sesh1.ipynb (33882B)
1 { 2 "cells": [ 3 { 4 "cell_type": "code", 5 "execution_count": 1, 6 "id": "6925655d", 7 "metadata": {}, 8 "outputs": [], 9 "source": [ 10 "import networkx as nx\n", 11 "from matplotlib import pyplot as plt" 12 ] 13 }, 14 { 15 "cell_type": "code", 16 "execution_count": 2, 17 "id": "4de0bdd2", 18 "metadata": {}, 19 "outputs": [], 20 "source": [ 21 "# EX 1: \n", 22 "get_leaves = lambda G: [node for node, degree in G.degree() if degree==1]\n", 23 "# EX 2:\n", 24 "def max_degree(G):\n", 25 " m = max(G.degree(), key = lambda x: x[1])[1] \n", 26 " return [node for node, degree in G.degree() if degree == m]\n", 27 "# EX 3:\n", 28 "def mutual_friends(G, node0, node1):\n", 29 " return list(set(G.neighbors(node0)) & set(G.neighbors(node1)))\n" 30 ] 31 }, 32 { 33 "cell_type": "code", 34 "execution_count": 6, 35 "id": "c78774b9", 36 "metadata": {}, 37 "outputs": [ 38 { 39 "name": "stdout", 40 "output_type": "stream", 41 "text": [ 42 "Nodes: ['a', 'b', 'c', 'd']\n", 43 "Edges: [('a', 'b'), ('a', 'c'), ('b', 'c'), ('c', 'd')]\n", 44 "['b', 'c']\n", 45 "3\n" 46 ] 47 }, 48 { 49 "data": { 50 "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb4AAAEuCAYAAADx63eqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAArEElEQVR4nO3de1zUZb4H8A8yXIdRPF5SkYvGRSOvmTAzUVamtYqKFwbTUtvNtrBjbWu0UqfLEas93dNSyxOZJxkvZe4L13ZtMwFBUbwj4nVSUFLyBshlYM4fv4WavMLM/J7fzO/zfr147Qt0nt93X69dPzzP73mer5fNZrOBiIhIJdqJLoCIiEhODD4iIlIVBh8REakKg4+IiFSFwUdERKrC4CMiIlVh8BERkaow+IiISFUYfEREpCoMPiIiUhUGHxERqYpGdAHXY7EA+fnSV04OcOgQUFsLNDYC3t6Avz8QFQUkJAB6vfQVHi66aiIiUjIvpV1SbbUC2dnAG28Au3YBPj5AVRVwvSq9vICgIKChARg0CEhLA0aNAjSKjnUiIhJBMcFnswFLlgDp6UB9PXDpUtvH0ukAX18gIwOYOVMKRiIiIkAhwWexAJMnA3v2ANXVzhtXqwX69wdWrOASKBERSYRvbsnMBGJjgcJC54YeII1XWCiNn5np3LGJiMg9CQ2+jAwgNVUKKKvVNc+wWqXxU1OB+fNd8wwiInIfwrZ/zJsHvP46UFMjz/NqaqSgBYC5c+V5JhERKY+Qd3yZmdIMTK7Q+7XAQGDhQmD6dPmfTURE4skefBaL9M7N2e/zWkOrBYqLgbAwcTUQEZEYsr7js9mk3Zu1tXI+9Up1dVId4vezEhGR3GQNviVLpCMLjY1yPvVKViuwe7dUDxERqYtsS51WK9CtG1BZKcfTbk6nTkBFhXT9GRERqYNsM77sbOlGFiWpr5fqIiIi9ZBtxmcwSJdNO9P330v/ee+9bR/DYADy8pxTDxERKZ8sMz6LBdi5U44ntV5RkVQfERGpgyzBl58vdVlQIh8foKBAdBVERCQX2YKvqsqxMUwm4MAB6SjEvn3AuHFOKQ1VVc5fgiUiIuWS5cqynBzHzszdfz/w5ZfSRpTnngO6dAHef1+arR086FhtNptUHxERqYMsm1t0OsdmfLm5QMeOwO23/xKgcXHSEuWmTY5tbgGkJraO9P8jIiL3IctSpyM3tbRrB9x5J7B6tf2scetW4Ngxx2sDxN8kQ0RE8pEl+By5qaVzZ6mbekXFlX92tZ+1heibZIiISD6yBJ8jN6OcPSsdNL/lliv/7Go/awve3EJEpB6yBJ+/f9s/29QkdVGfOBHw8vrl50OHAr16OV4b4Fh9RETkXmQJvqgoxz7/8stAnz7A2rXA734HTJsGrFwJnDrllPIQHe2ccYiISPlkCb6EBPvZWmt99x0wZQoQEwN89RUwZw7wzDOOH2UApLoSEhwfh4iI3IMsxxmysoCZM5V5ZECnAz75RDogT0REnk+WGZ9eDzQ0yPGk1mtokOojIiJ1kCX4wsOBQYPkeFLrDR4MhIWJroKIiOQiWz++tDRpWVFJdDqpLiIiUg9Vd2Dv3Bk4fZrn+IiI1ES2GZ9GA2RkAFqtXE+8Pq0WmDePoUdEpDayzfgA6a5No1E6kG61yvXUK2k00gH43FzHjlkQEZH7kTX4AKnbeWwsUF0t51PtabU2FBd7cVMLEZEKybbU2Sw8HFiwAAgMlPvJknbtanHrre8hOPiimAKIiEgo2YMPAKZPB9LT5Q+/wEDglVd8oNcfhNFoxPHjx+UtgIiIhBMSfAAwd670JVf4BQZKYfvSS974+OOP8Yc//AEGgwH5+fnyFEBERIog+zu+38rMBGbNAurqXLPhRaMB/Pyk5dXp0+3/bP369Zg+fTreffddTJkyxfkPJyIixREefIC04WXyZGDPHuduetFqgQEDgBUrrn07y759+5CYmIhHHnkEr7zyCtq1EzYJJiIiGSgi+ADpqMOSJdJyZH29Yxda63RS1/aMDOly7BsdWfjpp5+QlJSEkJAQZGZmIlDUzhsiInI5xUxvvLyAJ56QblJZvhwwGKQGsTrdjYPLy0v6e/7+0ueWLwcqKqTxbuacXteuXfHdd9/B19cXw4YNwylnNfojIiLFUcyM72osFqCgAMjPB3JygNJSoLYWaGyUblzx95eayCYkSB0W4uOl4xJtZbPZMH/+fCxevBjffPMNBin1Zm0iImozRQefKKtXr8aTTz6JTz75BOPGjRNdDhEROZFGdAFKNHHiRERERGDcuHEoLS3FnDlz4MW7zYiIPAJnfNdx8uRJJCYmYtCgQVi0aBF8fX1Fl0RERA5SzOYWJerZsydyc3Nx7tw5PPDAAzh79qzokoiIyEEMvhvQarVYs2YNDAYD4uPjceDAAdElERGRA7jU2QqZmZlIS0vD8uXL8cADD4guh4iI2oAzvlaYPn06Vq9ejUcffRQff/yx6HKIiKgNOONrgyNHjiAxMRHDhw/HO++8A42Gm2OJiNwFg6+NLly4gOTkZHh5ecFsNqNDhw6iSyIiopvApc426tChA7KzsxEZGQmDwYBjx46JLomIiG4Cg88BGo0GCxYswFNPPQWDwYDc3FzRJRER0Q1wqdNJvv32WzzyyCN466238Oijj4ouh4iIroHB50TFxcVITEyEyWTCvHnz2NuPiEiBGHxOdubMGYwfPx5du3bFsmXLoNVqRZdERES/wimJk3Xp0gUbN26ETqfD3XffjbKyMtElERHRrzD4XMDPzw+fffYZkpOTER8fjx07doguiYiI/o1LnS729ddfY+bMmVi8eDHGjx8vuhwiItXjlSMulpSUhPDwcIwdOxYHDx7ECy+8wN5+REQCccYnk/LycowZMwaxsbFYsmQJ/Pz8RJdERKRKfMcnkx49emDz5s2oqanB/fffjzNnzoguiYhIlRh8MgoMDITZbMawYcMQFxeH/fv3iy6JiEh1uNQpyPLly/GnP/0Jy5Ytw4MPPii6HCIi1WDwCZSXl4eJEydi7ty5mDVrFje9EBHJgMEn2PHjxzF69GjcfffdeP/99+Hj4yO6JCIij8bgU4CLFy8iJSUFVqsVK1euRHBwsOiSiIg8Fje3KED79u2xbt063HbbbdDr9Th8+LDokoiIPBaDTyE0Gg3ee+89zJ49G3fddRd++OEH0SUREXkkLnUq0MaNGzFlyhS88cYbmDFjhuhyiIg8CoNPoUpKSjB69GhMmDABr7/+Onv7ERE5CYNPwSorKzFhwgQEBwdj+fLlCAoKEl0SEZHb4zRCwTp16oR//OMf6NSpE+666y6cOHFCdElERG6Pwadwvr6++PTTTzF16lTo9XoUFhaKLomIyK1xqdONrFu3Dr///e+xcOFCJCcniy6HiMgtMfjczK5duzB27Fj84Q9/wIsvvshrzoiIWonB54ZOnz6NsWPHIjIyEkuXLoW/v7/okoiI3Abf8bmhbt26YdOmTbBarbjvvvtQUVEhuiQiIrfB4HNTAQEByMrKwogRIxAXF4e9e/eKLomIyC1wqdMDrFixArNnz8Znn32GUaNGiS6HiEjRGHweoqCgAOPHj8ecOXPwzDPPcNMLEdE1MPg8iMViQWJiIvR6PRYsWMDefkREV8F3fB4kPDwceXl5KC8vx4MPPoiff/5ZdElERIrD4PMwOp0Oa9euxaBBgxAfH4/S0lLRJRERKQqDzwN5e3vjrbfewpw5c5CQkIDvv/9edElERIrB4PNgjz/+OLKyspCSkoJPP/1UdDlERIrAzS0qUFpaisTERIwePRp//etf4e3tLbokIiJhGHwqce7cOUycOBGBgYH48ssvodPpRJdERCQElzpVomPHjtiwYQN69OgBo9EIi8UiuiQiIiEYfCri4+ODRYsWYcaMGdDr9SgoKBBdEhGR7LjUqVLZ2dmYMWMG3n//fUyePFl0OUREsmHwqdjevXuRmJiIadOm4ZVXXuE1Z0SkCgw+lauoqMC4ceMQHh6Ozz77DAEBAaJLIiJyKb7jU7lbbrkF33//Pby9vTFs2DCcOnVKdElERC7F4CP4+/tj+fLlSExMRHx8PHbt2iW6JCIil+FSJ9lZuXIlUlNTsXTpUowZM0Z0OURETqcRXQApS3JyMiIiIpCUlITS0lI899xz3PRCRB6FMz66qhMnTmDMmDEYPHgwPv74Y/j6+oouiYjIKfiOj64qNDQUOTk5qKysxIgRI1BZWSm6JCIip2Dw0TUFBQXhq6++QlxcHOLj41FSUiK6JCIihzH46LratWuHN998E3PnzsU999yDjRs3ii6JiMghDD66KTNmzMDKlSsxdepULFq0SHQ5RERtxs0t1CpHjhzB6NGjMWLECLz99tvQaLgxmIjcC4OPWu38+fNITk6GRqNBVlYW2rdvL7okIqKbxqVOarXg4GBkZ2ejV69eMBgMOHbsmOiSiIhuGoOP2sTHxwcLFy7EH//4RxiNRuTl5YkuiYjopnCpkxy2YcMGPProo3jnnXcwdepU0eUQEV0Xg4+cYv/+/UhMTMTDDz+M1157De3acTGBiJSJwUdOc+bMGSQlJaF79+74/PPPERgYKLokIqIr8NdycpouXbrgu+++Q2BgIO6++26Ul5eLLomI6AoMPnIqPz8/ZGZmYsKECYiLi0NRUZHokoiI7HCpk1xmzZo1+OMf/4glS5YgKSlJdDlERADYj49caMKECYiIiMC4ceNw8OBBpKWlsbcfEQnHGR+5XFlZGcaMGYPbb78dS5YsgZ+fn+iSiEjF+I6PXC4kJASbN29GVVUVhg8fjrNnz4ouiYhUjMFHstBqtVi1ahUSEhIQFxeH4uJi0SURkUpxqZNkt2zZMvz5z3/GF198gZEjR4ouh4hUhsFHQuTm5mLSpElIT0/HrFmzRJdDRCrC4CNhjh49isTERNx777147733HOrtZ7EA+fnSV04OcOgQUFsLNDYC3t6Avz8QFQUkJAB6vfQVHu7E/zJE5DYYfCTUhQsXkJKSgqamJqxcuRIdOnS46c9arUB2NvDGG8CuXYCPD1BVBVzvf9FeXkBQENDQAAwaBKSlAaNGAeynS6Qe3NxCQnXo0AF/+9vf0KdPH+j1ehw5cuSGn7HZgMWLgW7dgEceAQoKpNndpUvXD73mz166JP39/Hzp8926SePxV0AideCMjxTjo48+wmuvvday+/NqLBZg8mRgzx6gutp5z9Zqgf79gRUruARK5Ok44yPFeOqpp/DFF19gwoQJyMzMvOLPMzOB2FigsNC5oQdI4xUWSuNf5dFE5EE44yPFOXDgABITEzFx4kTMnz8f7dq1Q0YGMH8+UFPj+ucHBgLp6cDcua5/FhHJj8FHilRZWYnx48fjP/7jP9C/vxlvveUrS+g1Y/gReS4GHylWfX097r9/GfLypsBmC5D9+YGBwMKFwPTpsj+aiFyIwUeKZbEAsbE2VFeL6+ig1QLFxUBYmLASiMjJuLmFFMlmk3Zv1taKbWNUVyfVwV8PiTwHg48UackS6chCY6PYOqxWYPduqR4i8gxc6iTFsVqlQ+WVlaIr+UWnTkBFhXT9GRG5N874SHGys4H6etFV2Kuvl+oiIvfHGR8pjsEgXSemNAYDkJcnugoichSDjxTFYgH69JHu0lQaf3+gpIRXmhG5Oy51kqLk50tdFpTIx0e6EJuI3BuDjxQlP19qLeQM/fsDX30FnD0rXXVWUgK88ELbx6uqUuYSLBG1DruQkaLk5DjnzNyddwKbNgGHDwPPPgucPCk1ou3fv+1j2mxSfUTk3viOjxRFp3POjO+HH4BevYCYGODyZcfHaxYUJPXzIyL3xaVOUhRnbGoJCACMRuD//s+5oQcoc9MNEbUOg48UxRk3tXTsKB00P3nS8bF+S/RNMkTkOAYfKYozbkY5d04KqJAQx8f6Ld7cQuT+GHykKP7+jo9x+TKQmwtMneqc8X7N2eMRkfwYfKQoUVHOGefPf5bu18zPlwJw2DDgsceADz5wbNzoaKeUR0QCMfhIURISAC8ndCLavl3a4HLiBPDhh8D69cCcOY699/PykuojIvfGc3ykKHo98NlnzjkysGsXMGaM4+M0CwqS6iMi98YZHymKXg80NIiu4uqqquqwb98nOOmK7aJEJBsGHylKeDgwaJDoKq6ub98alJcXYMCAAUhISMCCBQtw+vRp0WURUSsx+Ehx0tKkG1yURKcDXn+9I5YuXYpTp04hLS0NW7duRd++fXHfffdh8eLFOHv2rOgyiegm8MoyUhwldmDv3Bk4ffrKc3y1tbX4+9//DrPZjA0bNiA+Ph4mkwnjxo1Dx44dxRRLRNfFGR8pjkYDZGQAWq3oSiRaLTBv3tUPr/v7+yMpKQlZWVkoKyvDY489hr/97W+IiIhAYmIili9fjosXL8pfNBFdE2d8pEg2m3QcobBQmgGKotEAQ4dKB+Jbc8zi4sWLWLduHcxmMzZv3oz7778fJpMJo0ePhlYpiU6kUgw+UiyLBYiNBaqrxdWg1QLFxUBYWNvHOHfuHNauXQuz2YyCggI8+OCDMJlMeOihh+DPq2CIZMfgI0XLzARSU6VGsnILDAQWLgSmT3femGfPnsVXX32FrKws7Ny5E6NHj4bJZMKIESPg6+vrvAcR0TUx+Ejx5s+X3vnJGX6BgUB6OjB3ruuecfr0aaxevRpmsxnFxcUYO3YsUlJScN9990Gj4d0SRK7C4CO3kJEhBaAc4SdH6P3WyZMnsWrVKpjNZhw9ehTjx4+HyWTC3XffDW+2hCByKgYfuY3MTGDWLKCuzjUbXjQawM8PWLDAucubrXXs2DGsXLkSZrMZp06dwsSJE5GSkgK9Xo927bgRm8hRDD5yKxYLMHkysGePcze9aLXAgAHAihWObWRxttLS0pYQPH/+PJKTk2EymXDnnXfCyxm3eROpEIOP3I7NBixZIi1H1tc7dqG1Tgf4+kpLqTNnOqczhKvs378fZrMZZrMZDQ0NLSE4cOBAhiBRKzD4yG1ZrVK7oTffBIqKAB8foKpKCsZr8fKSuiw0NACDB0vXo40a5V6d1W02G3bv3t0SghqNBiaTCSkpKYiNjRVdHpHiMfjII1gsQEGB1Hg2JwcoLQVqa4HGRsDb2wartQoDBwbinnu8odcD8fHShdjuzmazYfv27TCbzVi5ciXat28Pk8kEk8mEaHbNJboqBh+pQnR0NNatW4c+ffqILsVlmpqaUFBQgKysLKxatQrdunVrCcFevXqJLo9IMbhFjFQhLCwMP/74o+gyXKpdu3YwGAz44IMPcPLkSbz77ruwWCyIi4tDXFwc3nnnHZw4cUJ0mUTCMfhIFUJDQ1X1j763tzeGDRuGjz/+GOXl5Zg3bx7279+PgQMH4q677sKHH37IXoKkWgw+UoXQ0FCPn/Fdi0ajwQMPPNDSS/Avf/kLCgsL0bdvX9x7773sJUiqw+AjVQgLC1PVjO9afH19MWrUKCxbtgynTp3C7NmzsWnTJkRGRmLkyJH43//9X5w7d050mUQuxeAjVVDbUufN8Pf3x7hx47BixQqUlZXh97//PbKzsxEREYHRo0fjiy++YC9B8kjc1UmqcODAAYwbNw4HDx4UXYriXbp0qaWX4A8//ID77rsPKSkp7CVIHoPBR6pQVVWFrl27orq6mrectMKvewnm5+fb9RIMCAgQXR5RmzD4SDU6duyIQ4cOoXPnzqJLcUvNvQTNZjOKioowatQopKSksJcguR2+4yPV4AYXx3Tu3BkzZ87Ed999hwMHDkCv1+Ovf/0runfvjsceewzffvstGhoaRJdJdEMMPlINbnBxnm7duiE1NRWbN2/G7t270a9fP7z88svo0aMHnnjiCfzrX/9CY2Oj6DKJrorBR6qhhttbROjZsyeeffZZFBQUoLCwELfeeivmzJmDkJAQzJo1C7m5uWhqahJdJlELBh+pBmd8rhcREYHnn38eO3bsQE5ODrp164Ynn3wS4eHh+NOf/oStW7eC2wpINAYfqYaab28RISoqCi+++CL27t2Lb7/9FjqdDtOmTUPv3r2RlpaGoqIihiAJweAj1eDmFnFuu+02vPrqqzhw4ADWrl0Lb29vTJw4ETExMXjppZewb98+0SWSivA4A6nGsWPHMGzYMFgsFtGlEK7sJajT6VraKMXExIgujzwYg49Uo76+HkFBQbh8+TK83anlugo09xI0m81YtWoVunbtipSUFCQnJ6N3796iyyMPw+AjVenRowe2bduGnj17ii6FrqGxsRG5ubkwm81YvXo1IiIiYDKZkJycjNDQUNHlkQfgOz5SFW5wUT5vb2/cc889+Oijj1BeXo6MjAwcOHAAgwYNgtFoxAcffIBTp06JLpPcGIOPVIUbXNxLcy/BTz/9FOXl5UhPT8eOHTtw2223YdiwYVi0aBHOnDkjukxyMww+UhXO+NyXr68vfve73+Hzzz/HqVOn8Mwzz+CHH35AVFQURowYgaVLl+Lnn38WXSa5AQYfqQpnfJ7h170Ey8vL8fjjj+Pvf/87evXq1dJo98KFC6LLJIVi8JGq8PYWzxMYGIhJkyZh9erVOHnyJKZMmYI1a9YgLCwMSUlJyMrKQnV1tegySUEYfKQqXOr0bDqdDg8//DC++eYbWCwWjB07Fp9//jl69OiB5ORkrFmzBpcvXxZdJgnG4wykKqdPn0b//v3x008/iS6FZFRZWdnSS3DHjh0YNWoUTCYTRowYAT8/P9HlkcwYfKQqTU1NCAgIwPnz59lBXKUqKiqwZs0aZGVlYd++fRg7dixMJhPuv/9++Pj4iC6PZMDgI9W59dZbsWHDBkRFRYkuhQQrKyvDqlWrYDabcfjwYSQlJcFkMmHYsGG83ceD8R0fqQ43uFCzkJAQPPPMM8jPz8f27dsRFRWF559/vqWXYE5ODnsJeiAGH6kON7jQ1YSHh2POnDnYsWMHcnNz0b17d6SmpiIsLKyl0S4XyDwDg49Uh2f56EYiIyORnp6OPXv24J///Cc6dOiAGTNmoFevXuwl6AEYfKQ6nPFRa/Tt2xevvPIKiouL8c0338Db2xuTJk1CdHR0S6NdhqB7YfCR6vAdH7WFl5cXBgwYgPnz5+Pw4cNYsWIF6urqMHr0aMTGxuLVV19FSUmJ6DLpJnBXJ6nO3r17kZKSgv3794suhTxAU1MTtm7d2tJLsEuXLi0NddlLUJkYfKQ658+fR2hoKC5evAgvLy/R5ZAH+XUvweZr05p7CYaFhYkuz2EWC5CfL33l5ACHDgG1tUBjI+DtDfj7A1FRQEICoNdLX+Hhoqu+EoOPVMdms6FDhw748ccfERwcLLoc8lBWqxWbNm2C2WzG119/jejoaJhMJkyaNAk9evQQXd5Ns1qB7GzgjTeAXbsAHx+gqgq4XnJ4eQFBQUBDAzBoEJCWBowaBWg0spV9XQw+UqXY2FisWLEC/fv3F10KqUBDQwM2btyIrKwsrFu3DgMGDIDJZMKECRPQtWtX0eVdlc0GLFkCpKcD9fXApUttH0unA3x9gYwMYOZMKRhF4uYWUiVucCE5+fj44KGHHmrpJfjss88iJycH0dHRLY12ldRL0GIBjEbgueeAykrHQg+QPl9ZKY1nNErji8TgI1XiWT4Sxd/fH2PHjsWXX36J8vJyPPHEE9iwYYNieglmZgKxsUBhIeDsbk7V1dK4sbHSc0Rh8JEq8SwfKUFgYCAmTpx41V6CzY12q6qqZKsnIwNITZUCymp1zTOsVmn81FRg/nzXPONGGHykSpzxkdL8tpdgUlISvvjiC4SEhLQ02nVlL8F586Qgqqlx2SPs1NRIQSsi/Bh8pEqc8ZGSBQcHY9q0aVi/fj2OHj2KkSNHYtGiRejevTumTJmCdevWoa6uzmnPy8wEXn9dvtBr1hx+ci97clcnqdKhQ4cwcuRIHD16VHQpRDetuZeg2WzG3r17MWbMGJhMJgwfPrzNvQQtFumdm7Pf57WGVgsUFwNyHXVk8JEqXb58GcHBwbh8+TLatePCB7mfsrIyrF69GmazGaWlpRg/fjxMJhPuueceaG7ywJzNJu2y3LZNOoQuikYDDB0K5ObKc9SB/48nVQoICECHDh1QUVEhuhSiNgkJCcHs2bOxZcsW7NixA1FRUUhLS0PPnj2RmpqKzZs337CX4JIlwJ49YkMPkDa87N4t1SMHzvhItYYMGYKPPvoIQ4cOFV0KkdMcPnwYK1euhNlsxtmzZzFp0iSkpKQgLi7O7oo+qxXo1k06X6cUnToBFRXS9WeuxBkfqRY3uJAnioyMxNy5c7F7925s3LgRwcHBLb0En3/+eezYsQM2mw3Z2dKNLEpSXy9dj+ZqDD5SLd7eQp7u170E161bBx8fH5hMJkRHRyM11dLmG1lefll6P+jsmdmlS8Cbbzp3zKth8JFq8SwfqYWXlxf69++PjIwMHDp0CO+++xUqKpR5UXZRkeuvNGPwkWpxqZPUyMvLC1VV/RAQ0LbjD67m4wMUFLj2GQw+Ui3O+Eit8vOl1kKO6tsX+Ne/pDOA5eXAq686fhyhqkqqz5UYfKRanPGRWuXkXL+f3s1auxbYuBEYNw748kvgv/5L+nKEzSbV50oKaQtIJL/u3bujsrIS9fX18PX1FV0OkWwOHXLOOJ988stmlH/+E2jfXmo99N57gCMNJkpLnVLeNXHGR6rl7e2N7t27o6ysTHQpRLKqrXXOOCtX2n+flSU1nb39dsfGdVZ918LgI1XjciepkbNuavntxUfN34eEODauq2+SYfCRqnGDC6mRs87f3XLL1b93dBGFN7cQuRBnfKRG/v7OGSc52f77lBTpEPrevY6N66z6roWbW0jVQkNDsX//ftFlEMkqKsqGnTsdb4Pw+ONAu3ZAYSEwcqT0/csvAxcvOjZudLTDpV0Xg49ULSwsDBs2bBBdBpFL1dXVoaioCHl5ediyZQtKSh4C8BgAx9YUx44FPvwQeOklaRfnf/+39OUILy8gIcGxMW74DHZnIDXbuXMnpk2bhj179oguhchpzpw5gy1btrQE3c6dOxETEwODwQCj0YizZ4cjPb0zLl2SofldK+l00jEJk8l1z2DwkapVVlYiMjIS586dE10KUZs0NTWhpKSkJeTy8vJQUVGB+Ph4GI1GGAwGxMXFQafTtXzGYgH69HH9sYG28PcHDh50bTd2Bh+pms1mg1arRUVFhd0/DERKVVNTg23btrWEXH5+Pjp27NgymzMYDIiNjYX3DbZGGgyuvxqsLQwGIC/Ptc9g8JHqxcTE4Ouvv8Ztt90muhSiK5SVlbWEXF5eHoqLi9GvX7+WkDMYDOjevXurx/3mG+CRR9Dm1kSuoNMBy5cDY8a49jnc3EKq13yWj8FHolmtVuzdu9fu/VxVVVXLbO6dd97BkCFDEBAQ4PCzRo0ClHZTn5+fVJerMfhI9XiWj0S5cOECtm7d2hJyW7duRUhICIxGI4YPH46XX34Z0dHR8HK05cFVaDRARoZ0t2Z1tdOHbzWtFpg3z/WH1wEGHxFvbyFZ2Gw2HD9+vGXJcsuWLThy5AjuuOMOGAwGzJ49G3q9Hp06