4_heatkernel.tex (13630B)
1 \subsection{Heat Kernel Expansion\label{sec:4}} 2 \subsubsection{The Heat Kernel} 3 The heat kernel $K(t; x, y; D)$ is the fundamental solution to the heat 4 equation 5 \begin{align} 6 (\partial _t + D_x)K(t;x, y;D) =0, 7 \end{align} 8 which depends on the operator $D$ of Laplacian type. 9 10 For a flat manifold $M = \mathbb{R}^n$ and $D = D_0 := -\Delta_\mu\Delta^\mu +m^2$ the 11 Laplacian with a mass term and the initial condition 12 \begin{align} 13 K(0;x,y;D) = \delta(x,y), 14 \end{align} 15 takes the form of the standard fundamental solution 16 \begin{align}\label{eq:standard} 17 K(t;x,y;D_0) = (4\pi t)^{-n/2}\exp\left(-\frac{(x-y)^2}{4t}-tm^2\right). 18 \end{align} 19 20 Let us consider now a more general operator $D$ with a potential term or a 21 gauge field, the heat kernel then reads 22 \begin{align} 23 K(t;x,y;D) = \langle x|e^{-tD}|y\rangle. 24 \end{align} 25 We can expand the heat kernel in $t$, still having a 26 singularity from the equation \eqref{eq:standard} as $t \rightarrow 0$, on 27 obtains 28 \begin{align} 29 K(t;x,y;D) = K(t;x,y;D_0)\left(1 + tb_2(x,y) + t^2b_4(x,y) + \dots 30 \right), 31 \end{align} 32 where $b_k(x,y)$ become regular as $y \rightarrow x$. These coefficients are called the heat 33 kernel coefficients. 34 %%----------------------- KANN WEGGELASSEN WERDEN 35 %\newline 36 %\textbf{KANN WEGELASSEN WERDEN BIS ZUM NÄCHSTEN KAPITEL} 37 %Let's turn our attention to a propagator $D^{-1}(x,y)$ defined through the 38 %heat kernel, with an integral representation 39 %\begin{align} 40 % D^{-1} (x,y) = \int_0^\infty dt K(t;x,y;D). 41 %\end{align} 42 %If we assume the heat kernel vanishes for $t\rightarrow \infty$, we can 43 %integrate formally to get 44 %\begin{align} 45 % D^{-1}(x,y) \simeq 46 % 2(4\pi)^{-n/2}\sum_{j=0}\left(\frac{|x-y|}{2m}\right)^{-\frac{n}{2}+j+1} 47 % K_{-\frac{n}{2}+j+1}(|x-y|m)b_{2j}(x,y), 48 %\end{align} 49 %where $b_0 = 1$ and $K_\nu (z)$ is the Bessel function 50 %\begin{align} 51 % K_\nu(z) = \frac{1}{\pi} \int_0^\pi \cos(\nu\tau-z\sin(\tau))d\tau. 52 %\end{align} 53 %The Bessel function solves the following differential equation 54 %\begin{align} 55 % z^2 \frac{d^2K}{dz^2} + z \frac{dK}{dz} + (z^2 - \nu^2)=0. 56 %\end{align} 57 %By looking at an integral approximation for the propagator we conclude that 58 %the singularities of $D^{-1}$ coincide with the singularities of the heat 59 %kernel coefficients. Thus we can say, that a generating functional in terms of 60 %$\det(D)$ is called the one-loop effective action (quantum field theory) 61 %\begin{align} 62 % W = \frac{1}{2}\ln(\det D). 63 %\end{align} 64 %We have a direct relation with one-loop effective action $W$ and the 65 %heat kernel. Furthermore notice that for each eigenvalue $\lambda >0$ of $D$ 66 %we can write the identity. 