network_ana

Complex Network Anlysis
git clone git://popovic.xyz/network_ana.git
Log | Files | Refs

main.tex (5711B)


      1 \documentclass[a4paper]{article}
      2 
      3 
      4 \usepackage[T1]{fontenc}
      5 \usepackage[utf8]{inputenc}
      6 \usepackage{mathptmx}
      7 
      8 %\usepackage{ngerman}	% Sprachanpassung Deutsch
      9 
     10 \usepackage{graphicx}
     11 \usepackage{geometry}
     12 \geometry{a4paper, top=15mm}
     13 
     14 \usepackage{subcaption}
     15 \usepackage[shortlabels]{enumitem}
     16 \usepackage{amssymb}
     17 \usepackage{amsthm}
     18 \usepackage{mathtools}
     19 \usepackage{braket}
     20 \usepackage{bbm}
     21 \usepackage{graphicx}
     22 \usepackage{float}
     23 \usepackage{yhmath}
     24 \usepackage{tikz}
     25 \usetikzlibrary{patterns,decorations.pathmorphing,positioning}
     26 \usetikzlibrary{calc,decorations.markings}
     27 
     28 \usepackage[backend=biber, sorting=none]{biblatex}
     29 \addbibresource{uni.bib}
     30 
     31 \usepackage[framemethod=TikZ]{mdframed}
     32 
     33 \tikzstyle{titlered} =
     34     [draw=black, thick, fill=white,%
     35         text=black, rectangle,
     36         right, minimum height=.7cm]
     37 
     38 
     39 \usepackage[colorlinks=true,naturalnames=true,plainpages=false,pdfpagelabels=true]{hyperref}
     40 \usepackage[parfill]{parskip}
     41 \usepackage{lipsum}
     42 
     43 
     44 \usepackage{tcolorbox}
     45 \tcbuselibrary{skins,breakable}
     46 
     47 \pagestyle{myheadings}
     48 
     49 \markright{Popović\hfill 1st Exercise \hfill}
     50 
     51 
     52 \title{University of Vienna\\ Faculty of Mathematics\\ \vspace{1.25cm}Seminar: Introduction to complex network analysis \\ 1st
     53 Exercise
     54 }
     55 \author{Milutin Popovic}
     56 \date{19. October, 2021}
     57 
     58 \begin{document}
     59 \maketitle
     60 
     61 \textbf{Exercise 1:} Discuss briefly advantages and disadvantages of
     62 representing a network by
     63     \begin{enumerate}
     64         \item an edge list
     65         \item an adjacency matrix.
     66     \end{enumerate}
     67 
     68 \textbf{Solution 1.1 Edge-list:} Advantages: Allows for compact representation of graphs (sparse
     69     structure) to save a lot of Memory, deleting/adding connections/nodes is easier than
     70     with a matrix representation.
     71 \newline
     72 Disadvantages: Might be slower to find out if a vertex/connection exists,
     73 since matrix lookup time is constant.
     74 
     75 \textbf{Solution 1.2 Adjacency Matrix:} Advantages: Constant lookup time. Easier to
     76 change the entries of the matrix, thus modifying the network.
     77 \newline
     78 Disadvantages: Slow for iteration.
     79 \newline
     80 
     81 \textbf{Exercise 2:} Imagine that your social network has a subnetwork where 14 of your friends
     82 together with you are all friends with each other. What is such a subnetwork
     83 called? How many edges are contained in the subnetwork?
     84 
     85 \textbf{Solution 2} 14 friends + 1 (me) = 15 people are all connected, such a
     86 graph is called a complete graph, the number of vertices is given by
     87 \begin{align}
     88     L_{\text{max}} = \begin{pmatrix}15 \\ 2\end{pmatrix} = \frac{15(15-1)}{2}
     89     = 105.
     90 \end{align}
     91 \newline
     92 
     93 \textbf{Exercise 3:}
     94 \begin{figure}[h!] \centering
     95 \begin{tikzpicture}[
     96     dot/.style = {draw, circle, inner sep=0.02cm, thick},
     97     no/.style = {},
     98     ]
