ncg

bachelorthesis in physics
git clone git://popovic.xyz/ncg.git
Log | Files | Refs

5_twopointspace.tex (10364B)


      1 \subsection{Almost-commutative Manifold\label{sec:5}}
      2 \subsubsection{Two-Point Space}
      3 One of the basics forms of noncommutative space is the Two-Point space $X
      4 := \{x, y\}$. The Two-Point space can be represented by the following spectral triple
      5 \begin{align}
      6     F_X := \left(C(X) = \mathbb{C}^2, H_F, D_F; J_F, \gamma _f\right).
      7 \end{align}
      8 Three properties of $F_X$ stand out. First of all the action of $C(X)$ on
      9 $H_F$ is faithful for $dim(H_F) \geq 2$, thus a simple choice for the
     10 Hilbertspace can be made, for instance $H_F = \mathbb{C}^2$. Furthermore
     11 $\gamma_F$ is the $\mathbb{Z}_2$ grading, which allows for a decomposition of
     12 $H_F$ into
     13 \begin{align}
     14    H_F = H_F^+ \otimes H_F^- = \mathbb{C} \otimes \mathbb{C},
     15 \end{align}
     16 where
     17 \begin{align}
     18     H_F^\pm = \left\{\psi \in H_F |\; \gamma_F\psi = \pm \psi\right\},
     19 \end{align}
     20 are two eigenspaces. And lastly the Dirac operator $D_F$ lets us
     21 interchange between the two eigenspaces $H_F^\pm$,
     22 \begin{align}
     23     D_F =
     24         \begin{pmatrix}0 & t \\ \bar{t} & 0\end{pmatrix},  \;\;\;\;\;
     25             \text{with} \;\; t\in\mathbb{C}.
     26 \end{align}
     27 
     28 The Two-Point space $F_X$ can only have a real structure if the Dirac
     29 operator vanishes, i.e. $D_F = 0$. In that case the KO-dimension is 0,
     30 2 or 6. To elaborate further, we draw the only two diagram representations of
     31 $F_X$ at $\underbrace{\mathbb{C} \oplus \mathbb{C}}_{C(X)}$ on
     32 $\underbrace{\mathbb{C} \oplus\mathbb{C}}_{H_F}$, which are
     33 \begin{figure}[h!] \centering
     34 \begin{tikzpicture}[
     35     dot/.style = {draw, circle, inner sep=0.06cm},
     36     no/.style = {},
     37     ]
     38     \node[no](a) at (0,0) [label=left:$\textbf{1}^\circ$] {};
     39     \node[no](b) at (0, -1) [label=left:$\textbf{1}^\circ$] {};
     40     \node[no](c) at (1, 0.5) [label=above:$\textbf{1}$] {};
     41     \node[no](d) at (2, 0.5) [label=above:$\textbf{1}$] {};
     42     \node[dot](d0) at (2,0) [] {};
     43     \node[dot](d0) at (1,-1) [] {};
     44 
     45     \node[no](a1) at (6,0) [label=left:$\textbf{1}^\circ$] {};
     46     \node[no](b2) at (6, -1) [label=left:$\textbf{1}^\circ$] {};
     47     \node[no](c2) at (7, 0.5) [label=above:$\textbf{1}$] {};
     48     \node[no](d2) at (8, 0.5) [label=above:$\textbf{1}$] {};
     49     \node[dot](d0) at (7,0) [] {};
     50     \node[dot](d0) at (8,-1) [] {};
     51     \end{tikzpicture}
     52     \caption{Two diagram representations of $F_X$}
     53 \end{figure}\newline
     54 If the Two-Point space $F_X$ would be a real spectral triple then $D_F$ can
     55 only go vertically or horizontally. This would mean that $D_F$ vanishes.
     56 As for the KO-dimension The diagram on the left has KO-dimension 2 and 6, the diagram on the
     57 right 0 and 4. Yet KO-dimension 4 is ruled out because
     58 $dim(H_F^\pm) = 1$ (Lemma 3.8 in \cite{ncgwalter}) , which ultimately means $J_F^2 = -1$ is
     59 not allowed.
     60 \subsubsection{Product Space}
     61 By Extending the Two-Point space with a four dimensional Riemannian spin
     62 manifold, we get an almost commutative manifold $M\times F_X$, given by
     63 \begin{align}
     64     M\times F_X = \big(C^\infty(M, \mathbb{C}^2), L^2(S)\otimes \mathbb{C}^2,
     65     D_M\otimes 1 ; J_M\otimes J_F, \gamma_M \otimes \gamma_F\big),
     66 \end{align}
     67 where
     68 \begin{align}
     69    C^\infty(M, \mathbb{C}^2) \simeq C^\infty(M) \oplus  C^\infty(M).
     70 \end{align}
     71 According to Gelfand duality the algebra $C^\infty(M, \mathbb{C}^2)$ of the
     72 spectral triple corresponds to the space
     73 \begin{align}
     74     N:= M\otimes X.
     75 \end{align}
     76 Keep in mind that we still need to find an appropriate real structure on the
     77 Riemannian spin manifold, $J_M$. Furthermore the total Hilbertspace can be
     78 decomposed into $H = L^2(S) \oplus L^2(S)$, such that for $\underbrace{a,b\in
     79 C^\infty(M)}_{(a, b) \in C^\infty(N)}$ and $\underbrace{\psi, \phi \in
     80 L^2(S)}_{(\psi, \phi) \in H}$ we have
     81 \begin{align}
     82     (a, b)(\psi, \phi) = (a\psi, b\phi).