67 %\begin{align} 68 % \ln \lambda = -\int_0^\infty \frac{e^{-t\lambda}}{t}dt 69 %\end{align} 70 %This expression is correct up to an infinite constant which does not depend 71 %on the eigenvalue $\lambda$, thus we can ignore it. By substituting 72 %$\ln(\det D) = \text{Tr}(\ln D)$ we can rewrite the one-loop effective action 73 %$W$ into 74 %\begin{align} 75 % W = -\frac{1}{2} \int_0^\infty dt \frac{K(t, D)}{t}, 76 %\end{align} 77 %where 78 %\begin{align} 79 % K(t, D) = \text{Tr}(e^{-tD}) = \int d^n x \sqrt{g}K(t;x,x;D). 80 %\end{align} 81 %The problem now is that the integral of $W$ is divergent at both limits. Yet 82 %the divergences at $t\rightarrow \infty$ are caused by $\lambda \leq 0$ of $D$ 83 %(infrared divergences) and can be ignored. The divergences at $t\rightarrow 0$ 84 %are cutoff at $t=\Lambda^{-2}$, simply written as 85 %\begin{align} 86 % W_\Lambda = -\frac{1}{2} \int_{\Lambda^{-2}}^\infty dt \frac{K(t, D)}{t}. 87 %\end{align} 88 %We can calculate $W_\Lambda$ up to an order of $\lambda ^0$ 89 %\begin{align} 90 % W_\Lambda &= -(4\pi)^{-n/2} \int d^n x\sqrt{g}\bigg( 91 % \sum_{2(j+l)<n}\Lambda^{n-2j-2l}b_{2j}(x,x) \frac{(-m^2)^l l!}{n-2j-2l} +\\ 92 % &+ \sum_{2(j+l) =n }\ln(\Lambda) (-m^2)^l l! b_{2j}(x,x) 93 % \mathcal{O}(\lambda^0) \bigg) 94 %\end{align} 95 %There is an divergence at $b_2(x,x)$ for $k\leq n$. Computing the limit 96 %$\Lambda \rightarrow \infty$ we get 97 %\begin{align} 98 % -\frac{1}{2}(4\pi)^{n/2}m^n\int d^n x\sqrt{g} \sum_{2j>n} 99 % \frac{b_{2j}(x,x)}{m^{2j}}\Gamma(2j-n), 100 %\end{align} 101 %where $\Gamma$ stands for the gamma function. 102 %%----------------------- KANN WEGGELASSEN WERDEN 103 104 105 \subsubsection{Spectral Functions} 106 Manifolds $M$ with a disappearing boundary condition for the operator 107 $e^{-tD}$ for $t>0$, i.e.\ a trace class operator on $L^2(V)$. Meaning for any 108 smooth function $f$ on $M$ the Heat kernel can be defined as 109 \begin{align} 110 K(t,f,D) := \text{Tr}_{L^2}(fe^{-tD}). 111 \end{align} 112 Alternately an integral representation is 113 \begin{align} 114 K(t, f, D) = \int_M d^n x \sqrt{g} \text{Tr}_V(K(t;x,x;D)f(x)), 115 \end{align} 116 in the regular limit $y \rightarrow y$. The Heat Kernel can be written in terms 117 of the spectrum of $D$. Hence for an orthonormal basis $\{\phi_\lambda\}$ of 118 eigenfunctions for $D$, which correspond to the eigenvalue $\lambda$ one 119 can rewrite the heat kernel into 120 \begin{align} 121 K(t;x,y;D) = \sum_\lambda \phi^\dagger_\lambda(x) 122 \phi_\lambda(y)e^{-t\lambda}. 123 \end{align} 124 An asymptotic expansion as $t \rightarrow 0$ for the trace is then 125 \begin{align} 126 \text{Tr}_{L^2}(fe^{-tD}) \simeq \sum_{k\geq 0}t^{(k-n)/2}a_k(f,D), 127 \end{align} 128 where 129 \begin{align} 130 a_k(f,D) = (4\pi)^{-n/2} \int_M d^4x \sqrt{g} b_k(x,x) f(x). 