ncg

bachelorthesis in physics
git clone git://popovic.xyz/ncg.git
Log | Files | Refs

3_realncg.tex (12338B)


      1 \subsection{Finite Real Noncommutative Spaces\label{sec:3}}
      2 \subsubsection{Finite Real Spectral Triples}
      3 In this chapter we supplement the finite spectral triples with a \textit{real
      4 structure}. We additionally require a symmetry condition that that $H$ is an
      5 $A$-$A$-bimodule rather than only a $A$-left module. This ansatz has tight
      6 bounds with physical properties such as charge conjugation, into which we will
      7 dive in deeper in later chapters. In regards to this we will need to set a basis
      8 of definitions to get an overview.
      9 First we introduce a $\mathbb{Z}_2$-grading $\gamma$ with the following
     10 properties
     11 \begin{align}
     12     \gamma ^* &= \gamma, \\
     13     \gamma ^2 &= 1, \\
     14     \gamma D &= - D \gamma,\\
     15     \gamma a &= a \gamma, \;\;\;\; a\in A.
     16 \end{align}
     17 Then we can define a finite real spectral triple.
     18 \begin{mydefinition}
     19     A \textit{finite real spectral triple} is given by a finite spectral
     20     triple $(A, H, D)$ and a anti-unitary operator $J:H\rightarrow H$ called
     21     the \textit{real structure}, such that
     22     \begin{align}
     23         a^\circ := J\ a^*\ J^{-1},
     24     \end{align}
     25     is a right representation of $A$ on $H$, that is $(ab)^\circ = b^\circ
     26     a^\circ$. With two requirements
     27     \begin{align}
     28         &[a, b^\circ] = 0,\\
     29         &[[D, a],\ b^\circ] = 0.
     30     \end{align}
     31     The two properties are called the \textit{commutant property}, they
     32     require that the left action of an element in $A$ and $\Omega _D^1(A)$ commutes with the right
     33     action on $A$.
     34 \end{mydefinition}
     35 \begin{mydefinition}
     36     The $KO$-dimension of a real spectral triple is determined by the sings
     37     $\epsilon, \epsilon ' ,\epsilon '' \in \{-1, 1\}$ appearing in
     38     \begin{align}
     39         J^2 &= \epsilon, \\
     40         J\ D &= \epsilon \ D\ J,\\
     41         J\ \gamma &= \epsilon''\ \gamma\ J.
     42     \end{align}
     43 \end{mydefinition}
     44 \begin{table}[h!]
     45     \centering
     46     \caption{$KO$-dimension $k$ modulo $8$ of a real spectral triple}
     47     \begin{tabular}{ c | c c c c c c c c}
     48         \hline
     49         $k$        & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
     50         \hline
     51      $\epsilon$    & 1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 \\
     52      $\epsilon '$  & 1 & -1 & 1 & 1 & 1 & -1 & 1 & 1 \\
     53      $\epsilon ''$ & 1 &  & -1 &  & 1 &  & -1 &  \\
     54      \hline
     55     \end{tabular}
     56 \end{table}
     57 \noindent
     58 Even thought the KO-dimension of a real spectral triple is important, we will
     59 not be doing in-depth introduction of the KO-dimension, for this we reference
     60 again to \cite{ncgwalter}.
     61 
     62 \begin{mydefinition}
     63 An opposite-algebra $A^\circ$ of a $A$ is defined to be equal to $A$ as a
     64 vector space with the opposite product
     65 \begin{align}
     66     &a\circ b := ba\\
     67     &\Rightarrow a^\circ = Ja^* J^{-1},
     68 \end{align}
     69 which defines the left representation of $A^\circ$ on $H$
     70 \end{mydefinition}
     71 
     72 
     73 %%------------EXAMPLE EXERCISE
     74 %Let us examine an example of a matrix algebra $M_N(\mathbb{C})$ acting on
     75 %$H=M_N(\mathbb{C})$ by left matrix multiplication with the Hilbert Schmidt
     76 %inner product.
     77 %\begin{align}
     78 %    \langle a , b \rangle = \text{Tr}(a^* b).
