ncg

bachelorthesis in physics
git clone git://popovic.xyz/ncg.git
Log | Files | Refs

diffgeo.tex (5255B)


      1 \subsection{Excurse}
      2 \textbf{Manifold:} A topological space that is locally Euclidean.
      3 \newline
      4 \textbf{Riemannian Manifold:}A Manifold equipped with a Riemannian
      5 Metric, a
      6 symmetric bilinear form on Vector Fields $\Gamma(TM)$
      7 \begin{align}
      8     &g: \Gamma(TM) \times \Gamma(TM) \rightarrow C(M) \\
      9     \text{with}& \nonumber\\
     10     &g(X, Y) \in \mathbb{R} \;\;\; \text{if $X, Y \in \mathbb{R}$}\\
     11     &\text{$g$ is $C(M)$-bilinear } \forall f\in C(M):\;\; g(fX, Y) =
     12     g(X,
     13     fY) = fg(X,Y)\\
     14     &g(X,X) \begin{cases}\geq 0  \;\;\; \forall X \\ = 0 \;\;\; \forall X
     15         =0
     16     \end{cases}
     17 \end{align}
     18 $g$ on $M$ gives rise to a distance function on $M$
     19 \begin{align}
     20     d_g(x, y) = \inf_\gamma \left\{\int_0^1(\dot{\gamma}(t),
     21     \dot{\gamma}(t))dt;\;\; \gamma(0) = x, \gamma(1) = y \right\}
     22 \end{align}
     23 Riemannian Manifold is called spin$^c$ if there exists a vector bundle $S
     24 \rightarrow M$ with an algebra bundle isomorphism
     25 \begin{align}
     26     \mathbb{C}\text{I}(TM) &\simeq \text{End}(S)\;\;\; &\text{($dim(M)$
     27     even)}\\
     28     \mathbb{C}\text{I}(TM)^\circ &\simeq \text{End}(S)\;\;\;
     29     &\text{($dim(M)$ odd)}\\
     30 \end{align}
     31 $(M,S)$ is called the \textbf{spin$^c$ structure on $M$}.
     32 \newline
     33 $S$ is called the \textbf{spinor Bundle}.
     34 \newline
     35 $\Gamma(S)$ are the \textbf{spinors}.
     36 
     37 Riemannian spin$^c$ Manifold is called spin if there exists an
     38 anti-unitary
     39 operator $J_M:\Gamma(S) \rightarrow \Gamma(S)$ such that:
     40 \begin{enumerate}
     41     \item $J_M$ commutes with the action of real-valued  continuous
     42         functions
     43         on $\Gamma(S)$.
     44     \item $J_M$ commutes with $\text{Cliff}^-(M)$ (even case)\\
     45     $J_M$ commutes with $\text{Cliff}^-(M)^\circ$ (odd case)
     46 \end{enumerate}
     47 $(S, J_M)$ is called the \textbf{spin Structure on $M$}
     48 \newline
     49 $J_M$ is called the \textbf{charge conjugation}.
     50 
     51 \subsection{Operators of Laplace Type}
     52 Let $M$ be a $n$ dimensional compact Riemannian manifold with $\partial M = 0$.
     53 Then consider a vector bundle $V$ over $M$ (i.e. there is a vector space to
     54 each point on $M$), so we can define smooth functions. We want to look at
     55 arbitrary differential operators $D$ of Laplace type on $V$, they have the general
     56 from
     57 \begin{align}
     58     D = -(g^{\mu\nu} \partial_\mu\partial_\nu + a^\sigma\partial_\sigma +b)
     59 \end{align}
     60 where $a^\sigma, b$ are matrix valued functions on $M$ and $g^{\mu\nu}$ is the
     61 inverse metric on $M$. There is a unique connection on $V$ and a unique
     62 endomorphism (matrix valued function) $E$ on $V$, then we can rewrite $D$ in
     63 terms of $E$ and covariant derivatives
     64 \begin{align}