131 \end{align} 132 \subsubsection{General Formulae} 133 Let us summarize what we have obtained in the last chapter. We considered a 134 compact Riemannian manifold $M$ without boundary condition, a vector bundle 135 $V$ over $M$ to define functions which carry discrete (spin or gauge) 136 indices, an operator $D$ of Laplace type over $V$ and smooth function $f$ on 137 $M$. 138 139 There is an asymptotic expansion where the heat kernel coefficients with an 140 odd index $k=2j+1$ vanish $a_{2j+1}(f,D) = 0$. On the other hand coefficients 141 with an even index are locally computable in terms of geometric invariants 142 \begin{align} 143 a_k(f,D) &= \text{Tr}_V\left(\int_M d^n x\sqrt{g}(f(x)a_k(x;D)\right) 144 =\nonumber\\ 145 &=\sum_I \text{Tr}_V\left(\int_M d^nx \sqrt{g}(fu^I 146 \mathcal{A}^I_k(D))\right). 147 \end{align} 148 The notation $\mathcal{A}^I_k$ corresponds to all possible independent invariants of 149 dimension $k$ and $u^I$ are constants. The invariants are constructed from 150 $E, \Omega, R_{\mu\nu\varrho\sigma}$ and their derivatives. If $E$ has 151 dimension two, then the derivative has dimension one. In this way if $k=2$ there are 152 only two independent invariants, $E$ and $R$. This corresponds to the 153 statement $a_{2j+1}=0$. 154 155 If we consider $M = M_1 \times M_2$ with coordinates $x_1$ and $x_2$ and a 156 decomposed Laplace style operator $D = D_1 \otimes 1 + 1 \otimes D_2$ the 157 functions acting on operators and on coordinates are separable linearly by the 158 following 159 \begin{align} 160 e^{-tD} &= e^{-tD_1} \otimes e^{-tD_2},\\ 161 f(x_1, x_2) &= f_1(x_1)f_2(x_2), 162 \end{align} 163 thus the heat kernel coefficients are separated by 164 \begin{align} 165 a_k(x;D) &= \sum_{p+q=k} a_p(x_1; D_1)a_q(x_2;D_2). 166 \end{align} 167 Lets say the eigenvalues of $D_1$ are $l^2, l\in \mathbb{Z}$, we 168 can obtain the heat kernel asymmetries with the Poisson summation formula 169 giving us an approximation in the order of $e^{-1/t}$ 170 \begin{align} 171 K(t, D_1) &= \sum_{l\in\mathbb{Z}} e^{-tl^2} = \sqrt{\frac{\pi}{t}} 172 \sum_{l\in\mathbb{Z}} e^{-\frac{\pi^2l^2}{t}} = \nonumber \\ 173 &\simeq \sqrt{\frac{\pi}{t}} + \mathcal{O}(e^{-1/t}). 174 \end{align} 175 The exponentially small terms have no effect on the heat kernel 176 coefficients and the only nonzero coefficient is $a_0(1, D_1) = 177 \sqrt{\pi}$, therefore the heat coefficients can be written as 178 \begin{align} 179 a_k(f(x^2), D) = \sqrt{\pi}\int_{M_2} 180 d^{n-1}x\sqrt{g}\sum_I\text{Tr}_V\left(f(x^2)u^I_{(n-1)} 181 \mathcal{A}^I_n(D_2)\right). 182 \end{align} 183 184 Since all of the geometric invariants associated with $D$ are in the $D_2$ 185 part, they are independent of $x_1$. This allows us to to choose for 186 $M_1$. 187 188 For $M_1 = S^1$ with $x\in (0, 2\pi)$ and $D_1=-\partial_{x_1}^2$ 189 we can rewrite the heat kernel coefficients into 190 \begin{align} 191 a_k(f(x_2), D) &= \int_{S^1\times M_2}d^nx \sqrt{g} \sum_I 192 \text{Tr}_V(f(x_2) u_{(n)}^I \mathcal{A}^I_k(D_2))= \nonumber\\ 193 &= 2\pi \int_{M_2} d^nx\sqrt{g} \sum_I\text{Tr}_V(f(x_2) u_{(n)}^I 194 \mathcal{A}^I_k(D_2)). 