     79 %\end{align}
     80 %We can define $\gamma (a) = a$ and $J(a) = a^*$ with $a\in H$.  Since $D$
     81 %must be odd with respect to $\gamma$ it vanishes identically.  Furthermore we
     82 %know the multiplicity space is $V_i = \mathbb{C}^{m_i}$, and also we know
     83 %that for $T\in H$ and $a\in A'$ to work we need $a\ T=T\ a$. Thus by laws of
     84 %matrix multiplication we need $A' \simeq \bigoplus _i M_{m_i}(\mathbb{C})$. For
     85 %this to work we naturally need $H = \bigoplus_i \mathbb{C}^{n_i} \otimes
     86 %\mathbb{C}^{m_i}$.  Hence the right action of $M_N(\mathbb{C})$ on $H =
     87 %M_N(\mathbb{C})$ as defined by $a \mapsto a^\circ$ is given by right matrix
     88 %multiplication
     89 %\begin{align}
     90 %    a^\circ \xi = J a^* J^{-1}\xi = Ja^* \xi^* = J\xi a=\xi^* a
     91 %\end{align}
     92 %
     93 %%------------EXAMPLE EXERCISE
     94 
     95 \begin{mydefinition}
     96     We call $\xi \in H$ \textbf{cyclic vector} in $A$ if:
     97     \begin{align}
     98         A\xi := { a\xi:\;\; a\in A} = H
     99     \end{align}
    100     We call $\xi \in H$ \textbf{separating vector} in $A$ if:
    101     \begin{align}
    102         a\xi = 0\;\; \Rightarrow \;\; a=0;\;\;\; a\in A
    103     \end{align}
    104 \end{mydefinition}
    105 %------------------- EXERCISE
    106 Suppose $(A, H, D = 0)$ is a finite spectral triple such that $H$ possesses a
    107 cyclic and separating vector for $A$ and let
    108 \begin{align}
    109     J: H \rightarrow H
    110 \end{align}
    111 be the operator in $S = J \Delta ^{1/2}$ with $\Delta = S^*S$. By composition
    112 $S(a\xi) = a*\xi$ this is literally anti-linearity, then $S(a \xi) = a* \xi$
    113 defines a anti-linear operator. Furthermore the operator $S$ is invertible
    114 because, if a $\xi \in H$ is cyclic then we have
    115 \begin{align}
    116     S(A\xi) = A^*\xi = A\xi = H.
    117 \end{align}
    118 Vice versa the same has to work for $S^{-1}$, otherwise $\xi$ wouldn't exist,
    119 hence
    120 \begin{align}
    121     S^{-1}(A^*\xi) = S^{-1}(H) = H.
    122 \end{align}
    123 Additionally $J$ is anti-unitary because firstly, $S$ is bijective thus
    124 $\Delta ^{1/2}$ and $J$ need to be bijective.  Also have $J = S
    125 \Delta^{-1/2}$ and $\Delta^* = \Delta$, so for a $\xi _1 , \xi _2 \in H$ we
    126 can write
    127 \begin{align}
    128     \langle J \xi _1 , J \xi _2 \rangle  &= \langle  J^*J\xi_1 , \xi_2\rangle ^* =\nonumber\\
    129     &= \langle (\Delta ^{-1/2})^* S^* S \Delta ^{-1/2} \xi_1, \xi_2\rangle ^* =\nonumber \\
    130     &= \langle (\Delta^{-1/2})^* \Delta \Delta^{-1/2} \xi_1, \xi_2\rangle ^* =\nonumber\\
    131     &= \langle \Delta^{-1/2} \Delta^{1/2}\Delta^{1/2} \Delta^{-1/2} \xi_1, \xi_2\rangle ^*
    132     =\nonumber\\
    133     &= \langle \xi _1, \xi_2\rangle ^* = \langle \xi_2 , \xi_1\rangle ,
    134 \end{align}
    135 which concludes the anti-unitarity by definition.
    136 %------------------- EXERCISE
    137 \subsubsection{Morphisms Between Finite Real Spectral Triples}
    138 Like the unitary equivalence relation for finite spectral triples, we can it
    139 extend it to finite real spectral triples.
    140 \begin{mydefinition}
    141     We call two finite real spectral triples $(A_1, H_1 ,D_1 ; J_1 , \gamma_1)$
    142     and $(A_2, H_2, D_2; J_2, \gamma _2)$ unitarily equivalent if $A_1 =
    143     A_2$ and if there exists a unitary operator $U: H_1 \rightarrow H_2$ such
    144     that
    145     \begin{align}
    146         U\ \pi_1(a)\ U^* &= \pi _2(a),\\
    147         U\ D_1\ U^* &= D_2,\\
    148         U \gamma _1\ U^*  &= \gamma _2,\\
    149         U\ J_1\ U^* &= J_2.
    150     \end{align}
    151 \end{mydefinition}
    152 \begin{mydefinition}
    153     Let $E$ be a $B$-$A$ bimodule. The \textit{conjugate Module} $E^\circ$ is
    154     given by the $A$-$B$-bimodule.
