main.ipynb (27369B)
1 { 2 "cells": [ 3 { 4 "cell_type": "code", 5 "execution_count": 3, 6 "id": "cd952195", 7 "metadata": {}, 8 "outputs": [], 9 "source": [ 10 "import itertools\n", 11 "import random\n", 12 "import numpy as np\n", 13 "import networkx as nx\n", 14 "import matplotlib.pyplot as plt" 15 ] 16 }, 17 { 18 "cell_type": "code", 19 "execution_count": 184, 20 "id": "76dfc307", 21 "metadata": {}, 22 "outputs": [], 23 "source": [ 24 "p_i = np.linspace(0, 1, 100)\n", 25 "N = 100\n", 26 "spl_4 = []\n", 27 "spl_8 = []\n", 28 "for p in p_i:\n", 29 " G_4 = nx.watts_strogatz_graph(N, 4, p)\n", 30 " G_8 = nx.watts_strogatz_graph(N, 8, p)\n", 31 " mean_4 = np.mean([np.mean(list(spl.values())) for spl in list(dict(nx.shortest_path_length(G_4)).values())])\n", 32 " mean_8 = np.mean([np.mean(list(spl.values())) for spl in list(dict(nx.shortest_path_length(G_8)).values())])\n", 33 " spl_4.append(mean_4)\n", 34 " spl_8.append(mean_8)" 35 ] 36 }, 37 { 38 "cell_type": "code", 39 "execution_count": 186, 40 "id": "80fd1c60", 41 "metadata": {}, 42 "outputs": [ 43 { 44 "data": { 45 "text/plain": [ 46 "[<matplotlib.lines.Line2D at 0x7f8ffdd9e760>]" 47 ] 48 }, 49 "execution_count": 186, 50 "metadata": {}, 51 "output_type": "execute_result" 52 }, 53 { 54 "data": { 55 "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi4AAAF4CAYAAABzdXKoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAABH9UlEQVR4nO3de3zcVZ3/8deZS2ZyT5omLb0mhd4ghQKFcisoIKAgLogoUhCQ5Sfu6nqB9bL4U367irgsKqss6wqCCwisC4iARago5SottKW0tKVtaNNrkubWJJPM5fz+OJO0aW4z02Rmkr6fPuaRyXxnvnPyzdi8+ZybsdYiIiIiMhp4Mt0AERERkUQpuIiIiMiooeAiIiIio4aCi4iIiIwaCi4iIiIyaii4iIiIyKjhy3QDhsP48eNtZWVlppshIiIiw2DFihX11try/o6NieBSWVnJ8uXLM90MERERGQbGmA8GOqauIhERERk1FFxERERk1FBwERERkVFjTIxxERERSVU4HKa2tpZQKJTpphx2gsEgU6ZMwe/3J/waBRcRETms1dbWUlhYSGVlJcaYTDfnsGGtpaGhgdraWqqqqhJ+nbqKRETksBYKhSgrK1NoSTNjDGVlZUlXuhRcRETksKfQkhmpXHcFFxERERk1FFxERERk1FBwERERGWUKCgr6ffyuu+5i7ty5XHnllSmfe+nSpVx11VUpv/5A0WiU448/nosuumhYzgeaVSQiIjJm3H333bzwwgtMmTIloedba7HW4vHsr2OsWrWK448/flja89Of/pS5c+fS0tIyLOcDVVwGZC38cS+815bploiIyFjX1tbGhRdeyHHHHUd1dTWPPvooNTU1zJkzhyuvvJK5c+dy2WWX0d7ePuA5vvCFL7B582Y++tGP8uMf/xiAO++8k+rqaqqrq/nJT34CQE1NDbNnz+bqq6+murqabdu29TpPd3Dp7Ozkmmuu4dvf/jbW2qR/ptraWp555hmuv/76pF87GFVcBvHxd+CrU+CHR2a6JSIikg5f2Qgr9w3vOecXwE9mDv6cJUuWMGnSJJ555hkAmpubaWxsZP369dx7772cfvrpXHfdddx9993cdNNN/Z7jnnvuYcmSJbz44ouMHz+eFStW8Ktf/Yo33ngDay0LFy7krLPOorS0lI0bN/LAAw9wyimn9DnP6tWrqaio4Pzzz+f6669n8eLFvY4vWrSI1tbWPq+74447OPfcc3u+/8pXvsKPfvSjfp97KFRxGYAxUOqDxkimWyIiImPdvHnzeP755/nGN77BsmXLKC4uBmDq1KmcfvrpACxevJiXX3454XO+/PLLXHLJJeTn51NQUMCll17KsmXLAJg+fXq/oSUcDrN582auuOIKbrvttj6hBWDZsmWsXLmyz+3A0PL0009TUVHBiSeemNR1SIQqLoMo9cNeBRcRkcPGUJWRkTJr1izeeustnn32WW655RbOOeccrr766j7rnAzXejP5+fn9Pr5u3TpOOukk9u7di9fr7fc5iVRcXnnlFZ566imeffZZQqEQLS0tLF68mAcffPCQ266KyyBKfdAYznQrRERkrNuxYwd5eXksXryYm2++mbfeeguArVu38tprrwHw8MMPc8YZZyR8zkWLFvHkk0/S3t5OW1sbTzzxBIsWLRr0NatWreK0007jkUce4dprr2X37t19npNIxeW2226jtraWmpoaHnnkEc4+++xhCS2g4DIodRWJiEg6vPPOO5x88snMnz+fW2+9lVtuuQWA2bNn8/Of/5y5c+fS2NjIjTfemPA5TzjhBK655hpOPvlkFi5cyPXXXz/kbKFVq1ZRXV3NrFmzuP3227n88ssJh7Prv+BNKiOFs82CBQvs8uXLh/28V62DV5phc99uQBERGSPWrVvH3LlzM92MPmpqarjoootYs2ZNppsyovq7/saYFdbaBf09XxWXQajiIiIikl0UXAZR6oPmCERHf1FKRERGmcrKyjFfbUmFgssgSn1gceFFREREMk/BZRClfvdV3UUiIiLZQcFlEKXxVW40JVpERCQ7KLgMYlx3cFHFRUREJCsouAxCXUUiIiLZRcFlEKWquIiIiGQVBZdBdAeXvRrjIiIikhUUXAaR64WAUcVFREQkWyi4DGGcX8FFRESyS0FBQb+P33XXXcydO5crr7wy5XMvXbqUq666KuXXd/vxj3/MMcccQ3V1NVdccQWhUOiQzwkKLkPSDtEiIjJa3H333Tz//PM89NBDCT3fWkssFuv12KpVq4bcjHEo27dv56677mL58uWsWbOGaDTKI488ckjn7Jax4GKMuc8Ys8cYs+aAx/7VGPOeMWa1MeYJY0xJptrXTfsViYjISGtra+PCCy/kuOOOo7q6mkcffZSamhrmzJnDlVdeydy5c7nssstob28f8Bxf+MIX2Lx5Mx/96Ef58Y9/DMCdd95JdXU11dXV/OQnPwHc5o2zZ8/m6quvprq6mm3btvU6T3dw6ezs5JprruHb3/42qWzIHIlE6OjoIBKJ0N7ezqRJk5I+R398w3KW1NwP/Az49QGPPQ98y1obMcbcDnwL+EYG2taj1A+1nZlsgYiIpMtr2+6goWPDsJ6zLHcWp069adDnLFmyhEmTJvHMM88A0NzcTGNjI+vXr+fee+/l9NNP57rrruPuu+/mppv6P9c999zDkiVLePHFFxk/fjwrVqzgV7/6FW+88QbWWhYuXMhZZ51FaWkpGzdu5IEHHuCUU07pc57Vq1dTUVHB+eefz/XXX8/ixYt7HV+0aBGtra19XnfHHXdw7rnnAjB58mRuuukmpk2bRm5uLueddx7nnXdeQtdrKBmruFhrXwL2HvTYH6213fWN14EpaW/YQdRVJCIiI23evHk8//zzfOMb32DZsmUUFxcDMHXqVE4//XQAFi9ezMsvv5zwOV9++WUuueQS8vPzKSgo4NJLL2XZsmUATJ8+vd/QEg6H2bx5M1dccQW33XZbn9ACsGzZMlauXNnn1h1aABobG/nd737Hli1b2LFjB21tbTz44INJXZOBZLLiMpTrgEcz3Qh1FYmIHD6GqoyMlFmzZvHWW2/x7LPPcsstt3DOOedw9dVXY4zp9byDv09Vfn5+v4+vW7eOk046ib179+L1evt9TiIVlxdeeIGqqirKy8sBuPTSS3n11Vf7DULJysrBucaYfwIiwICji4wxNxhjlhtjltfV1Y1YW8b5oSUK0eS790RERBKyY8cO8vLyWLx4MTfffDNvvfUWAFu3buW1114D4OGHH+aMM85I+JyLFi3iySefpL29nba2Np544gkWLVo06GtWrVrFaaedxiOPPMK1117L7t27+zwnkYrLtGnTeP3112lvb8day9KlS5k7d27CbR9M1gUXY8w1wEXAlXaQ0UDW2l9YaxdYaxd0J7qR0L0IXZOqLiIiMkLeeecdTj75ZObPn8+tt97KLbfcAsDs2bP5+c9/zty5c2lsbOTGG29M+JwnnHAC11xzDSeffDILFy7k+uuvH3K20KpVq6iurmbWrFncfvvtXH755YTDyY+XWLhwIZdddhknnHAC8+bNIxaLccMNNyR9nv6YVEYKDxdjTCXwtLW2Ov79BcCdwFnW2oTLKAsWLLDLly8fkTb+9y64+j3YeDIclTcibyEiIhm0bt26YasGDKeamhouuugi1qxZM/STR7H+rr8xZoW1dkF/z8/kdOjfAK8Bs40xtcaYz+NmGRUCzxtjVhpj7slU+7r1LPuviouIiEjGZWxwrrX2in4evjftDRmCdogWEZFMqKysHPPVllRk3RiXbNOzQ7SmRIuIiGScgssQxnUHF1VcREREMk7BZQjqKhIREckeCi5DCHgg16PgIiIylmVyhu3hLJXrruCSgFIf7NUYFxGRMSkYDNLQ0KDwkmbWWhoaGggGg0m9LpuX/M8aWvZfRGTsmjJlCrW1tYzkKuzSv2AwyJQpyW1LqOCSgHF+BRcRkbHK7/dTVVWV6WZIgtRVlADtEC0iIpIdFFwSoK4iERGR7KDgkoBSv5b8FxERyQYKLgko9cG+KIRjmW6JiIjI4U3BJQHdy/43qeoiIiKSUQouCRin1XNFRESygoJLAkq1X5GIiEhWUHBJgHaIFhERyQ4KLgnoDi6aWSQiIpJZCi4J0A7RIiIi2UHBJQHqKhIREckOCi4JyPFAvkcVFxERkUxTcElQqTZaFBERyTgFlwRpvyIREZHMU3BJUKkP9mqMi4iISEYpuCRIFRcREZHMU3BJ0DiNcREREck4BZcElfo0HVpERCTTFFwSVOqDthiEY5luiYiIyOFLwSVBWj1XREQk8xRcEtSzX5G6i0RERDJGwSVBPcv+q+IiIiKSMQouCRqnriIREZGMU3BJkCouIiIimafgkiDtEC0iIpJ5Ci4JKukenKuKi4iISMYouCTI74ECr7qKREREMknBJQlaPVdERCSzFFySME4bLYqIiGSUgksSSrXRooiISEYpuCShVBUXERGRjFJwSUKpT0v+i4iIZJKCSxJUcREREcksBZcklPqhIwadsUy3RERE5PCk4JKEcVo9V0REJKMUXJJQov2KREREMkrBJQnF8eDSEs1sO0RERA5XCi5J6A4uzaq4iIiIZISCSxKKve6rgouIiEhmKLgkQRUXERGRzMpYcDHG3GeM2WOMWXPAY+OMMc8bYzbGv5Zmqn396QkuGuMiIiKSEZmsuNwPXHDQY98EllprZwJL499njQIvGFRxERERyZSMBRdr7UvA3oMe/gTwQPz+A8DfpLNNQ/EYKPQquIiIiGRKto1xmWCt3Rm/vwuYkMnG9KfYp+AiIiKSKdkWXHpYay1gBzpujLnBGLPcGLO8rq4ube0q9mmMi4iISKZkW3DZbYw5AiD+dc9AT7TW/sJau8Bau6C8vDxtDSz2QosqLiIiIhmRbcHlKeBz8fufA36Xwbb0S11FIiIimZPJ6dC/AV4DZhtjao0xnwd+CHzEGLMRODf+fVZRV5GIiEjm+DL1xtbaKwY4dE5aG5IkVVxEREQyJ9u6irJesaZDi4iIZIyCS5KKfdBlIaTuIhERkbRTcEmSlv0XERHJHAWXJGmjRRERkcxRcElSkdd9VXARERFJPwWXJKniIiIikjkKLknqDi4tGuMiIiKSdgouSSpWV5GIiEjGKLgkSV1FIiIimaPgkqQiTYcWERHJGAWXJHkNFGj1XBERkYxQcEmBlv0XERHJDAWXFGijRRERkcxQcElBsU9jXERERDJBwSUFReoqEhERyQgFlxQU+6BFwUVERCTtFFxSoK4iERGRzFBwSYEG54qIiGSGgksKir3QEYNwLNMtERERObwouKRAy/6LiIhkhoJLCoq17L+IiEhGKLikQBUXERGRzFBwSUGx131VcBEREUkvBZcUqOIiIiKSGQouKSjSGBcREZGMUHBJQXdXkVbPFRERSS8FlxSoq0hERCQzFFxS4PdArkddRSIiIumm4JIiLfsvIiKSfgouKSr2KriIiIikm4JLilRxERERST8FlxQV+zTGRUREJN0UXFKkiouIiEj6KbikSGNcRERE0k/BJUVFqriIiIiknYJLiop90BaDqM10S0RERA4fCi4p0rL/IiIi6afgkiIt+y8iIpJ+Ci4pKtYO0SIiImmn4JIiVVxERETST8ElRd1jXBRcRERE0kfBJUWquIiIiKSfgkuKNMZFREQk/RRcUqSKi4iISPopuKQo4IEco3VcRERE0knB5RBoh2gREZH0UnA5BNohWkREJL0UXA7BoewQ/YMPYGnj8LZHRERkrMvK4GKM+aox5l1jzBpjzG+MMcFMt6k/h1Jx+f4H8PDu4W2PiIjIWJd1wcUYMxn4MrDAWlsNeIHPZLZV/Ut1jEtHFNpj0KLxMSIiIknJuuAS5wNyjTE+IA/YkeH29CvViktD2H3VjCQREZHkZF1wsdZuB+4AtgI7gWZr7R8Pfp4x5gZjzHJjzPK6urp0NxNIfYxLfXdwUcVFREQkKVkXXIwxpcAngCpgEpBvjFl88POstb+w1i6w1i4oLy9PdzMBV3FpjULMJve6hnjYUcVFREQkOUkHF2NMwBhTZYw52hgzEonhXGCLtbbOWhsGHgdOG4H3OWTFPrC48JIMVVxERERSk1BwMcYUGmNuNMa8BDQD7wNrgF3GmK3GmP8yxpw0TG3aCpxijMkzxhjgHGDdMJ17WBXFd4hOtnKiMS4iIiKpGTK4GGO+BtQA1wHP47px5gOzgFOB7+EG0z5vjFlijJl5KA2y1r4B/BZ4C3gn3sZfHMo5R0qq+xV1V1xS6WYSERE5nPkSeM4pwFnW2jUDHP8rcJ8x5gvA54GzgI2H0ihr7XeB7x7KOdIh1R2iuysuFtgXhaJEfgsiIiIydHCx1l6eyImstZ3A3YfcolEk1YpLd3AB112k4CIiIpKYpP9kGmMCwJz4t+uttaHhbdLoURwf45JqVxFogK6IiEgykppVZIz5CLANN/7kbaDBGPNLY0zFSDQu26VccYm45YBBA3RFRESSkex06J8BfwFmAhXAZ+P33zLGVA1z27JeqmNc6sMwLb77kiouIiIiiUs2uEwDvmWt3WytrbfW/s5aexbwIvDT4W9edsv1gM+kNsalqju4qOIiIiKSsGSDyzvA5H4e/xfg7ENvzuhiTPLL/nfF3DToGbnue1VcREREEpdscHkY+Jkx5siDHi8HGoenSaNLshstds8oUsVFREQkecnOKroz/nWdMeb3uAG6HuAK4OvD2bDRosiXXNWk/uDgooqLiIhIwpINLuW4VXO7b58GZgMG+K4x5lJgNbDaWvv0sLUyi43z9V6XZSjdz52QA3keVVxERESSkVRwsdY2AEvjN6BnXZdq9oeZjwL/CJQMUxuz2vQgPLc38ed3V1zG+5Ov1oiIiBzuDnnN1viKuSvit8NOZRB2dEFnDAIJjBhqiFdYyvxuk0ZVXERERBKXyCaLCa/PYpyph9ak0aV7rMoHCa4f3N1VVOZzFZdk14ARERE5nCUyq+g1Y8y9xphTB3qCMabUGHMjsBa3e/RhozIeXGoSDC71Ycj3QNDrplKr4iIiIpK4RLqK5gD/BDxjjInhuoR2ACGgFDgamIvbJfor1trnRqitWam74rIliYpLmd/dL/LB7o6RaZeIiMhYNGTFxVrbZK29Gbfw3BeAdbiBt1VABHgAON5ae/rhFloAjgiA3yRXcRnfHVxUcREREUlKwoNzrbUdwG/jN4nzGjezaEuClZODKy6aVSQiIpK4ZFfO7cUYc/1wNWQ0qwwm3lXUX8XF2pFrm4iIyFhySMEFuMgY07NHkTEmzxjzyCGec9SpCibeVdQQ6V1xiQHtsRFrmoiIyJhyqOu4XA08a4zZgfsb/DDw80Nu1ShTGYQ9YWiLQr534OdFYtAU6V1xAVd1Gex1IiIi4qQUXIwxPwZWAquA64GHcNWba621K4ercaPFgWu5HJ0/8PP2di8+F7/qRfGvLVE4YuSaJyIiMmak2lX0IjAV+DbwP7gZRjuA840xFw5T20aNygSnRHcv91/WT8VFREREhjZkxcUY8xyuuvJ2/Ot6a+1TwFMHPCeI26/oWOBc4JkRaGvWqkpwEbqGA/Ypgt4VFxERERlaIl1Fb+E2T7wamAC0G2PewYWYlfHj71hrlwPLR6SVWW5CDgQ9Q0+JblDFRURE5JAMGVystd/qvm+MmcD+XaDnA18BZgLWGLPRWnv0SDQy2xmT2JTo+oMqLsWquIiIiCQlqcG51trdwHPxGwDGmFzguPjtsFWZwJToA3eGhgO6ilRxERERScihTofuXlH39fjtsFUVhDdaBn9Ofdh1KeXFh0QXxruKmhVcREREEnKoC9BJXFUQGiODh5CGsJsKbYz7Psfjgoy6ikRERBKj4DJMKhOYWXTgcv/dtNGiiIhI4hRchkkiU6IP3GCxmzZaFBERSZyCyzDpWYRukCnR9f0FF1VcREREEqbgMkzK/FDgHXxKdEN/XUWquIiIiCRMwWUQ0VgXkdgQq8rFda/lMlBXUdS6wbuquIiIiKROwWUA1lp+tfIM3t71q4RfUzXIInRNEbd9tiouIiIiqVNwGYAxhoCvkM5Ic8Kv6a64WNv3WM9y/wetnKOKi4iISOIUXAYR8BbTGR1iVbkDVAWhNQp7+wkiBy/33604XnHpL+yIiIhIbwougwj4ipKuuED/41wO3mCxW5EXwhY6Yyk2UkRE5DCi4DKIgLc4qeBSNciU6PqBgos2WhQREUmYgssgAr5iQkl0FSVScelv5VzQOBcREZFEKLgMIuhNrquoxA8lvv5nFtWHwWf2b6zYrbvi0qyKi4iIyJAUXAYR8BUTjrURs+GEX1M5wJTohoirtnRvsNhNFRcREZHEKbgMIuArBqAz0prwa6oGWISuPtx3KjRojIuIiEgyFFwGEfAWARAahrVc+lvuH1RxERERSYaCyyCC3RWXaHIzizpisOeg3qX+doYGVVxERESSoeAyiIC3u6souUXooO+U6HpVXERERA6Zgssgesa4RJsSfs2MXPf19QOyjrUDV1wCHvAbVVxEREQSoeAyiKCve4xL4hWXuXlwVjF8twa2d7rHmiMQpf/gYkx82X9VXERERIak4DIIv6cAgzeptVyMgV/Odsv4f2FDvNoSDyX9dRVBfKNFVVxERESGlJXBxRhTYoz5rTHmPWPMOmPMqRlqh9uvKInBuQBH5cH3q+DpBnh4zwHL/fczHRrcAF1VXERERIaWlcEF+CmwxFo7BzgOWJephgS8RUkNzu325SlwahF8eSOsbXOPqeIiIiJyaLIuuBhjioEzgXsBrLVd1tqmTLXH7VeUXMUFwGvgvtnQFoWbNrnH+hvjAqq4iIiIJCrrggtQBdQBvzLGvG2M+aUxJv/gJxljbjDGLDfGLK+rqxuxxgST3CH6QHPy4XuVsFdjXERERIZFNgYXH3AC8B/W2uOBNuCbBz/JWvsLa+0Ca+2C8vLyEWuMG+OSfFdRt5umwokFbspz8SBjXJpVcRERERlSNgaXWqDWWvtG/Pvf4oJMRgR8qVdcAHweeLLa3Tym/+cUedVVJCIikoisCy7W2l3ANmPM7PhD5wBrM9WegLeYcKydaCzxHaIPNiUIHysb+HiRDzotdMZSfgsREZHDwgCdFxn3JeAhY0wOsBm4NlMN6V6ErjPaQp5nkPRxCLqX/W+NQCBnRN5CRERkTMjK4GKtXQksyHQ74MD9iprJ849QcDlgo8XxI/IOIiIiY0PWdRVlm0AKO0Qnq1gbLYqIiCREwWUIPcElhUXoEnVgxUVEREQGpuAyhIA3vtHiCFZcilRxERERSYiCyxCCvv1jXEaKKi4iIiKJUXAZgt+Tn/QO0clSxUVERCQxCi5DMMYQ9BUTOoTVc4eiiouIiEhiFFwS4HaIHrmKS64HvKjiIiIiMhQFlwQEfMUjOh3amPgO0aq4iIiIDErBJQFuv6KR6yoCN85FGy2KiIgMTsElAQFv0YhWXEAVFxERkUQouCQg4CsmNIJjXEA7RIuIiCRCwSUBQW8xkVgH0VjXiL1HsSouIiIiQ1JwSUDggB2iR0qRTxUXERGRoSi4JKB7h+iR7C4q8qriIiIiMhQFlwT0LPuviouIiEhGKbgkoKeraIQrLu0xiMRG7C1ERERGPQWXBHR3FaVjo8VWdReJiIgMSMElAYGerqI0bLSo4CIiIjIgBZcE+D15GLwjOji3OF5xWdc2Ym8hIiIy6im4JKB7h+iRHJz74RKYEYQr1ym8iIiIDETBJUFuv6KRq7iU+uH54yDHAx9ZBR+ERuytRERERi0FlwQFvEUjvuz/jFx47ljYF4XzVsGegxbqbQrDsw3QrnEwIiJymFJwSVDQVzKiXUXdji2Ap+fBtk746Gp4rw3+YzucvwrKX4UL34Gfbx/xZoiIiGQlBZcEBbxFI9pVdKAzSuC3x8DqNpj7JnxxI2wJwdemQFUQ/tyUlmaIiIhkHV+mGzBaBHxFIzod+mAfK4PfVcPqfXDxeJibB8ZAcwR+sweiFrwmbc0RERHJCqq4JCjgKyESCxGJdabtPT9WBt+cDkfnu9ACcGaJW+tl9b5DO/eTdfAvNWDtobZSREQkfVRxSVDA65b974q24POUZ6wdi9xaeLzUDMcXpnaOje3w2XXQEYN8L3x16vC1T0REZCSp4pKg7v2KRnpm0VCmBt04l5eaUnt91MK170HAAxeMg5s3wYuNw9pEERGREaPgkqCgtwSAzsjIzywayqJiWNacWjfPT2rhlRb496Pg0aNhZh5cvha2at0YEREZBRRcEtSzQ3QaB+gO5MwSqAvD+vbkXvdeG/zTZvib8XDlBLex45PV0BmDS9dAh9aHERGRLKfgkqDuHaIz3VUEcOYB41wSFYnB596DAi/cM2v/YN/ZefDgXFixz0271mBdERHJZgouCQr27BCd+a6io3JhYs7A41yufQ/OfBv+cRP8bx3UhuBft8FfW+HuWTAhp/fzLx4P/3c63L8Lbt864s0XERFJmWYVJcjnycVjfHRGmjLdFIxxVZe/xMe5mAPWc1nW5ALIUbnw01roOqCCcnk5XF7R/zm/WwkbOuBbW9xrvjO993lFRESygYJLgowxBLzFWTE4F9wA3cfq3GaMlbn7H//+B1Dhh9ULwGNg1T54owU2dcB3Kgc+n8e4LqOAge/WuKnSP6hSeBERkeyi4JKEgK84K7qKwA3QBTe7qDu4LG+B5xrhhzMg1+seO7nI3RLhNXDfHPfaH251mzn+5Kj0hZeVrRADTkhxfRoRERn7FFyS4HaIbsp0MwCozocSnxuge9VE99j3t7rHbpyU+nk9Bu6eCUGPmzrdHoO7jtofhEaKtXDZuxCKQc0p4NPoKxER6Yf+PCQhmEUVF49x3UXdA3TX7IMn6+HLk90050NhDNx5JHx7GvxyJ8z+Kzy0G2IjOOPojRbYFILtXfBUw8i9j4iIjG4KLkkI+LJnjAu4AbobOmBXJ9y2FfI98OUpw3NuY+D7M+DP86HcD4vXwalvwasjNBv8wd2uyjM5B+7ePjLvISIio5+CSxKyqasIYFGJ+/qrXfDIHrhxMpT5h/c9ziqBN0+E++dAbSec/jZ8b8vwvkc4Bo/WwcfL4IuTYWmTWyxPRETkYAouSQj6ionaTiKx7