195 \end{align} 196 Computing the two equations above we see that 197 \begin{align} 198 u_{(n)}^I = \sqrt{4\pi} u^I_{(n+1)}. 199 \end{align} 200 201 \subsubsection{Heat Kernel Coefficients} 202 To calculate the heat kernel coefficients consider the following variational 203 equations 204 \begin{align} 205 &\frac{d}{d\varepsilon}\bigg|_{\varepsilon=0}a_k(1, e^{-2\varepsilon f}D) = 206 (n-k) a_k(f, D),\label{eq:var1}\\ 207 &\frac{d}{d\varepsilon}\bigg|_{\varepsilon=0}a_k(1, D-\varepsilon F) = 208 a_{k-2}(F,D),\label{eq:var2}\\ 209 &\frac{d}{d\varepsilon}\bigg|_{\varepsilon=0}a_k(e^{-2\varepsilon f}F, 210 e^{-2\varepsilon f}D) = 211 0\label{eq:var3}. 212 \end{align} 213 Let us explain the equations above. To get the first equation \eqref{eq:var1} 214 we simply differentiate 215 \begin{align} 216 \frac{d}{d\varepsilon}\bigg|_{\varepsilon=0} \text{Tr}(\exp(-e^{-2\varepsilon 217 f}tD) = \text{Tr}(2ftDe^{-tD}) = -2t\frac{d}{dt}\text{Tr}(fe^{-tD})), 218 \end{align} 219 additionally expand both sides in $t$ and get equation \eqref{eq:var1}. Equation 220 \eqref{eq:var2} is derived similarly. 221 222 For equation \eqref{eq:var3} look at the following operator 223 \begin{align} 224 D(\varepsilon,\delta) = e^{-2\varepsilon f}(D-\delta F), 225 \end{align} 226 for $k=n$ we take equation \eqref{eq:var1} and we obtain 227 \begin{align} 228 \frac{d}{d\varepsilon}\bigg|_{\varepsilon=0}a_n(1,D(\varepsilon,\delta)) 229 =0. 230 \end{align} 231 Then we take the variation in terms of $\delta$, evaluated at $\delta =0$ and 232 swap the differentiation, allowed by theorem of Schwarz 233 \begin{align} 234 0 &= 235 \frac{d}{d\delta}\bigg|_{\delta=0}\frac{d}{d\varepsilon}\bigg|_{\varepsilon=0}a_n(1, 236 D(\varepsilon,\delta)) =\nonumber\\ 237 &=\frac{d}{d\varepsilon}\bigg|_{\varepsilon=0}\frac{d}{d\delta}\bigg|_{\delta=0}a_n(1, 238 D(\varepsilon,\delta)) =\nonumber\\ 239 &=a_{n-2} ( e^{-2\varepsilon f}F, e^{-2\varepsilon f}D), 240 \end{align} 241 which gives us equation \eqref{eq:var3}. 242 243 Now that the ground basis is established, we can calculate the constants 244 $u^I$, and by that the first three heat kernel coefficients read 245 \begin{align} 246 a_0(f, D) &= (4\pi)^{-n/2}\int_Md^n x\sqrt{g} \text{Tr}_V(a_0 f),\\ 247 a_2(f, D) &= (4\pi)^{-n/2}\frac{1}{6}\int_Md^n 248 x\sqrt{g}\text{Tr}_V)(f\alpha _1 E+\alpha _2 R),\\ 249 a_4(f, D) &= (4\pi)^{-n/2}\frac{1}{360}\int_Md^n 250 x\sqrt{g}\text{Tr}_V(f(\alpha_3 E_{,kk} + \alpha_4\ R\ E + \alpha_5 E^2 251 \alpha_6 R_{,kk} + \nonumber\\ 252 &+\alpha_7 R^2 + \alpha_8 R_{ij}R_{ij} + \alpha_9 253 R_{ijkl}R_{ijkl} +\alpha_{10} \Omega_{ij}\Omega{ij})), 254 \end{align} 255 where the comma subscript $,$ denotes the derivative and constants $\alpha_I$ 256 do not depend on the dimension of the Manifold and we can compute them with 257 our variational identities. 