dZKtppkzgc8/l87hWa2yPfYKGg0wYIBUjyzPk+cxRMoVGhqKHFf3QSHVqa+vx86dO+12WwKA0WiE0WjEjBkzMHDgQKGdQby8gBUrgNhYscHn5yfV4YKJ7VUx+Ej1QkNDOeMjh1VWVmLLli0tIVdUVITIyEgYDAYkJSXhf/7nfxAREeGSZUtHhIcDCxYAqalATY38zw8MlJ7vyuMLv8XgI9ULCwvjOz5qFZvNhoMHD9rttiwvL0dcXByMRiNefPFFxMfHo3379qJLvSnTp0sd1DMy5A2/wEAgPV16vpx4nIFUr7q6Gp07d0ZNTY3ifhsnZbh8+TIKCwvtzs4FBQW1LFsaDAb069fvhmfnlC4jA5g/X57waw69uXNd/6zfYvARAejUqRNKSkrQpUsX0aWQApw6dcpuNrdv3z7ExsbanZ0LcbTpnEJlZgKzZgF1da5576fRSO/0FiyQf6bXjMFHBGDgwIFYunQp7rjjDtGlkMwaGxuxb98+u7Nz58+fbwk4o9GIO++8E4GBgaJLlY3FAkyeDOzZ49yjDlqttHtzxQp53+n9Ft/xEeGXDS4MPs936dIlu7NzBQUF6NatGwwGA4YNG4b09HTExMSgXTv1tisND5euDVuyRFqOrK937IYXnU46LJ+RIR1ZEP1GgTM+IgCpqamIiYnBf/7nf4ouhZzIZrPhxx9/tDs7V1paisGDB7fM5vR6PZe4r8NqBdavB958EygqAnx8gKoq4HrJ4eUFBAUBDQ3A4MFAWpp0I4tSXoFyxkcEHmnwFA0NDdi1a5fd2Tmr1dqyCWXq1KkYPHgw/Pz8RJfqNjQa6e7MMWOkJdCCAuly65wcoLRU6vDQ2CiFmr+/1EQ2IQHQ64H4eGn2qDSc8REB+PLLL7Fu3TpkZWWJLoVa4eeff0Z+fn5LyG3fvh29e/e261TQu3dv7tYlO5zxEYH3dboDm82GQ4cO2e22PHHiBIYOHQqj0YgXXngB8fHxCA4OFl0qKRyDjwhc6lSi2tpabN++3W63ZUBAQMtM7sknn0T//v2h0fCfMWodLnUSQXo3pNVqUVNTw39IBamoqLALud27d6Nv3752y5ahoaGiyyQPwOAj+reQkBDk5+cjTOQBI5VoampCcXGx3W7LyspK6PV6u7NzQUFBokslD8RfbYn+rXm5k8HnfFVVVdi2bZvd2bnOnTvDYDDgrrvuQlpaGvr27avqs3MkH874SNUsFmlrdn4+sGzZUVy+HIrGRh+77dlRUb9sz9brlbk9W2lOnDhhd6SgpKQEAwcOtDs7d8stt4guk1SKwUeqY7UC2dnAG28Au3a1/kDuoEG/HMjl60DAarVi9+7ddrst6+rq7N7N3XHHHfD39xddKhEABh+piM3muVcwyen8+fN2Z+cKCwsRFhbWEnJGoxGRkZE8O0eKxeAjVXDlpbv9+0uX7nriEqjNZsORI0fsdlseP34cQ4YMaQk6vV6Pjh07ii6V6KYx+MjjqaHNirPU1dWhqKjIbrelj4+P3WxuwIAB8PHxEV0qUZsx+MijqaWxZludOXPGbja3c+dOxMTEtISc0WhEaGgoly3JozD4yGPNmwe8/ro8oddMyeHX1NSEkpISu92WP/30E+Lj41uCbujQodDpdKJLJXIpBh95pMxMIDVV3tBrFhgILFwoftmzpqYG27Ztawm5/Px8dOzY0W63ZWxsLLyV0iuGSCYMPvI4FgsQG+vcTSytpdUCxcXydpkuKyuzm80VFxejX79+LSFnMBjQvXt3+QoiUigGH3kUmw0wGoFt26QeYaJoNMDQoUBurmuOOlitVuzdu9fu7Fx1dbXdbG7IkCEICAhw/sOJ3ByDjzzK4sXAc8+Jne0102qBt98GnnjC8bEuXLiArVu3toTctm3bEBISYrfbMjo6mptQiG4Cg488htUKdOsGVFaKruQXnToBFRXS9Wc3y2az4fjx43ZHCo4cOYI77rjD7sqvTp06ua5wIg/GC5fIY2RnSzeyKEl9vVTXmDHX+zv12Llzp937OS8vr5bZ3IwZMzBw4ED4+vrKVziRB+OMjzyGwSBdNq00BgOQl/fL95WVlXZn54qKihAZGWn3fi4iIoLLlkQuwuAjj2CxAH36ALW1oiu5kp9fE157bRUOHvwH8vLyUF5ejri4uJaQi4+PR/v27UWXSaQaXOokj5CfL3VZUGLw1ddXY926n/Dww3fg6aefRr9+/Xh2jkggdn0kj5CfL7UWaqtbbwWWLQOOHpUOvR85Anz0ERAc7IzqdBgy5Gk89dRTGDhwIEOPSDDO+Mgj5ORcv5/ejfToAZw4ATzzDHDuHNC7t3Tt2Pr10js6R9hsUn1EpAx8x0ceQadzbMb3W97eQHy8dAB90CCpYa0jgoIc6/9HRM7DpU7yCI6+2/PxAf7yF+DAAWmp02qVQg8AYmLE10dEzsOlTvIIjl5P9vrrwNNPA6+9BmzZIs3OevYEvv4a8PcXXx8ROQ+DjzyCt7djTWZTUqTNLRkZv/wsKMjxuppxPwuRcnCpkzyCo7OywECgocH+ZzNmODbmrzlj1khEzsEZH3mEqChg5862f37DBmDaNGDvXuDwYWD8eMd3c/5adLTzxiIixzD4yCMkJEg7L9u6R/npp6X2Qc1LnevXA5MnA4WFjtfm5SXVR0TKwOAjj6DXA5991vYjA5WVUtD9ljOuywwKkuojImXgOz7yCHr9le/olKKhgcFHpCQMPvII4eHSQXMlGjwYCAsTXQURNWPwkcdIS5NucFESnU6qi4iUg1eWkcdQYgf2zp2B06d5jo9ISTjjI4+h0Ui7MrVa0ZVItFpg3jyGHpHScMZHHsVmA4xG6RiCIze5OEqjAYYOle77ZCN1ImVh8JHHsViA2FigulpcDVotUFzMTS1ESsSlTvI44eHAggXSNWQiBAZKz2foESkTg4880vTpQHq6/OEXGCg9d/p0eZ9LRDePwUcea+5c6Uuu8GsOvblz5XkeEbUN3/GRx8vMBGbNAurqXLPhRaMB/Pyk5U3O9IiUj8FHqmCxSHdx7tnj3E0vWi0wYACwYgXf6RG5Cy51kiqEhwN5ecDbbwOdOjl+w4tOJ43z9tvSkQWGHpH74IyPVMdqldoOvfkmUFQE+PgAVVXXb2nk5SV1WWhokO7eTEsDRo3i4XQid8TgI1WzWICCAiA/H8jJAUpLgdpaoLFRCjV/f6mJbEKC1GEhPl6aPRKR+2LwERGRqvAdHxERqQqDj4iIVIXBR0REqsLgIyIiVWHwERGRqjD4iIhIVRh8RESkKgw+IiJSFQYfERGpCoOPiIhU5f8BkiUSVhIPrFMAAAAASUVORK5CYII=\n", 51 "text/plain": [ 52 "<Figure size 432x288 with 1 Axes>" 53 ] 54 }, 55 "metadata": {}, 56 "output_type": "display_data" 57 } 58 ], 59 "source": [ 60 "G = nx.Graph()\n", 61 "G.add_node('a')\n", 62 "nodes_to_add = ['b', 'c', 'd']\n", 63 "G.add_nodes_from(nodes_to_add)\n", 64 "G.add_edge('a', 'b')\n", 65 "edges_to_add = [('a', 'c'), ('b', 'c'), ('c', 'd')]\n", 66 "G.add_edges_from(edges_to_add)\n", 67 "nx.draw(G,\n", 68 " with_labels=True,\n", 69 " node_color='blue',\n", 70 " node_size=1600,\n", 71 " font_color='white',\n", 72 " font_size=16,\n", 73 " )\n", 74 "print(\"Nodes: \",G.nodes())\n", 75 "print(\"Edges: \",G.edges())\n", 76 "\n", 77 "B = nx.Graph()\n", 78 "B.add_edges_from([\n", 79 " ('a', 'b'),\n", 80 " ('a', 'd'),\n", 81 " ('c', 'd'),\n", 82 " ])\n", 83 "\n", 84 "print(get_leaves(B))\n", 85 " \n", 86 "path = './'\n", 87 "SG = nx.read_adjlist(path + 