     83 \end{align}
     84 Along with the decomposition of the total Hilbertspace a
     85 distance formula on $M\times F_X$ can be considered with
     86 \begin{align}\label{eq:commutator inequality}
     87     d_{D_F}(x,y) = \sup\left\{  |a(x) - a(y)|:a\in A_F, ||[D_F, a]|| \leq
     88     1 \right\}.
     89 \end{align}
     90 To calculate the distance between two points on the Two-Point space $X= \{x,
     91 y\}$, between $x$ and $y$, we consider an $a \in \mathbb{C}^2 = C(X)$, which is
     92 specified by two complex numbers $a(x)$ and $a(y)$. Then we simplify the
     93 commutator inequality in \eqref{eq:commutator inequality}
     94 \begin{align}
     95     &||[D_F , a]|| = ||(a(y) - a(x))\begin{pmatrix}0 &t\\\bar{t} &0
     96     \end{pmatrix}|| \leq 1,\\
     97     &\Leftrightarrow |a(y) - a(x)|\leq \frac{1}{|t|}.
     98 \end{align}
     99 The supremum then gives us the distance
    100 \begin{align}
    101     d_{D_F} (x,y) = \frac{1}{|t|}.
    102 \end{align}
    103 An interesting observation here is that, if the Riemannian spin manifold can be
    104 represented by a real spectral triple then a real structure $J_M$ exists,
    105 along the lines it follows that $t=0$ and the distance becomes infinite. This is a
    106 purely mathematical observation and has no physical meaning.
    107 
    108 We can also construct a distance formula on $N$ (in reference to a point $p
    109 \in M$) between two points on $N=M\times X$, $(p, x)$ and $(p,y)$. Then an $a
    110 \in C^\infty(N)$ is determined by $a_x(p):=a(p, x)$ and $a_y(p):=a(p, y)$.
    111 The distance between these two points is
    112 \begin{align}
    113     d_{D_F\otimes 1}(n_1, n_2) =  \sup \left\{ |a(n_1) - a(n_2)|: a\in
    114     A, ||[D\otimes 1, a]||\right\}.
    115 \end{align}
    116 On the other hand if we consider $n_1 = (p,x)$ and $n_2 = (q, x)$
    117 for $p,q \in M$ then
    118 \begin{align}
    119     d_{D_M \otimes 1} (n_1, n_2) = |a_x(p) - a_x(q)| \;\;\;\text{for}\;\;
    120     a_x\in
    121     C^\infty(M) \;\; \text{with} \;\; ||[D\otimes 1, a_x]|| \leq 1.
    122 \end{align}
    123 The distance formula turns to out to be the geodesic distance formula
    124 \begin{align}
    125     d_{D_M\otimes1}(n_1, n_2) = d_g(p, q),
    126 \end{align}
    127 which is to be expected since we are only looking at the manifold.
    128 However if $n_1 = (p, x)$ and $n_2 = (q, y)$ then the two conditions are
    129 \begin{align}
    130     &||[D_M, a_x]|| \leq 1, \;\;\; \text{and}\\
    131     &||[D_M, a_y|| \leq 1.
    132 \end{align}
    133 These conditions have no restriction which results in the distance being
    134 infinite! And $N = M\times X$ is given by two disjoint copies of M  which are
    135 separated by infinite distance
    136 
    137 The distance is only finite if $[D_F, a] < 1$. In this case the commutator
    138 generates a scalar field and the finiteness of the distance is
    139 related to the existence of scalar fields.
    140 
    141 \subsubsection{$U(1)$ Gauge Group}
    142 To get a insight into the physical properties of the almost commutative
    143 manifold $M\times F_X$, that is to calculate the spectral action, we need to
    144 determine the corresponding Gauge group.
    145 For this we set of with simple definitions and important propositions to
    146 help us break down and search for the gauge group of the Two-Point $F_X$
    147 space which we then extend to $M\times F_X$. We will only be diving
    148 superficially into this chapter, for further reading we refer to
    149 \cite{ncgwalter}.
    150 \begin{mydefinition}
    151 Gauge Group of a real spectral triple is given by
    152 \begin{align}
    153     \mathfrak{B}(A, H; J) := \{ U = uJuJ^{-1} | u\in U(A)\}.
    154 \end{align}
    155 \end{mydefinition}
    156 \begin{mydefinition}
    157     A *-automorphism of a *-algebra $A$ is a linear invertible
    158     map
    159     \begin{align}
    160         &\alpha:A \rightarrow A,\;\;\; \text{with}\\
    161         \nonumber\\
    162         &\alpha(ab) = \alpha(a)\alpha(b),\\
    163         &\alpha(a)^* = \alpha(a^*).