258 259 The first coefficient $\alpha_0$ can be read from the heat kernel expansion of 260 the Laplacian on $S^1$ (above), $\alpha_0 = 1$. For $\alpha_1$ we use 261 \eqref{eq:var2}, the coefficient $k = 2$ is 262 \begin{align} 263 \frac{1}{6} \int_M d^n x\sqrt{g} \text{Tr}_V(\alpha_1F) = \int_M d^n 264 x\sqrt{g} \text{Tr}_V(F), 265 \end{align} 266 which means $\alpha_1 = 6$. Looking at the coefficient $k=4$ we have 267 \begin{align} 268 \frac{1}{360}\int_Md^n x \sqrt{g}\text{Tr}_V(\alpha_4\ F\ R + 2\alpha_5\ F\ E) 269 = \frac{1}{6} \int_Md^n x\sqrt{g}\text{Tr}_V(\alpha_1\ F\ E + \alpha_2\ F\ R), 270 \end{align} 271 thus $\alpha_4 = 60\alpha_2$ and $\alpha_5 = 180$. 272 273 By applying \eqref{eq:var3} to $n=4$ we get 274 \begin{align} 275 \frac{d}{d\varepsilon}|_{\varepsilon=0} a_2(e^{-2\varepsilon f}F, 276 e^{-2\varepsilon f}D) = 0. 277 \end{align} 278 Collecting the terms with $\text{Tr}_V(\int_Md^nx\sqrt{g}(Ff_{,jj}))$ we 279 obtain $\alpha_1 = 6\alpha_2$, that is $\alpha_2 = 1$, so $\alpha_4 = 60$. 280 281 Now we let $M=M_1\times M_2$ and split $D = -\Delta_1 -\Delta_2$, where 282 $\Delta_{1/2}$ are Laplacians for $M_1, M_2$. This allows us to decompose the heat 283 kernel coefficient for $k=4$ into 284 \begin{align} 285 a_4(1,-\Delta_1-\Delta_2) =& a_4(1, -\Delta_1) a_0(1, 286 -\Delta_2)\nonumber+ \\ 287 &+a_2(1,-\Delta_1) a_2(1,-\Delta_2)\nonumber \\ 288 &+ a_0(1,-\Delta_1)a_4(1,-\Delta_2), 289 \end{align} 290 with $E=0$ and $\Omega =0$ and by calculating the terms with $R_1R_2$ (scalar 291 curvature of $M_{1/2}$) we obtain $\frac{2}{360}\alpha_7 = 292 (\frac{\alpha_2}{6})^2$, thus $\alpha_7 = 5$. 293 294 For $n=6$ we get 295 \begin{align} 296 0 &= \text{Tr}_V(\int_Md^nx\sqrt{g} 297 (F(-2\alpha_3-10\alpha_4+4\alpha_5)f_{,kk}E +\nonumber\\ 298 &+(2\alpha_3 + 10\alpha_6)f_{,iijj}+\nonumber\\ 299 &+(2\alpha_4 -2\alpha_6 - 20\alpha_7 -2\alpha_8)f_{,ii}R\nonumber\\ 300 &+(-8\alpha_8 -8\alpha_6)f_{,ij}R_{ij})) 301 \end{align} 302 we obtain $\alpha_3 = 60$, $\alpha_6=12$, $\alpha_8 = -2$ and $\alpha_9 = 2$ 303 304 To get $\alpha_{10}$ we use the Gauss-Bonnet theorem, ultimately giving us 305 $\alpha_{10}=30$. We leave out this lengthy calculation and refer to 306 \cite{heatkernel} for further reading. 307 308 Let us summarize our calculations which ultimately lead us to the following heat kernel 309 coefficients 310 \begin{align} 311 \alpha_0(f, D) &= (4\pi)^{-n/2}\int_M d^n x \sqrt{g} \text{Tr}_V(f),\\ 312 \alpha_2(f, D) &= (4\pi)^{-n/2}\frac{1}{6}\int_M d^n x \sqrt{g} 313 \text{Tr}_V(f(6E+R)),\\ 314 \alpha_4(f, D) &= (4\pi)^{-n/2}\frac{1}{360}\int_M d^n x \sqrt{g} 315 \text{Tr}_V(f(60E_{,kk}+60RE+ 180E^2 +\\ 316 &+12R_{,kk} + 5R^2 - 2 R_{ij}R_{ij} 317 2R_{ijkl}R_{ijkl} +30\Omega_{ij}\Omega_{ij})).\label{eq: a_4} 318 \end{align} 319