Fgf/4QCyPO4WUB+A18bpmrLwTwGPjcRNiyES8e7gbu7hnGT7OcboT7sVvO9/gj3s/zHjuE7v4iIjB0KLknoXj23PZwdgzD8HjitGMIWPn8EHBEY2ffL98JtM9w6L3cNY3fOQ7thnA8+Og4qcuBT5W4tmn2RoV9rLfxLDTxVP3ztERGR7KXgkoQJBfPxGB+vbrsda2OZbg4AHyl1a6/847T0vN+sPFd1uXs7tCQQLIayL+IGFX+qHHLin8YvToaWKDy8Z+jXP90A36mBT707cuNvREQkeyi4JGFc7pGcOuVmtrW8wlu7fpnp5gDw1Snw/kKYHkzfe35jGjRH4RfD0J3zZL2bcn3lhP2PnVYEx+XDz7cPvndSKApfeR/m5MHUgNsoclt29OKJiMgIUXBJ0tzxn2TmuAt5a+cv2Nb8Sqabg98DU9IYWgBOKoKzS+DHtW5n6UPx0B6YFoDTi/c/Zoyruqxug1cHmcT1b7WwOQT/fhQ8Nc8FoE+sgTbtci0iMmYpuCTJGMMZ077FuNyZvFhzCy2dh+fc3W9Mgx1dbnxKqvZ0wfN7XbXFc9DqvJ+tgCLvwFOjt4XgBx+4bqtzx8HR+fDI0bByn9tkUrtci4iMTQouKfB5cvnIjB9hibF08z8SiQ3jFJtR4iOlcHwB/Ghr6gvTPboHovTuJupW4INrJsL/1MH2fi7vzZvc9gD/duT+xz5WBrfPcK/55w9Sa5OIiGQ3BZcUFQWm8qHKf6a+4z3+uOlr1Le/l+kmpZUx8I9TYX1HYjN6dnbCjs7elZAHd7uxLMfk9/+aL052X+e9CXdsdWNaAP7c6NZ9+ea03htMAtw0Fa6a4KaI37IZItkxhlpERIaJsVlaUzfGeIHlwHZr7UWDPXfBggV2+fLl6WnYQd6te4w3t/+McKyNKUWnctyEazii4ETMYbCtciQGs/4KE3Lg1eP734yxNQK31rh9j6K41X1n5sGMIDxeDz+aATcPMiNqZSt8awss2QtTAnBrpTtXaxTWntT/HkqdMfjiBrhvF3yoBB6eO/JTxUVEZPgYY1ZYaxf0eyyLg8vXgAVAUTYHF4CuaCtr637Lmj0P0xHZS0X+PM6t+hH5ORUZa1O63L0d/m4jXFYOn6lwa7HkeV1l5fF6+IeNbv+h649wXUsb2t02BRva3WDa5SfCpARCxZ8b4Rub4a+t7vvHj4FLygd/zQO74MYNbqzMw0fD2aWH/vOKiMjIG3XBxRgzBXgA+D7wtWwPLt0isRAbGn7Pq9v+lWMnXMXJk7+U6SaNuM4YfGOTW3OlLuwqKheVQVMEnmt0XUH/MQtOLR76XEOxFp6ohy0ht0pwIkWtd9vcGi/vtcPfT4YrKmBhUe/BwO1ReGwP/NdOd+4/z3fr1QxkW8hVfw6DopqISEaMxuDyW+A2oBC4abQEl27PbvwirV07ufzoxw+LLiNw3UZ/aXYB4PF6CMXgnytdWPBleCTVvgh8+X34790QsTAxx+2LdG4p/KXJzYxqjsKsXNgbgRIfvH5C//s+3VoD36txg5N/NnPwgCMiIqkZLLhk3eBcY8xFwB5r7YohnneDMWa5MWZ5XV1dmlqXmKqSc2jp3Epj6P1MNyVtfB44pxT+czbsPBUaToevTM18aAE3Q+m+ObDnNHhoLiwqht/sgU+vhXt3wsfHw1/mw3snw++qXUXlk2ug66CBvd/b4kLLuaXwRosbNPydLdCRwroxjWH47Fq4Yb3WnRERSUbWVVyMMbcBVwERIAgUAY9baxcP9Jpsq7i0hxt46J3zOWHi33LipP+T6eZIPzpjsLwV5ubBuIMqKw/vhivXuenY9812XULf2wK3fgDXToRfznZr0Ny0yS2gVxWEe2bBeeMSe+/lLfCptW6ad8RCdb4bs3OUqjciIsAoq7hYa79lrZ1ira0EPgP8abDQko3y/GVMLDieLU1LM90UGUDA41brPTi0AHx2Anx3utvo8fat+0PLNfHQ4jEwMQAPHg0vHgdBD1z0DixrGvw9rYV7tsPpb7u1b14+Hv5wrAswC1Zoo0gRkURkXXAZK6pKzqYxtImmkFZCG42+W+kG8n6rn9ByoA+VuqngVUH45LvwwQB7JbVF4ap1cONGN7vprQVwchGcPw5WnAhH5rrtCv5pMzSFR/zHExEZtbI6uFhr/zzUwNxsVVnyYQBqmv6U4ZZIKoxx3UQfL3MDjH85G7wDjLMu8bu9krpicPE7bjDwgd5rg5NXuJlX/68SnpnXe+BvZS68cjxcNxF+sBXKXnHP/+YmeG6vxsCIiBwoq4PLaFaQM5HyvGPYouAyagW9LpD8+8yBQ0u32Xnw6DGwpg0+997+bRAe2wMnvQV7wvDcsfCdyr5Vm+73uneO6z66ZbrryrqzFi5YDZWvuz2dktESUeVGRMYmBZcRVFVyDvXta2nt3JnppkganD8O7jjSTQf/zha3+N6n18K8fHj7RPhIAoN3Ty+GW6tg2fHQeAb8YR5M8MP5q+GfaxLbF+rdNjj6r1D1Bvz3Lm04KSJji4LLCKoqPRvov7uorm0toUhjupskI+wrU9x4mB9shbu2w1enuKnWU4LJnyvfCxeUwRsnuo0o/28NXPgONAxSSVnWBGe87TagnJsHV78HF69x+0SJiIwFCi4jqCgwlXG5s3rNLrLWsnLX/Ty5/ipe2PzNDLZORoIxbmr0lybD/x4Ddx4F/kP8f1m+F349B/5jJvypEU5YDr/Z7bqDDvREHXxklavQvHq8q9rceSS80AjHvAm/3gXNEVVgRGR082W6AWNdVcnZrNj5n7SH6wj6Snh56w9Z3/AkxYHp7Ny3nO2tf2Vy4cmZbqYMo4AH7po5vOc0Br4wGRYUuu6nz66DHONW8L2k3G1m+fVNcFIhPD0Pxue41311KlxYBte+58beAPgMjPe727x8+OlRUJ7T//v+rBZu2eJWG67O3387vXj4N65sDLsxQsU+OLZgeM8tImNH1i1Al4psW4DuQI0dm/ntuk9x0qS/Y0frcra3vsH8iZ/n+InX8di7l5KfM4GLZ9132GwNIIcuauG1ZjeW5ol6qIlPwb5wnBsgnN/PjtlRC7+LP7c+7G51Ybfr9gQ/PFkN8wt7P/+mTW4n7g+XuG0Q1rTB+x1ggVyPmzL+tSkDV5Q6Y/B2K7zRCq+3wF9b3GMTcvbfCr3unO+0Qe0B3Vl/Pxluq3KrHg+mKQx/2AtPN4DBjTM6b5w792gVirrB2iKHs1G3V1Gysjm4APzPu5+kqbMGg5dF029hdtnFAKyrf5yXt36f84/8KdOKz8hwK2U0shZW7oNNHfA345PfYmF5C1zyLuwNw6/mwOUVbtPJK9fBk/XwD5Ph347aP6uqPeoG//5gqztenQ//OQtOi2+i2RJxAek3e2BpI3TF/3mZEoCFhVDog91d7rYn7DbjnBF0lZ95Be7rH/e68UGVQTcl/UMH7Oods+79/9TkFux7qdmtPlwRn16+Jz7+5/gCOK8UZubBETmuYnREDpT707MNhbWuW67QN/SMtAM9tBv+dr2bhn/fnP5DqMjhQMElw1bv/jUrd93POTN+2KtbKGbDPPbuJ8nxFnDJnIdUdZGM2NXpFs97tQVumuo2nlzeCj85Cr48ZeDX/a4evrQRtnXC5ybAvig8s9dtsDktAJeVuy6lhUUwOclupZea4Lr3YFMIvjgJpgdhWTO80gyN8bE9x+TBxePh4jK3mB+4EPfcXldJerXFhZqD5RhXMcrzQp7HdZNNznHhanLAdaG1RF2Yawi7jTcrg/B3k/v/OWLWvd+zDa6i9UGn+7ovCtMDrrvu8xMHrx5FLXxzM9yxzf1ca9vhuAJXCZuewsDuscRaF1RLfXBC4ZBPlzFCwSXDrLVYonhM33+5NjY8w58/+L+cW/UjqkrPyUDrRFwXzpc2wn/tdH/Mf3O0CwVD2ReB79a4LqVyv6vYXFEBpxS5cTmHoi0K397sqi8As3PhjGJYVAJnFkNV7tA/064u2NkJO7vcrT4MHTFXOeqIuffYE3bdVLWdLmx0M7gusnE+2BJylZPFE+DmqTA3340run8X/Pt22NgBRV6YkevCyvQgTAq4LqyXm90f3S9Ogi9N6duN1RiGz6yFPza6LrLuAdVXrIUcD/z2GDiz5NCuZbbo/nOTyGfDWhdCb9kCK/a5x84qduH6Y2X9r4ckI8faQ///dDIUXLJYzEb537WXg/HwybmP4DGqDUtmWOu6f47Kdd02yWiOQIE3uW6RRG3pcF0mFWkYt9ISceGm2OdCS/fPs6XDLQh4704XeD5UAm+1usrMKUWuS+2T5f2P93m9Gf51mxuP5MGFmhm5cGTQha9f7nRbRdw9E66ftP9169vdSsybQ3D7DLi8vP9p9Xu6XNBZ0+Y2AZ05wGadHVH4zx3QHnPVpSkBmBpw44w2hWBDu3vPDR3u2JcmD3yuui73vAq/64LrribFLGzugNVtsHofvNfugmH3mKr6sPucnFzoqmQLC+GkIij2uj+KBnd7rQX+aYsLfZVB+M501634k1pX4ZuT5675CYXuZ5iQk1iQiVr3OR+O7sK6Ljc+a1c8FO/qchW+z010C1KOFVtD8G/b3Od0Th7cMAk+W+G6QUeSgkuW29z4PEu3fJMPV/4zR437WKabIyIDqOuCn22HB3fDqUWuK627m2ooG9rdGJYNHW5M0qYO1w01wQ+PV+8fJ3SgprCbQfaH+MrJk3Jc19vJhdAQcSsqr2rb//xcD9w2w4WOA/+Qv9rsut7WdwzeRr9x+27VhCBsXTfc16e6SldTxIWvR/a4afkH7kRR4HU/x64uaIu5xwxu/NLEHNcd1z2TbW8Y3mhxA7Jjg7TliBwXWD5/hKs8AYRj8D91rkvt7X292z014MJm2LrtN8LWjbHqjLnuy1D8Mb9xY6BOK4bTitzvsdDnKm7b47fGiOvmPKmwbyB6u9UF0cf29L4GBhdMY