'friends.adjlist')\n", 88 "print(SG.degree('Alice'))" 89 ] 90 }, 91 { 92 "cell_type": "code", 93 "execution_count": 7, 94 "id": "89a1e2eb", 95 "metadata": {}, 96 "outputs": [ 97 { 98 "data": { 99 "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb4AAAEuCAYAAADx63eqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAql0lEQVR4nO3deVyU5cL/8e/MMCyyDPuObBqI5IYioLkgSqaQllKaomme1NRCffQ8mkczTy6l1qOlkqXliobhkkvuYgqZv9xFXEFlEWXfYbh/f3Cc0yiuIQNc3/frNa90mJn7ujH4zHVvI5MkSQIREZEg5LoeABERUV1i+IiISCgMHxERCYXhIyIioTB8REQkFIaPiIiEwvAREZFQGD4iIhIKw0dEREJh+IiISCgMHxERCYXhIyIioTB8REQkFIaPiIiEwvAREZFQGD4iIhJKowrfoUOH4OzsrOthEBFRPVZvwufm5gYjIyOYmJhobuPGjXvsc2QyGa5cuVJHIyQiosZAT9cD+Kvt27cjJCRE18MAAFRWVkJPr159e4iIqBbUmxnfo1y5cgVdu3aFSqWCtbU13nrrLQBAly5dAACtW7eGiYkJYmJiNM/5dN582NrawsHBAatWrdLcX1ZWhsmTJ6Np06aws7PD6NGjUVJSAuC/m0nnz58Pe3t7vPvuu3W4lkREVFfqffhmzJiBXr16IScnB7du3cL48eMBAEeOHAEAnD59GoWFhXjrrbdwp6gU6RkZOHcrE8sO/oF5S77GBx98gJycHADAP//5TyQnJ+PUqVO4cuUKbt++jdmzZ2uWlZGRgezsbKSkpCA6OrruV5aIiF64ehW+fv36wdzcXHP79ttvoVQqkZKSgrS0NBgaGqJz5841PresUo3k7CLo6SkxYEwUZHpKmLcKhImJCS5dugRJkhAdHY3FixfD0tISpqammDZtGjZu3Kh5Dblcjk8++QQGBgYwMjKqq9UmIqI6VK92YsXFxT20jy8sLAwzZsyAv78/LCwsMGnSJIwYMeKh5xZVqCGDDCbmFlD8Z99caWkpJADJyclwd3dHcXEx/Pz8NM+RJAlqtVrzdxsbGxgaGr6YlSMionqhXoWvJvb29vj2228BAEePHkVISAi6dOmCZs2aaT3OWKlAlaTWuk+hp4eS4mJMnDgRcrkcCoUCY8aMQe/evdG+fXs0adJE6/EymezFrgwREelcvdrUWZPNmzfj1q1bAAALCwvIZDLI5dXDtrOzw7Vr1wAABnoK5CSfByQJenIZFDKgo7MVrK2tsWHDBvzxxx/o2bMnYmNj8dFHH8HGxgatWrVCeHg41q9fj/T0dJ2tIxER1Z16NeMLCwuDQqHQ/L1nz55o3rw5PvroI+Tl5cHOzg5fffUVPDw8AACzZs3CsGHDUFJSgujoaCQe3AtUlqOzsyWMlQoY6FW/lkwmQ9OmTfHzzz9j9uzZ2LhxIxQKBfLz8yGXyxEbG4tDhw4hNzcX/fv3R2BgIAIDA9G+fXvu6yMiamRkkiRJuh5EbaiqqoK1tTXOnz8PBweHZ36+JElITU3F8ePHNbfz58/Dx8dHE8LAwEC4urpykygRUQPWaMJ35swZDBgwAMnJybX2miUlJTh58qRWDAFohdDPz4+zQiKiBqTRhG/p0qU4deoUVq5c+cKWIUkSUlJStEJ44cIFtGzZEkFBQZoYuri4cFZIRFRPNZrwRUREoG/fvoiMjKzT5RYXF+PkyZM4duyYJoZ6enpas8J27drxNAkionqiUYRPkiQ4ODggMTERrq6uOh/L9evXtWaFSUlJePnll7Vi6OLiotNxEhGJqlGELzk5GT179kRKSoquh1KjoqIi/PHHH1ox1NfXf2hWaGBgoOuhEhE1eo0ifCtXrsThw4exZs0aXQ/lqUiShGvXrmmF8NKlS2jVqpVWDPnZgkREta9RhG/o0KHo0qULRo0apeuhPLeioiKcOHFCK4ZGRkZaIWzbti309fV1PVQiogatUYTP1dUVv/76K7y8vHQ9lFojSRKuXr2qFcLLly+jdevWWjF0dHTU9VCJiBqUBh++lJQUdOzYEenp6Y3+FILCwkKcOHFCcwRpQkICjI2NtULYpk0bzgqJiB6jwYdvzZo12L59OzZt2qTrodQ5SZJw+fJlrVnh1atX0aZNG60YPs+VbIiIGqsGH75Ro0ahdevWGDdunK6HUi8UFBTg999/14QwISEBpqamCAwM1Jxk37p1ayiVSl0PlYhIJxp8+Ly8vLB582a0atVK10OplyRJQnJystas8Nq1a2jXrp3WrNDOzu6ZXnfWrFm4cuUK1q5d+8THjh49Gk5OTpgxY8bzrgYRNRCrV6/GypUrcfToUV0P5ZHq1aczPKv09HRkZWXB19dX10Opt2QyGby8vODl5YXhw4cDAPLz8zWzwujoaIwYMQLm5uZaIWzVqhWUSiXWr1+PRYsWISkpCaampmjTpg2mT5/+TGNYvnz5C1gzInqR3NzckJmZCYVCAaVSiaCgICxfvrxRXHyj3n8e3+PEx8ejc+fOms/no6djZmaGkJAQzJgxAzt37sTdu3fxyy+/oEePHjh9+jSGDRsGS0tLeHp6YtSoUQgJCcHZs2eRmpqKsWPHYuvWrbU2lsrKylp7LSKqXdu3b0dhYSHS09NhZ2eH8ePH63pItaJBF+PIkSPo2rWrrofR4MnlcrRo0QIjRozAt99+i3PnzuH8+fNIS0tDnz59cOrUKbRr1w7e3t6IiYmBm5sb0tPTUVVVpXmNgQMHwt7eHiqVCp1feQXHTp5CWaUaADB8+HB8/PHHAIBDhw7B2dkZ8+fPh729Pd59911UVVVh3rx58PT0hJWVFSIiIpCdna2T7wURPczQ0BADBgzAhQsXAAB5eXmIjIyEjY0Nmrq6YtrMT1BSXqF5vCRJGDduHFQqFby9vbF//35dDb1GDXpT55EjRzBs2DBdD6NRunDhAioqKrB+/Xro6emhqqoKSUlJmv2EW7duRW5uLtLT0zVHjh4/fhxqE3NETZ6CIUOGYPHWvWhnr3rotTMyMpCdnY2UlBRUVVVhyZIliIuLw+HDh2FjY4MJEybggw8+wIYNG3Sw5kT0oOLiYsTExCAgIAAAMH78eOTl5eHIqXOIv5SCT0YOQr6+CaaOHwMASExMxIABA3D37l1s2bIFb7zxBq5fvw5LS0tdrsZ/SQ3UvXv3JFNTU6miokLXQ2mU1q5dK9nZ2T3y6zNnzpQGDhwo7d69W5o5c6bUs2dPyampq7Th1DXpx98vSgCkH08kSbEXbkmv9ekjjRkzRsrKypL27dsnKZVKqaSkRPNa3t7e0r59+zR/T0tLk/T09PhvS6RDrq6ukrGxsaRSqSQ9PT3JwcFB+u2336TLly9Lenp60orvvpN+unBTik1Kk96fNV9q2SFQiruUJkWv/E5ycHCQqqqqNK/VoUMH6ccff9Th2mhrsDO+o0ePIjAwEHp6DXYV6jUrKyvcvXsX5eXlyM7ORlpamtZt+/btyMjIwJUrV3Dr1i3cvXsX+gaGeLfTy5DLFQCAgpxs6Onp4cz58zj222+IiYlBbm4uJEmCl5cXLCwsYGFhgcuXL6N3796Qy+WQyWSa24YNG9C8eXPN4ywsLHgaBtHfVFFRgZycHGRnZ2v+++AtJycHd+7cgaurK9RqNe7du4fMzEx06tQJzs7OqKysxL6DR/CGXzfoGxrBxskZ9+5kQCaToUxdBScnJ60Liri6uiItLU2Ha62twVbjyJEj6NKli66H0WBJkoScnBxNyG7fvq0VttTUVFRVVaFJkyawtLSEo6Oj1s3BwQGmpqZYuHAhjh07hm+++QY/b9uOpKomKMjPR6R/C0iSBLlcgY7tO8Db6yXMmTMHBw4cwNChQ3H48GHk5OQgJycHQ4cOxdChQ2FlZYWcnBzk5uYiJycH69at0zzm/v0GBgZaIazpZm5uXuP9/PQLaiwkSUJJSUmNwXpUyO7/ubi4GBYWFrC0tNS63b+vefPmsLS0xN69ezFmzBiEhobC0tIS5ubmcHR0xBdffIGhQ4di2v9MQoqhEdQSkJV2