    155     \begin{align}
    156         E^\circ = \{\bar{e} : e\in E\},
    157     \end{align}
    158     with
    159     \begin{align}
    160     a \cdot \bar{e} \cdot b = b^*\ \bar{e}\ a^*, \;\;\;\; \forall a\in A, b \in
    161         B.
    162     \end{align}
    163 \end{mydefinition}
    164 We bear in mind that $E^\circ$ is not a Hilbert bimodule for $(A, B)$ because
    165 it doesn't have a natural $B$-valued inner product. But there is a $A$-valued
    166 inner product on the left $A$-module $E^\circ$ with
    167 \begin{align}
    168     \langle \bar{e}_1, \bar{e}_2 \rangle = \langle e_2 , e_1 \rangle,
    169     \;\;\;\; e_1, e_2 \in E.
    170 \end{align}
    171 And linearity in $A$ by the terms
    172 \begin{align}
    173     \langle a\ \bar{e}_1, \bar{e}_2 \rangle = a \langle \bar{e}_1, \bar{e}_2
    174     \rangle, \;\;\;\; \forall a \in A.
    175 \end{align}
    176 
    177 %------------- EXERCISE
    178 It turns out that $E^\circ$ is a Hilbert bimodule
    179 of $(B^{\circ}, A^{\circ})$. A straightforward calculation of the properties of the Hilbert bimodule and its $B^{\circ}$
    180 valued inner product gives the results. For $\bar{e}_1, \bar{e}_2 \in E^{\circ}$ and $a^\circ \in A,
    181 b^\circ \in B$ we write
    182 \begin{align}
    183     \langle\bar{e}_1, a^\circ \bar{e}_2\rangle &= \langle\bar{e}_1, Ja^*J^{-1}
    184     \bar{e}_2\rangle=\nonumber\\
    185     &= \langle\bar{e}_1 , J a^* e_2\rangle \nonumber \\
    186     &= \langle J^{-1} e_1, a^* e_2\rangle \nonumber\\
    187     & = \langle a^* e_1, e_2\rangle= \langle J^{-1}(a^\circ)^* J e_1, e_2\rangle  \nonumber\\
    188     & = \langle J^{-1} (a^\circ)^* \bar{e}_1, e_2\rangle \nonumber\\
    189     & = \langle (a^\circ)^* \bar{e}_1 , \bar{e}_2\rangle.
    190 \end{align}
    191 Next for $\langle\bar{e}_1, \bar{e}_2 b^\circ\rangle = \langle\bar{e}_1,
    192 \bar{e_2}\rangle b^\circ$ we obtain
    193 \begin{align}
    194     \langle\bar{e}_1, \bar{e}_2 b^\circ\rangle  &= \langle\bar{e}_1, \bar{e}_2 Jb^*J^{-1}\rangle
    195     \nonumber\\
    196     &= \langle\bar{e}_1, \bar{e_2}\rangle Jb^*J^{-1} \nonumber \\
    197     &= \langle\bar{e}_1, \bar{e}_2\rangle b^\circ.
    198 \end{align}
    199 Additionally we get
    200 \begin{align}
    201     (\langle\bar{e}_1, \bar{e}_2)\rangle_{E^\circ})^* &= (\langle e_2, e_1\rangle_E)^*\nonumber\\
    202                                           &= \langle e_1, e_2\rangle_E^* \nonumber\\
    203                                           &= \langle\bar{e}_2, \bar{e}_2\rangle_{E^\circ}.
    204 \end{align}
    205 And finally we have
    206 \begin{align}
    207     \langle\bar{e}, \bar{e}\rangle = \langle e, e\rangle \geq 0
    208 \end{align}
    209 %------------- EXERCISE
    210 
    211 Given the results thus far, given a Hilbert bimodule $E$ for $(B, A)$ one can
    212 construct a spectral triple $(B, H', D'; J', \gamma ')$ from $(A, H, D; J,
    213 \gamma)$. For $H'$ we make a $\mathbb{C}$-valued inner product on $H'$ by combining
    214 the $A$ valued inner product on $E$ and $E^\circ$ with the
    215 $\mathbb{C}$-valued inner product on $H$ by defining
    216 \begin{align}
    217     H' := E\otimes _A H \otimes _A E^\circ.
    218 \end{align}
    219 Then the action of $B$ on $H'$ takes the following form
    220 \begin{align}
    221     b(e_2 \otimes \xi \otimes \bar{e}_2 ) = (be_1) \otimes \xi \otimes
    222     \bar{e}_2.
