main.tex (3702B)
1 \documentclass[a4paper]{article} 2 3 4 \usepackage[T1]{fontenc} 5 \usepackage[utf8]{inputenc} 6 \usepackage{mathptmx} 7 8 %\usepackage{ngerman} % Sprachanpassung Deutsch 9 10 \usepackage{graphicx} 11 \usepackage{geometry} 12 \geometry{a4paper, top=15mm} 13 14 \usepackage{subcaption} 15 \usepackage[shortlabels]{enumitem} 16 \usepackage{amssymb} 17 \usepackage{amsthm} 18 \usepackage{mathtools} 19 \usepackage{braket} 20 \usepackage{bbm} 21 \usepackage{graphicx} 22 \usepackage{float} 23 \usepackage{yhmath} 24 \usepackage{tikz} 25 \usetikzlibrary{patterns,decorations.pathmorphing,positioning} 26 \usetikzlibrary{calc,decorations.markings} 27 28 \usepackage[backend=biber, sorting=none]{biblatex} \addbibresource{uni.bib} 29 30 \usepackage[framemethod=TikZ]{mdframed} 31 32 \tikzstyle{titlered} = 33 [draw=black, thick, fill=white,% 34 text=black, rectangle, 35 right, minimum height=.7cm] 36 37 38 \usepackage[colorlinks=true,naturalnames=true,plainpages=false,pdfpagelabels=true]{hyperref} 39 \usepackage[parfill]{parskip} 40 \usepackage{lipsum} 41 42 43 \usepackage{tcolorbox} 44 \tcbuselibrary{skins,breakable} 45 46 \pagestyle{myheadings} 47 48 \markright{Popović\hfill 1st Exercise \hfill} 49 50 51 \title{University of Vienna\\ Faculty of Mathematics\\ \vspace{1.25cm}Seminar: Introduction to complex network analysis \\ 1st 52 Exercise 53 } 54 \author{Milutin Popovic} 55 \date{17. October, 2021} 56 57 \begin{document} 58 \maketitle 59 60 \section{Balanced (Cayley-) tree} 61 A Balanced (Cayley-) tree, is a tree with a central node 62 and $k>1$ number of neighbors. Each neighboring node has another $k$ 63 neighbors up to a distance $h>0$ from the central node. These nodes are leaf 64 nodes. For a given $h>0$ and $k>1$ the expression for the number of nodes $N$ is 65 \begin{align} 66 N = 1 + k\sum_{i=0}^{h-1} (k-1)^i = 1 + k\cdot\frac{\left((k-1)^{h} - 67 1)\right.}{k-2} 68 \end{align} 69 Obviously the number of leaf nodes is then 70 \begin{align} 71 N_l = k\cdot(k-1)^{h-1}, 72 \end{align} 73 thus the number of inner nodes (without the central node) is 74 \begin{align} 75 N_{in} = k\cdot\frac{(k+1)^{h-1} - 1}{k-2}. 76 \end{align} 77 The ratio between the inner nodes and the outer nodes is given by 78 \begin{align} 79 \frac{N_{in}}{N_l} = \frac{1 - (k-1)^{1-h}}{k-2}. 80 \end{align} 81 Meaning that for $k$ and $h$ with the following condition 82 \begin{align} 83 \frac{1 - (k-1)^{1-h}}{k-2} > 1, 84 \end{align} 85 the number of inner nodes exceeds the number of leaves. 86 87 Furthermore The diameter of a Cayley tree in terms of the number of nodes is 88 \begin{align} 89 d_{max} = 2\cdot h = 2\cdot \log_{k-1}\left(\frac{(N-1) (k-2) 90 k}{k}\right). 91 \end{align} 92 And the clustering coefficient $C$ is obviously 93 \begin{align} 94 C = 0. 95 \end{align} 96 \section{Erdős–Rényi (NR) Network} 97 Now we look at NR networks, which are random graphs denoted by $G(N, p)$ of $N=5000$ 98 Nodes with a connection probability of $p=0.002$ for a node. The expected 99 number of edges $\langle L \rangle$ is 100 \begin{align} 101 \langle L \rangle =p \begin{bmatrix} N \\ 2 \end{bmatrix} = 24995, 102 \end{align} 103 the average number of degrees $\rangle k \rangle$is 104 \begin{align} 105 \langle k \rangle = p \cdot (N-1) = 9.998. 106 \end{align} 107 The network is in the regime of ``super connected'' and its critical value of 108 $p=p_c$ can be calculated by considering 109 \begin{align} 110 \langle k \rangle = 1 = p_c (N - 1) \;\;\; 111 \Rightarrow \;\;\; p \simeq 0.0002. 112 \end{align} 113 The expected size of the giant component is in the range of $1$, of a 114 ``connected'' graph. 115 116 For a network of $N=100$ and $\langle k \rangle = 5$ we would have 117 \begin{align} 118 p = 0.04 119 \end{align} 120 For a network of $N=1000$ and $\langle k \rangle = 20$ we would have 121 \begin{align} 122 p = 0.02 123 \end{align} 124 \section{Coding Exercises} 125 See jupyter notebook or \cite{code} 126 127 \nocite{code} 128 \printbibliography 129 130 \end{document}