    164     \end{align}
    165     The \textbf{Group of automorphisms of the *-Algebra $A$} is denoted by
    166     $(A)$.\newline
    167     The automorphism $\alpha$ is called \textbf{inner} if
    168     \begin{align}
    169         \alpha(a) = u a u^* \;\;\; \text{for} \;\; U(A),
    170     \end{align}
    171     where $U(A)$ is
    172     \begin{align}
    173         U(A) = \{ u\in A|\;\; uu^* = u^*u=1\}. \;\;\;
    174         \text{(unitary)}
    175     \end{align}
    176 \end{mydefinition}
    177 The Gauge group of $F_X$ is given by the quotient $U(A)/U(A_J)$.
    178 To get a nontrivial Gauge group so we need to choose a $U(A_J) \neq
    179 U(A)$ and $U((A_F)_{J_F}) \neq U(A_F)$.
    180 We consider our Two-Point space $F_X$ to be equipped with a real structure,
    181 which means the operator vanishes, and the spectral triple representation is
    182 \begin{align}
    183     F_X := \left(\mathbb{C}^2,\mathbb{C}^2, D_F =\begin{pmatrix}
    184         0&0\\0&0\end{pmatrix}; J_f =\begin{pmatrix}
    185     0&C\\C&0\end{pmatrix},
    186             \gamma_F = \begin{pmatrix}1&0\\0&-1\end{pmatrix}\right).
    187 \end{align}
    188 Here $C$ is the complex conjugation, and $F_X$ is a real even finite
    189 spectral triple (space) of KO-dimension 6.
    190 
    191 \begin{myproposition}
    192 The Gauge group of the Two-Point space $\mathfrak{B}(F_X)$ is $U(1)$.
    193 \end{myproposition}
    194 \begin{proof}
    195     Note that $U(A_F) = U(1) \times U(1)$. We need to show that $U(A_F) \cap
    196     U(A_F)_{J_F}) \simeq U(1)$, such that $\mathfrak{B}(F) \simeq U(1)$. So
    197     for an element $a \in \mathbb{C}^2$ to be in $(A_F)_{J_F}$, it has to
    198     satisfy $J_F a^* J_F = a$,
    199     \begin{align}
    200         J_F a^* J^{-1} =
    201         \begin{pmatrix}0&C\\C&0\end{pmatrix}
    202             \begin{pmatrix}\bar{a}_1&0\\0&\bar{a}_2\end{pmatrix}
    203         \begin{pmatrix}0&C\\C&0\end{pmatrix}
    204             =
    205             \begin{pmatrix}a_2&0\\0&a_1\end{pmatrix}.
    206     \end{align}
    207     This can only be the case if $a_1 = a_2$. So we have
    208     $(A_F)_{J_F} \simeq \mathbb{C}$, whose unitary elements
    209     from $U(1)$ are contained in the diagonal subgroup of
    210     $U(A_F)$.
    211 \end{proof}
    212 
    213 An arbitrary hermitian field $A_\mu = -ia\partial _\mu b$  is given by
    214 two $U(1)$ Gauge fields $X_\mu^1, X_\mu^2 \in C^\infty(M, \mathbb{R})$.
    215 However $A_\mu$ appears in combination $A_\mu - J_F A_\mu J_F^{-1}$:
    216 \begin{align}
    217  A_\mu - J_F A_\mu J_F^{-1} =
    218     \begin{pmatrix}X_\mu^1&0\\0&X_\mu^2 \end{pmatrix}
    219         -
    220     \begin{pmatrix}X_\mu^2&0\\0&X_\mu^1 \end{pmatrix}
    221         =:
    222     \begin{pmatrix}Y_\mu&0\\0&-Y_\mu \end{pmatrix}
    223     = Y_\mu \otimes \gamma _F,
    224 \end{align}
    225 where $Y_\mu$ the $U(1)$ Gauge field is defined as
    226 \begin{align}
    227     Y_\mu := X_\mu^1 - X_\mu^2 \in C^\infty(M, \mathbb{R}) = C^\infty(M,
    228     i\ u(1)).
    229 \end{align}
    230 
    231 \begin{myproposition}
    232     The inner fluctuations of the almost-commutative manifold $M\times
    233     F_X$ are parameterized by a $U(1)$-gauge field $Y_\mu$ as
    234     \begin{align}
    235         D \mapsto D' = D + \gamma ^\mu Y_\mu \otimes \gamma_F.
    236     \end{align}
    237     The action of the gauge group $\mathfrak{B}(M\times F_X) \simeq
    238     C^\infty (M, U(1))$ on $D'$ is implemented by
    239     \begin{align}
    240         Y_\mu \mapsto Y_\mu - i\ u\partial_\mu u^*; \;\;\;\;\; (u\in
    241         \mathfrak{B}(M\times F_X)).
    242     \end{align}
    243 \end{myproposition}
    244