G1a29pAkCQYKOW7fvg1JkjTxS01NRXh4uI6/a//VYMN3+PBhLFq0SNfDqJcKCgoemqE9GLa0tDQYGhrCyclJK2je3t4IDg6Go6MjfvnlF3z77bdYsWIFevXqBaVSiX379uHgwYNo3749rly5Aj8/PyQmJsLAwACOdraQFZXho0/mAQAUMiDr1HHs2vkLzFVmAKCZ1bm5ucHNzQ0AMHnyZGzduhU//PADXF1dkZWVhWPHjuH111/XWi9JklBYWKgVwwdvFy9e1IrnX296enpPjOaj4mlkZFSn/4YkhqqqKuTl5T11tP56UygUD0Xrrzc3N7ca7zc1NX2qyzt+/PHH8PHxgZeXFyRJwrZt25CTkwNfX19ERETgk5n/wmdLl+Nocip2rF6BfiNHo529CvsVcty5cwf/93//h7FjxyIuLg4XL17Ea6+9Vgff0afTIMNXUFCAixcvwt/fX9dDqVMlJSVIT09/KGAPxk2tVmsFzcnJCU2bNkVAQIDWjM3Y2PixywsMDESLFi0wZ84cvPPOOzA1NYWfnx+mT5+OX3/9VfO4yMhI7NmzB05OTrC0tMS/Zn2C3Rt+QBcXK/j0DELsqmhs2LABffv2hbm5+UPL+fDDDyFJEnr16oW0tDTY2trirbfeeih8MpkMpqamMDU1RdOmTZ/peydJEoqLix8bzcuXL2vNLv/6NQBPHc0Hw9mkSZNGfR3Z4cOHw9nZGXPmzEF8fDzee+89XLp0SdfDqlPl5eU1BupJ9+Xl5cHExOShON2PmZOTE15++eWHAldXb8bCwsKgUCggk8ng6uqKH374AS1btsSSJUswfvx4dGnjCwNDQwwdPgL/+p8PYaRfvSuiY8eOuHz5MqytrWFnZ4effvoJVlZWL3y8T6tBXrllz549mDt3Lg4dOqTrodSKiooKZGZmPnJmdv9WWFgIBweHhzY7PjhrMzMzq3e/aE+ePInXX38d48ePx5QpU+rd+J6kpKTksdGs6XY/nmq1+pGbX58UTxMTk3r1verWrRtOnz6NjIwMzabjv4avIZMkCUVFRc81+yorK3vs7OtR96tUKh6noAMN8jv+LPv3TExMcObMGXh4eLzgUT2sqqoKWVlZT9zseO/ePdjY2DwUsM6dO2vFzdLSssGerO/n54eEhASEh4fj0qVLWL58eYP6FAkjIyMYGRk918dAlZaW1rjp9f7t5s2bOHPmTI1fKy8vf65oWlhYPPUmrad148YNxMfHQ6VSYdu2bRg4cGCtvXZtUqvVms2HzzL7ys7OhlKpfGywPD09a7y/vr1Bocerkxnf/Uvf6OnpQaFQwMfHB5GRkfjHP/7xXL/IX3nlFcycORMhISEvYLRP9uCBIY8KW2ZmJlQq1SNnZvdvtra2wrzrKyoqwpAhQ5CdnY3Y2FhYW1vrekj1Wnl5+WOj+bhbSUkJVCrVc0XTzMzsoZ/N2bNnY8+ePejYsSOSk5OxY8cOANozvkOHDmHIkCG4eiMFRRVqZGekYcqkiYiPj0dVVRUGDRqEpUuXAgC+//57fP7558jIyIC/vz+io6Ph6uqqWV5ZWdlzzb4KCgpgZmb2zLMvHgAljjr7bbt9+3aEhIQgLy8Phw8fxocffojExESsWrXqmV6npKQEf/75JwIDA1/IOAsLC5+4yTEtLa36YI4HAubl5YXu3btr/m5vb88fpAcYGxsjNjYW06dPR0BAAHbs2AFvb29dD6ve0tfXh62tLWxtbZ/5uRUVFcjLy3tkGLOyspCcnFzj14qKimBmZqY120xISECbNm1w79497Nq1C59//rnmMHWFQoGrV68iPz8faknC7mt3UFVVhYn9+qBr1y44cuQI8vLykJCQgM2bN+PgwYOIiYlBv379IEkSEhIS0KpVK7i5uWkCVlFR8dhg+fj41Hi/SqWCQqF4Af8a1FjU+TRDpVIhPDwc9vb2CAgIwKRJk9C8eXNMnz4dmzZtQllZGfr374/FixfDyMhI8w4yKioK8+fPh1qtRvOWL0PPwBBA9btNY2Nj3LhxA0eOHIGPjw/Wr18PT09PANUHRFy+fBnOzs5Yv349Pv30U83+iTZt2sDZ2VkraJWVlQ/NzJydneHv76+ZtT3NgSH0aHK5HHPnzoWXlxe6du2KdevW6Wz23pgplUpYW1s/16xarVZrZpq5ubmIj4/HoUOH0L9/f1RUVMDc3BxbtmyBs7Mzzp07h7Nnz+LgwYPILyyCJJNDLQGXTv0/ZN/JQMg/ovDmWwOhL5dp4pSYmAh/f3/N+Zy9e/fG0KFDMW/ePPj6+sLS0rLRHxREuqOz7Wv+/v5wdnZGfHw8vvvuO1y9ehWnTp2CUqnE4MGDMXv2bMydOxdA9SWu8vLykHDxMlZuisPCiaPx05/J6OLliqqqKs0nCIwYMQLz5s1DeHg4OnbsiNu3bwMA2rdvj+LiYqjVanh7e6NPnz6wtLSEgYEBOnTooBU5lUrFH7Y6Mnz4cHh4eCAiIgKzZs3C6NGjdT0k+g+FQgErKyvNkXgrVqxAaGgoJk2aBKB6E+yWLVvwr3/9CyNHjkRubi6ysrLQrOXLuHb5MgDgbkYabBydYWZmhqOJJ2Bp9N99uj4+PoiPj8fx48c198lkMqhUqkZx9X+q33S6Y8nR0RHZ2dmIjo7GmTNnNNdxmzZtGgYPHqwJn1KpxNRp07EvNRvtg3vBsIkxbl67it/0DRGzaTMUchm+/vprODo6wsbGBidOnECnTp3g6OiIX3/9FXv27EGHDh3g5uaGCRMmYNCgQTAzM9PlqtN/dOnSBb/99hv69u2LpKQkLFy4kJup6pmSkhJs2rQJarUaNjY2KC8vR0lJCSoqKtCnTx8YGRnB19cXy5Ytw+lz5zD4naEAAGt7R2Sl30ZlRQWMldr/pi4uLpg+fTreeecdXawSCU6nhwjevn0blZWVKC4uhp+fH8zNzWFubo5XX30VWVlZmsdZWVmhTJJpZmIGhkYoKS6CkaEB+r85ABMnTsQff/yBbdu2YcqUKTAwMMDIkSPRu3dvzfPlcjliY2Oxc+dOuLq6omvXrlrvNkl3PD09cfz4cZw/fx7h4eHIz8/X9ZDoP1JTUzFx4kSUlpbC1NQUenp6CA0Nxeeffw5/f38MHDgQgYGB8PHxgZ2dHfQVCigVMihkgHebdrC0scOeZV+gsqwUpaWl+O233wBUfzjx3Llzcf78eQDVV/vfvHmzLleVBKKz8J04cQK3b99Gv379YGRkhPPnzyM3Nxe5ubnIy8tDYWGh1uONlQo8eACqBECpePpV6NChA7Zu3Yo7d+6gX79+iIiIqI1VoVpgbm6OnTt3omnTpujUqRNu3Lih6yEJ6c6dO4iJicH777+P5s2bw8/PD3FxcejSpfoAlbS0NGzatAkffvghJk2ahHXr1j30mYoKmQyvetiiq6sNft25A5k3U9C0aVM4OzsjJiYGANC/f39MnToVb7/9NszMzODr64tdu3bpYpVJQHW+qTM/Px9HjhzBhx9+iCFDhqB169YYNWoUoqKisHTpUtja2uL27ds4d+4cQkNDNc8z0FOgnb0K/y8jDzIZIKnVWP/5p5CVlT7VcsvLy7F582b07dsXKpWqxsO1SbeUSiW++eYbLFmyBEFBQYiNjX1hR+9StdzcXBw+fBgHDhzAgQMHcPPmTXTt2hXBwcEYN24cWrZs+cifk4iIiIfePHbr1g23bt0CUP0za+nhjri4uBqff/8arUR1rc7CFxYWBj09Pcjlcvj4+GDixImagxnmz5+P2bNnIyAgAHfv3oWTk5Pm4qh/5WLWBLZNDGCgUCDAxQp6aQ5YtGgDnJycnmoMa9aswbhx46BWq+Hl5YV169bV+nrS3yOTyTBhwgQ0a9YMr7/+Or788ksMHjxY18NqNIqKinD06FFN6JKSkhAUFITg4GB8//33aNu2rTDnlJK4GuQly+6TJAkzZszA9u3bceDAgXp1LTj6+86ePYvw8HBERkZi1qxZPNr2OZSVlSEhIUETuj///BN+fn4IDg5GcHAw/P39ea4pCadBhw+ojt/UqVOxb98+7N+/HxYWFroeEtWi+/tjmzZtilWrVvFTEp6gsrISJ0+e1IQuISEBPj4+mtAFBQXxHFQSXoMPH1Adv6ioKBw/fhx79+7lqQqNTGlpKUaOHIkrV65g69atsLe31/WQ6o2qqiqcPXtWE7r4+Hi4urpqQtelSxeoVCpdD5OoXmkU4