    223 \end{align}
    224 The right action of $B$ on $H'$ defined by action on the right components of
    225 $E^\circ$ is
    226 \begin{align}
    227     J'(e_1 \otimes \xi \otimes \bar{e}_2) = e_2 \otimes J \xi \otimes
    228     \bar{e}_1,
    229 \end{align}
    230 where $b^\circ = J' b^* (J')^{-1}$ and $b^* \in B$ is the action on $H'$.
    231 Hence the connection reads
    232 \begin{align}
    233     &\nabla: E \rightarrow E\otimes _A \Omega _D ^1(A) \\
    234     &\bar{\nabla}:E^\circ \rightarrow \Omega _D^1(A) \otimes _A E^\circ,
    235 \end{align}
    236 which gives the Dirac operator on $H' = E \otimes _A H \otimes _A
    237 E^\circ$ as
    238 \begin{align}
    239     D'(e_1 \otimes \xi \otimes \bar{e}_2) = (\nabla e_1) \xi \otimes
    240     \bar{e_2}+ e_1 \otimes D\xi \otimes \bar{e}_2 + e_1 \otimes
    241     \xi(\bar{\nabla}\bar{e}_2).
    242 \end{align}
    243 And the right action of $\omega \in \Omega _D ^1(A)$ on $\xi \in H$ is
    244 defined by
    245 \begin{align}
    246     \xi \mapsto \epsilon' J \omega ^* J^{-1}\xi.
    247 \end{align}
    248 Finally for the grading one obtains
    249 \begin{align}
    250     \gamma ' = 1 \otimes \gamma \otimes 1.
    251 \end{align}
    252 
    253 Summarizing we can write down the following theorem
    254 \begin{mytheorem}
    255     Suppose $(A, H, D; J, \gamma)$ is a finite spectral triple of
    256     $KO$-dimension $k$, let $\nabla$ be a connection satisfying the
    257     compatibility condition (same as with finite spectral triples).
    258     Then $(B, H',D'; J', \gamma')$ is a finite spectral triple of
    259     $KO$-Dimension $k$. ($H', D', J', \gamma'$)
    260 \end{mytheorem}
    261 
    262 \begin{proof}
    263     The only thing left is to check is, if the $KO$-dimension is preserved.
    264     That is one needs to check if if the $\epsilon$'s are the same.
    265     \begin{align}
    266         &(J')^2 = 1 \otimes J^2 \otimes 1 = \epsilon,\\
    267         &J' \gamma '= \epsilon ''\gamma'J'.
    268     \end{align}
    269     Lastly for $\epsilon '$ one obtains
    270     \begin{align}
    271         J'D'(e_1 \otimes \xi \otimes \bar{e}_2)&=J'\big((\nabla e_1) \xi \otimes
    272         \bar{e_2} + e_1 \otimes D\xi \otimes \bar{e}_2 + e_1 \otimes \xi (\tau
    273         \nabla e_2)\big)\nonumber \\
    274         &= \epsilon' D'\left(e_2 \otimes J\xi \otimes \bar{e}_2\right)\nonumber\\
    275         &= \epsilon' D'J'\left(e_1 \otimes \xi \bar{e}_2\right)
    276     \end{align}
    277 \end{proof}
    278 
    279 Let us take a look at $\nabla : E \Rightarrow E \otimes _A \Omega _d^1 (A)$,
    280 the right connection on $E$ and consider the following anti-linear map
    281 \begin{align}
    282     \tau : E \otimes_A \Omega _D^1 (A) &\rightarrow \Omega _D^1 (A) \otimes_A E^\circ\\
    283             e \otimes \omega &\mapsto -\omega ^* \otimes \bar{e}.
    284 \end{align}
    285 Interestingly the map $\bar{\nabla} : E^\circ \rightarrow \Omega _D^1(A) \otimes E^\circ$
    286 with $\bar{\nabla}(\bar{e}) = \tau \circ \nabla(e)$ is a left connection, that means
    287 show that it satisfied the left Leibniz rule, for one
    288 \begin{align}
    289     \tau \circ \nabla(ae) = \bar{\nabla}(a\bar{e}) = \bar{\nabla}(a^*
    290     \bar{e}).
    291 \end{align}
    292 And for two
    293 \begin{align}
    294     \tau \circ \nabla(ae) &= \tau(\nabla(e)a) + \tau \circ(e \otimes
    295      d(a))\nonumber \\
    296      &=a^*\bar{\nabla}(\bar{e}) - d(a)^* \otimes \bar{e}. \nonumber\\
    297      &= a^*\bar{\nabla}(\bar{e}) + d(a^*) \otimes \bar{e}.
    298 \end{align}
    299