     99     \node[dot](1) at (0,0) [] {1};
    100     \node[dot](2) at (1,0) [] {2};
    101     \node[dot](3) at (1,-1) [] {3};
    102     \node[dot](4) at (1,1) [] {4};
    103     \node[dot](5) at (2,0) [] {5};
    104     \node[dot](6) at (2,-1) [] {6};
    105     \node[dot](7) at (3,0) [] {7};
    106     \node[dot](8) at (4,1) [] {8};
    107     \node[dot](9) at (4,-1) [] {9};
    108     \node[dot](10) at (6, 0.5) [] {10};
    109 
    110     \draw[-, thick]  (1) -- (2) -- (4);
    111     \draw[-, thick]  (2) -- (3) -- (6);
    112     \draw[-, thick]  (2) -- (5);
    113     \draw[-, thick]  (6) -- (5) -- (7) -- (8);
    114     \draw[-, thick]  (7) -- (9) -- (8);
    115     \end{tikzpicture}
    116     \caption{The graph from exercise 3}
    117 \end{figure}
    118 Consider the network above and
    119 \begin{itemize}
    120     \item Write down the adjacency matrix,
    121     \item Write down the edge list.
    122     \item Draw the degree distribution by hand.
    123     \item Calculate the clustering coefficient, diameter and density.
    124     \item Find the number of d=3 paths between 2 and 3. (you may use a computer)
    125 \end{itemize}
    126 
    127 \textbf{Solution 3:} The adjacency matrix is a $10x10$ matrix it can be
    128 viewed in the `.ipynb' file. The edge - list is the following
    129 \begin{align}
    130     &(1, 2), \;\; (2 ,3), \;\; (2, 4), \;\; (2, 5), \;\; (3, 6), \;\; \nonumber\\
    131     &(5, 6), \;\; (5, 7), \;\; (7, 8), \;\; (7, 9), \;\; ( 8, 9).
    132 \end{align}
    133 For the clustering coefficient we obviously need to only consider node 7, 8
    134 and 9, because no other neighbors for a given node are connected, thus we
    135 have
    136 \begin{align}
    137     \langle C \rangle = \frac{1}{N}\sum_i^10 C_i = \frac{1}{10} (\frac{1}{3}
    138     +2) = \frac{7}{30}.
    139 \end{align}
    140 The diameter $d_{\text{max}}$ is given by the length of the longest path
    141 which is
    142 \begin{align}
    143     d_{\text{max}} = d_{1, 8} = d_{1, 9} = 4.
    144 \end{align}
    145 And finally for the graph density $\varrho$ we have number of vertices
    146 divided by number of vertices of the complete graph
    147 \begin{align}
    148     \varrho = \frac{L}{\begin{pmatrix}L_{\text{max}} \\ 2\end{pmatrix}} =
    149     \frac{2}{9}.
    150 \end{align}
    151 The number of $d=3$ paths between the nodes 2 and 3 are
    152 \begin{align}
    153     P_{2, 3} = \{(2, 5), (5, 6) , (6, 3)\},
    154 \end{align}
    155 exactly one. For part (f) look at '.ipynb'.
    156 \newline
    157 
    158 \textbf{Exercise 4:} Consider a bipartite network with N1 and N2 nodes in the
    159 two sets.
    160 \begin{enumerate}
    161     \item What is the maximum number of edges the network can have?
    162     \item How many edges cannot occur compared with a non-bipartite network of size
    163 \end{enumerate}
    164 
    165 \textbf{Solution 4:} The maximum number of connection is when every node in
    166 one network is connected to every node in the other network, meaning
    167 \begin{align}
    168     \underbrace{N_2 + N_2 + \cdots + N_2}_{N_1 \textbf{-times}} = N_1 \cdot
    169     N_2.
    170 \end{align}
    171 The number of edges that cannot occur in compared to a normal network of size
    172 $N = N_1 + N_2$ is
    173 \begin{align}
    174     \begin{pmatrix}N \\ 2 \end{pmatrix} - N_1N_2 &= \frac{(N_1 + N_2)(N_1+N_2
    175     -1)}{2} - N_1N_2 =\\ &= \frac{1}{2} ( N_1^2 + N_2^2) - (N_1 + N_2).
    176 \end{align}
    177 
    178 \nocite{code}
    179 \printbibliography
    180 
    181 \end{document}