) -- (1,0.2);
    667 %        \path[style=thick, -] (-1,-0.2) edge[bend right=15]
    668 %        node[pos=0.5,below] {} (3,-0.2);
    669 %    \end{tikzpicture}
    670 %    \caption{Example}
    671 %\end{figure}