     65     D = -(g^{\mu\nu} \nabla_\mu \nabla_\nu +E)
     66 \end{align}
     67 Where the covariant derivative consists of $\nabla = \nabla^{[R]} +\omega$ the
     68 standard Riemannian covariant derivative $\nabla^{[R]}$ and a "gauge" bundle
     69 $\omega$ (fluctuations). WE can write $E$ and $\omega$ in terms of geometrical
     70 identities
     71 \begin{align}
     72     \omega_\delta &= \frac{1}{2}g_{\nu\delta}(a^\nu
     73     +g^{\mu\sigma}\Gamma^\nu_{\mu\sigma}I_V)\\
     74     E &= b - g^{\nu\mu}(\partial_\mu \omega_\nu + \omega_\nu \omega_\mu -
     75     \omega_\sigma \Gamma^\sigma_{\nu\mu})
     76 \end{align}
     77 where $I_V$ is the identity in $V$ and the Christoffel symbol
     78 \begin{align}
     79     \Gamma^\sigma_{\mu\nu} = g^{\sigma\varrho} \frac{1}{2} (\partial_\mu
     80     g_{\nu\varrho} + \partial_\nu g_{\mu\varrho} - \partial_\varrho g_{\mu\nu})
     81 \end{align}
     82 Furthermore we remind ourselves of the Riemmanian curvature tensor, Ricci
     83 Tensor and the Scalar curavture.
     84 \begin{align}
     85     R^\mu_{\nu\varrho\sigma} &= \partial_\sigma \Gamma^{\mu}_{\nu\varrho}
     86     -\partial_\varrho \Gamma^\mu_{\nu\sigma}
     87     \Gamma^{\lambda}_{\nu\varrho}\Gamma^{\mu}_{\lambda\sigma}
     88     \Gamma^{\lambda}_{\nu\sigma}\Gamma^{\mu}_{\lambda\varrho}\\
     89     R_{\mu\nu} &:= R^{\sigma}_{\mu\nu\sigma}\\
     90     R &:= R^\mu_{\ \mu}
     91 \end{align}
     92 
     93 The we let $\{e_1, \dots, e_n\}$ be the local orthonormal frame of
     94 $TM$(tangent bundle $M$), which will be noted with flat indices $i,j,k,l
     95 \in\{1,\dots, n\}$, we use $e^k_\mu, e^\nu_j$ to transform between flat indices
     96 and curved indices $\mu, \nu, \varrho$.
     97 \begin{align}
     98     e^\mu_j e^\nu_k g_{\mu\nu} &= \delta_{jk}\\
     99     e^\mu_j e^\nu_k \delta^{jk} &= g^{\mu\nu} \\
    100     e^j_\mu e^\mu_k  &= \delta^j_k
    101 \end{align}
    102 
    103 The Riemannian part of the covariant derivative contains the standard
    104 Levi-Civita connection, so that for a $v_\nu$ we write
    105 \begin{align}
    106     \nabla_\mu^{[R]} v_\nu = \partial_\mu v_\nu -
    107     \Gamma^{\varrho}_{\mu\nu}v_\varrho.
    108 \end{align}
    109 The extended covariant derivative reads then
    110 \begin{align}
    111     \nabla_\mu v^j = \partial_\mu v^j + \sigma^{jk}_\mu v_k.
    112 \end{align}
    113 the condition $\nabla_\mu e^k_\nu = 0$ gives us the general connection
    114 \begin{align}
    115     \sigma^{kl}_\mu = e^\nu_l\Gamma^{\varrho}_{\mu\nu}e^k_\varrho - e^\nu_l
    116     \partial_\mu e^k_\nu
    117 \end{align}
    118 The we may define the field strength $\Omega_{\mu\nu}$ of the connection $\omega$
    119 \begin{align}
    120     \Omega_{\mu\nu} = \partial_\mu \omega_\nu -\partial_\nu \omega_\mu
    121     +\omega_\mu \omega_\nu -\omega_\nu\omega_\mu.
    122 \end{align}
    123 If we apply the covariant derivative on $\Omega$ we get
    124 \begin{align}
    125     \nabla_\varrho\Omega_{\mu\nu} = \partial_\varrho \Omega_{\mu\nu} -
    126     \Gamma^{\sigma}_{\varrho \mu} \Omega_{\sigma\mu} + [\omega_\varrho,
    127     \Omega_{\mu\nu}]
    128 \end{align}