QOq4/fBBx/g9OnT2LNnD0xMTHQ9JKpFkiRhzpw5WLlyJbZt24bWrVvrekg6IUkSkpOTNaE7ePAgLC0tERwcjB49eqBbt26wsbHR9TCJ6rVGEz6g+t3v+++/j+TkZOzcuZObdBqhTZs2Ydy4cfjuu+8QFham6+HUiZSUFE3oDhw4AIVCoZnRde/enVc6IXpGjSp8QHX8RowYgVu3bmH79u3cJ9QI/f777+jfvz8mTZqEqKioRnfQS0ZGBg4ePKgJXUFBgSZ0wcHB8PT0bHTrTFSXGl34gOoL7A4dOhTZ2dmIi4uDoaGhrodEtSw1NRVhYWHw9/fH119/3aA+2+9B2dnZWufSpaWlac6lCw4ORsuWLRk6olrUKMMHVB/d9vbbb6OsrAyxsbEN+hcj1aygoADvvPMOCgsL8dNPP2mu9VrfFRYWIj4+XhO6y5cva86lCw4ORtu2bXm9UqIXqNGGD6j+PLKBAwdCLpcjJiYGSqVS10OiWqZWqzF16lRs27YNO3bswEsvvaTrIT2ktLQUx48f14Tu9OnTaN++vda5dHxjRlR3GnX4gOoTeN944w2Ymppi7dq1vCpFI7Vy5UpMnz4dGzduRPfu3XU6loqKCvzxxx+a0CUmJsLX11frXLomTZrodIxEImv04QOq33GHh4fDzs4Oq1ev5makRurgwYN4++238e9//xvvvfdenS23qqoKp0+f1oTu6NGjcHd314TulVde4bl0RPWIEOEDgOLiYvTt2xdubm5YuXIlL1DdSCUnJ6Nv374IDw/H/Pnzn/tNzv3/T2r6ZHhJkpCUlKQJ3aFDh2BjY6MJXbdu3Z7rU8+JqG4IEz6g+gK9vXv3ho+PD5YtW8Yj5RooNzc3ZGZmakUtOTkZjo6OAKqPkhwwYABMTEywfv3657qYwYPhu379uta5dPr6+ujRo4fmXLqnvVA6EemeUOEDqo8EDA0NRfv27fHVV18xfg3Q42ZjQPURvZIkYezYsThx4gS2bduGpk2bPtMyXFxcMHToUNy5cwcHDhxAcXGx1rl07u7u/H+HqIESbnufqakpdu3ahePHj2Py5MkPfbgtNUwymQxff/01mjdvjubNm0OpVMLIyAg3btyAm5sbvL29sf/QIWSXlKOsUo1Zs2YhIiICkZGRMDU1hbe3NxYsWIBx48bBx8cHaWlpOHLkCNq0aYOvvvoKRkZGCAsLw3vvvQcPDw9Gj6gBEy58AKBSqbBnzx4cOHAA06ZNY/waibi4OCQmJuLChQsAAH9/f1y9ehVbtmyBzMgEAwZE4MDVNOy+dgf3CksQFxeHwsJCNGvWDNevX8dnn30GNzc3rF27Fi4uLpg1axaCgoLwwQcfYMmSJRg0aJCO15CIaoOwx/ZbWlpi79696N69OwwMDDBr1ixdD4meQb9+/TSnpnTr1g0A8L//+79aJ7EPGTIEkiTBz78j5qyLw7BAX6RevQI375ZIKyyFmUqFdu3aYfLkyTA2NkZAQAAmT56seX58fDy+++47rF27VrMMImr4hA0fAFhbW2P//v3o1q0b9PX1MW3aNF0PiZ5SXFycZh9fQUEBzMzMkJSUhNOnT+P69eu4du0aTpw4gaysLMjlchgYNUFJUSHyc7IBAPpKPXQP6YmPP/4YAHDjxg2UlpaisrJSE9Tly5eja9eujB5RIyPkps6/srW1xf79+/HDDz/giy++0PVwqAYVFRW4evUq9u7di+joaOTk5GDOnDnw9/eHjY2N5vP5YmNjcePGDXh4eKBTp06oqKjA8ePHUVBcgvUnL6GJqZlms7YEQO8J++mWL1+O1NRUREVFvehVJKI6JPSM7z4HBwetmd+ECRN0PSShSJKEzMxMXLt2DdevX9fM2O7/OT09HY6OjvDw8IC7uzvkcjmCgoIQHh4Od3d32NraQi6XY8WKFWjWrBkAYOfOnTA0NISrqysUkHDkh29QUlgAhUwGhQxwMDFEVs7jw2dqaordu3ejR48e+Oc//4l58+bVxbeDiF4whu8/nJ2dNfFTKpUYM2aMrofUqOTn52tC9tewXbt2DTdu3ICJiQnc3d01cQsKCsI777wDd3d3uLi4aF1ndd++fQgODkZAQMAjlxcaGopXX30VL730EoyNjREVFQVnFxf42pjiVQ9b/GmgRNZTjNvc3FyzL1ipVOLTTz+the8GEemScOfxPcm1a9fQrVs3zJw5EyNHjtT1cBqM8vJypKam1hi269evo6SkRCts9/97//Y8J5kTET0Pzvge4OHhgf3792ve4UdGRup6SPWCJEnIyMh4aDPk/T9nZGRobY708PBAv379NH+2sbHhuW9EVC9wxvcIFy9eRI8ePbBo0SK8/fbbuh5Onfjr5sgHZ2z3N0fWNGPz8PCAs7MzP/aJiBoEhu8xzp07h549e2Lp0qV48803dT2cv+3+5shHHURSUlLyUNDu/9fNzY2bI4moUWD4nuDUqVN49dVXER0djfDwcF0P57Hub458VNgyMjLg5ORUY9jc3d25OZKIhCBc+DZu3IjFixfj3LlzMDY2hru7O4YNG4YxY8Y88pf+yZMn8dprr2HVqlV47bXX6njE2vLz8x8Zths3bsDU1PSRYXNxceEH8RKR8IQK38KFC7FgwQJ8/fXXCA0NhYmJCU6dOoUvvvgC33//PQwMDB753MTERISFhWHdunXo2bPnY5fz16t/PKvy8nKkpKQ8cl9bWVnZQ2Hj5kgioqcnTPjy8vLg6OiIH3/88ZH768rKyjB9+nRs2rQJZWVl6N+/PxYvXgwjIyMAwJQpU7Bw4UIYGxujS9eumP/lEjRzdYGBngIymQxLly7Fl19+icrKSly/fh0LFizA4sWLIZPJMHv2bIwaNQqXLl2CiYkJLl26hM8//xzHjh1DWVkZLCwsIJfLkZWVpdkcWdP+Nm6OJCL6e4QJ3+7du9G3b1+UlpY+cjYWFRWFq1evYvXq1VAqlRg8eDB8fX0xd+5cHDhwABEREfjss88Qu+8wFPr6SLl0EZ+t+xnt7FVoqjJGSEgIYmJiUF5ejtjYWHz88cd47733kJ+fjx07diAtLQ36+vowNzeHXC6HQqFAREQEPDw8sG7dOrRp0wZLlizh5kgiohdImN+wd+/ehbW1tVZUgoKCcOHCBZSVlWH37t2Ijo7GmTNnNFf4nzZtGgYPHoy5c+di3bp1GDFiBIaNGAnrV/qgpKQEwzq2QPrNm0ioqAAApKSkoHnz5igrK4NSqYS1tTUqKirg4+ODdu3aYfTo0fj999/RqlUrmJiY4MyZM/D09AQA+Pn5YfDgwYweEdELJsxvWSsrK9y9e1dr/9uxY8cAVF+uLDMzE8XFxfDz89M8R5IkqNVqAEBaWhratWuHogo19PQUMDI2hqm5BbLvpMPKzg4A8O9//xtdu3aFjY0NevfujfDwcIwdOxZA9WbU0aNHw9jYGFlZWY9dFhERvTjCfDpDYGAgDAwMsHXr1hq/bm1tDSMjI5w/fx65ubnIzc1FXl4eCgsLAQCOjo5ISUmBsVIBSZJQWlyMgtwcWNo6QF9fHwDQtm1b2NraQiaTwcHBAbdu3dK8/s2bN596WURE9OIIEz5zc3PMnDkTY8eOxU8//YSCggJUVVXh1KlTKCoqglwux6hRoxAVFYU7d+4AAG7fvo09e/YAAAYNGoRVq1bh4rmzaGlhiA2L5+KlVm3h4OKCdvaqh5YXERFR/fiLF1FcXKx1ceMnLYuIiF4cYcIHVB+VuWjRIixYsAB2dnaws7PD+++/j/nz5yMoKAjz589Hs2bNEBAQADMzM4SEhODSpUsAgJCQEHz66ad488034e/lCfW9dMRs3IhXPWzhYtbkoWX17t0bEyZMQPfu3TWvCUBzysTjlkVERC+OMEd16trFixfh6+uLsrIyHsBCRKRDQs346trPP/+MsrIy5OTkYOrUqQgLC2P0iIh0jOF7gVasWAFbW1t4enpCoVBg2bJluh4SEZHwuKmTiIiEwhkfEREJheEjIiKhMHxERCQUho+IiITC8BERkVAYPiIiEgrDR0REQmH4iIhIKAwfEREJheEjIiKhMHxERCQUho+IiITC8BERkVAYPiIiEgrDR0REQmH4iIhIKAwfEREJheEjIiKhMHxERCQUho+IiITC8BERkVAYPiIiEgrDR0REQmH4iIhIKAwfEREJheEjIiKhMHxERCQUho+IiITC8BERkVAYPiIiEgrDR0REQmH4iIhIKAwfEREJheEjIiKhMHxERCQUho+IiITC8BERkVAYPiIiEgrDR0REQmH4iIhIKAwfEREJheEjIiKhMHxERCQUho+IiITC8BERkVAYPiIiEgrDR0REQmH4iIhIKAwfEREJheEjIiKhMHxERCQUho+IiITC8BERkVAYPiIiEgrDR0REQmH4iIhIKAwfEREJheEjIiKhMHxERCQUho+IiITC8BERkVAYPiIiEgrDR0REQmH4iIhIKAwfEREJheEjIiKhMHxERCQUho+IiITC8BERkVAYPiIiEgrDR0REQmH4iIhIKAwfEREJheEjIiKhMHxERCQUho+IiITC8BERkVAYPiIiEgrDR0REQmH4iIhIKAwfEREJheEjIiKhMHxERCQUho+IiITC8BERkVAYPiIiEgrDR0REQmH4iIhIKAwfEREJheEjIiKhMHxERCQUho+IiITC8BERkVAYPiIiEgrDR0REQmH4iIhIKAwfEREJheEjIiKhMHxERCQUho+IiITC8BERkVAYPiIiEgrDR0REQmH4iIhIKAwfEREJheEjIiKhMHxERCQUho+IiITC8BERkVAYPiIiEgrDR0REQmH4iIhIKAwfEREJheEjIiKhMHxERCQUho+IiITC8BERkVAYPiIiEgrDR0REQmH4iIhIKAwfEREJheEjIiKhMHxERCQUho+IiITC8BERkVAYPiIiEgrDR0REQmH4iIhIKAwfEREJheEjIiKhMHxERCQUho+IiITC8BERkVAYPiIiEgrDR0REQmH4iIhIKAwfEREJheEjIiKhMHxERCQUho+IiITC8BERkVAYPiIiEgrDR0REQmH4iIhIKAwfEREJheEjIiKhMHxERCQUho+IiITC8BERkVAYPiIiEgrDR0REQmH4iIhIKAwfEREJheEjIiKhMHxERCQUho+IiITC8BERkVAYPiIiEgrDR0REQmH4iIhIKAwfEREJheEjIiKhMHxERCQUho+IiITC8BERkVAYPiIiEgrDR0REQmH4iIhIKAwfEREJheEjIiKhMHxERCQUho+IiITC8BERkVAYPiIiEgrDR0REQmH4iIhIKAwfEREJheEj4axevRqdO3eulefKZDJcuXKltoZGRHWA4aNG6+jRowgKCoJKpYKlpSU6deqEEydO6HpYRKRjeroeANGLkJ+fj759+2LZsmWIiIhAeXk54uPjYWBgoOuhEZGOccZHjVJycjIAYNCgQVAoFDAyMkKvXr3QqlUrzWMmT54MCwsLuLu7Y9euXZr78/LyMHLkSDg4OMDB0Qn/nDYNarX6scs7ceIE7OzstB63ZcsWtG7dupbXjIj+LoaPGqWXXnoJCoUCw4YNw65du5CTk6P19cTERHh5eeHu3buYMmUKRo4cCUmSAADDhw9HaRXw5a6jmL9lD7bs2IUFS7557PI6dOgAKysr/Prrr5r71qxZg8jIyNpfOSL6Wxg+apTMzMxw9OhRyGQyjBo1CjY2NggPD0dmZiYAwNXVFaNGjdLEMT09HZmZmcjMzMTOnTvxetR0KI2awMTCCn2GjcL6DRtRVvn4Wd+wYcOwdu1aAEB2djb27NmDwYMHv/B1JaJnw3181Gi1aNECq1evBgAkJSVhyJAh+OijjxAaGgp7e3vN45o0aQIAKCwsRHZ2NioqKjCic1tI//m6VFUFawdHFFU8PnxDhgxBixYtUFRUhE2bNuGVV16Bg4PDi1g1IvobGD4Sgre3N4YPH44VK1YgNDT0kY9zcXGBgYEBfkw4Byj+++OhkAHGSsVjl+Hk5ITAwEBs2bIFa9aswZgxY2pt/ERUe7ipkxqlpKQkLFy4ELdu3QIA3Lx5Exs2bEBAQMBjn+fg4IBevXphx5K5KCsqgBwS7ty8gfIrZ2Cg9/jwAUBkZCQWLFiAs2fP4o033qiVdSGi2sXwUaNkamqKxMREdOzYEcbGxggICICvry8WLlz4xOf++OOPMICE/wkPRqR/CyyfPBbq/JwnPg8A+vfvj5SUFPTv31+zCZWI6heZdP9QNiKqFZ6enlixYgVCQkJ0PRQiqgFnfES1KDY2FjKZDMHBwboeChE9Ag9uIaol3bp1w4ULF7BmzRrI5XxPSVRfcVMnEREJhW9LiYhIKAwfEREJheEjIiKhMHxERCQUho+IiITC8BERkVAYPiIiEgrDR0REQmH4iIhIKAwfEREJheEjIiKhMHxERCSU/w/VJdVPm+rzVAAAAABJRU5ErkJggg==\n", 100 "text/plain": [ 101 "<Figure size 432x288 with 1 Axes>" 102 ] 103 }, 104 "metadata": {}, 105 "output_type": "display_data" 106 } 107 ], 108 "source": [ 109 "nx.draw(SG, node_size=20, node_color='lightblue', with_labels=True)" 110 ] 111 }, 112 { 113 "cell_type": "code", 114 "execution_count": 8, 115 "id": "d3dd63ca", 116 "metadata": {}, 117 "outputs": [ 118 { 119 "name": "stdout", 120 "output_type": "stream", 121 "text": [ 122 "get_leaves SG: ['Bob']\n", 123 "max_degree SG: ['Claire']\n", 124 "mutual_friends SG: ['Claire']\n" 125 ] 126 } 127 ], 128 "source": [ 129 "print('get_leaves SG: ', get_leaves(SG))\n", 130 "print('max_degree SG: ', max_degree(SG))\n", 131 "print('mutual_friends SG: ', mutual_friends(SG, 'Alice', 'Frank'))" 132 ] 133 }, 134 { 135 "cell_type": "code", 136 "execution_count": null, 137 "id": "e6ca4266", 138 "metadata": {}, 139 "outputs": [], 140 "source": [] 141 }, 142 { 143 "cell_type": "code", 144 "execution_count": null, 145 "id": "af0f7426", 146 "metadata": {}, 147 "outputs": [], 148 "source": [] 149 }, 150 { 151 "cell_type": "code", 152 "execution_count": null, 153 "id": "c227ba0e", 154 "metadata": {}, 155 "outputs": [], 156 "source": [] 157 }, 158 { 159 "cell_type": "code", 160 "execution_count": null, 161 "id": "2a60a054", 162 "metadata": {}, 163 "outputs": [], 164 "source": [] 165 }, 166 { 167 "cell_type": "code", 168 "execution_count": null, 169 "id": "a8d47cb2", 170 "metadata": {}, 171 "outputs": [], 172 "source": [] 173 } 174 ], 175 "metadata": { 176 "kernelspec": { 177 "display_name": "Python 3 (ipykernel)", 178 "language": "python", 179 "name": "python3" 180 }, 181 "language_info": { 182 "codemirror_mode": { 183 "name": "ipython", 184 "version": 3 185 }, 186 "file_extension": ".py", 187 "mimetype": "text/x-python", 188 "name": "python", 189 "nbconvert_exporter": "python", 190 "pygments_lexer": "ipython3", 191 "version": "3.9.7" 192 } 193 }, 194 "nbformat": 4, 195 "nbformat_minor": 5 196 }