8AnxsM/ToVT+/mdggtPmzrcGK1lze66HZcPJxa6MDYjOHR1IxSFd9th1b79t3fbXRUxauM3XCXwnFL46Dh3S3RNqXVtbpPZh/a47y8rd+PL3mmDfI/bjPaGI2BBgp//ZCm4ZDlrYzz+3pVEYu1cPOt+cv2lAz6vvn0dZXmz8Jh+tjUWkVGlMezG2gQGqQDELLzZ6v7Yd982hdxYndOL3ZT4j5S6gPCFDW6c0ZnFbnDvETmuq+Unte4P+y9nu9ds73SVi9pOVy2bkQuzcl1o8XncuKef74D/2O4C0qxc110Wtq5S9OkKd5768P5qw64u1114bL4bn3NMvvvZBtIWhRWtrnLVEXOz1cB9rfC7brncAV5vrRsHtKUDtna6qsDWTlcxy/G4cNL9NejpfWuLxme5tbowM5gjclwI+Zvx7j3v2AZLm1yV6m+PgHPj131ifOB3Q8QF259vj4efIrdidnvUVbraou7x11vc9QIo87mxU+va3fUFV4Gak+eqTZXxylyZzwXP1ftcRWtj+/7glO/ZP7i92AdeXLXQY9z7LNm7f9ZedT6cXeIC8MKi/SGpK+Zm/v2pyQ2sX9bsrtffHuHC67SguwZ/bYVf7HABtj0GmxcO3W2bCgWXUaC25TX+8P6X8JocZpZdyLyKz1ISrAIgFGlifcNTrKv7La1d2znxiP/DCUfckOEWi0im7A27PyoHBwNr4YFd8A/vx2db5bjqyY2TXHdTsuX99ij89254dA+cUACfqXBVgbEwjyAcc1WKV1vcH+3uwdmTA65r8oVG13X6h4b9VaRJOfAPU1yloWSQ/3Zsi8J9O133Yk0IAsadM8/rQs/xBW7c0qJit8K1Ma4y9G6bC3Jv7XPjprqDWfiAP9Pds/COjQeV+QVud/nBuspsfDbeH+ID119vcaEDXBVsVq67Fm0xVzk6vsDNbPu7yQOv8dQccQHn0vJkrnriFFwOxf33933smGPgpJMgHIaHHup7fP58d2tvh8ce63t8wQKorobmZnjiiZ6H27rqqG15jXeO3EzjdC9HRhYw6aVd7GlbQ8xGKQ5OIxYLs22+l49f8CLePQ2wZEnf859zDkydCtu2wdKlfY9fcAFMnAibN8NLL/U9ftFFMH48rF8Pr73W9/gll0BxMaxZA/1d98svh7w8WLnS3Q525ZXg98Obb8K77/Y9fs017uurr8KGDb2P+XyweLG7/5e/wJYtvY/n5sKnP+3uv/AC1Nb2Pl5UBJde6u4vWQK7dvU+XlYGH/+4u//730NDQ+/jEye66wfw+OPQ0tL7+JQpcO657v6jj0LHQbX5qio46yx3/8EHIXLQ8rezZsFpp7n7afzs9Tj1VJg9G+rr4emn+x4/80yYMcNdN332eh/Pos9ew38/yq9rOtjd5cZczM1Hn70UP3vhmKvubL7gEi6cUUzO2sQ/e9a6ipnXQ8qfvZiFRnxsvWwxR+VC4SuH/tmL7tjF9i7XXbU5BOtzy2j/2Mc5uxQ+8vLvKWxO8LPX3eYRMFhw0cq5WSQ/p5zZ4y9m+sy5vDtuJZs2Poi/fRcTC45nUuFJFORMoKF9Ixsjv6Om6UWO5NhMN1lEslBZjpuGLYfO73FdX8eVk/QmOcYc+oB1j3HdRGXDOBXc63FdP9OC8GGAMmBW/OAoSAWquGSxaCyMJYbPs3/xCGtjPLb2EvL85Xx81i8z2DoREZGRMVjFRZssZjGvx98rtAAY42Hu+E+xa9/bNLRvzFDLREREMkPBZRSaXXYxXhNgbX0//cgiIiJjmILLKBTwFXHUuI/y/t5n6Yy0DP0CERGRMULBZZQ6pvxyIrEQGxp+n+mmiIiIpI2CyyhVljebCfnHsbb+f7B28FWUGto3sGbPw7SHGwZ9noiISLZTcBnFji6/nJbObdS2vN7nWDQW5v29S3hq/XU8/t4VvFb7bzy+7jNsa341Ay0VEREZHqNgxrYMpKrkHF733cnbu+5lX3gXXZFWOqMthCJNbG1+iY7IXooCU1g4+StU5Ffz8tbbWLLpS1RXfJaTJv19nxlLIiIi2U7BZRTzevwcXf4pVuy8h91tKwEweAn4CqnIm8fR5ZczpegUjHGFtb+Z82ve2H4Xa/Y8zI7WN/lw5b8wLveoDP4EIiIiydECdKNczEZp6dyKz5NHwFuEzxPEDLGRyAfNL/HSB7cSijRTWfJhjq1YzISC49LUYhERkcFpryLpoyO8lzV7HmZd/f/SGW2hIn8e8yoWU1nyYTxmkC1dRURERpiCiwwoHG1nQ8PveWfPQ7R2bWdy4SmcU3UbAV9RppsmIiKHKS35LwPye/M4puLTXH7ME5w+9Zvs3LecJ9d/jsaOLUO/WEREJM0UXAQAj/FydPmnuHDmPYSj+/jd+s+xtfnlnuPt4Xreq3+cP276Gi9v/QFtXXUZbK2IiByu1FUkfezr2skfN32dho4NzCn7GxpDm9ndthqwFOQcQXu4Do/xcWzF1Rw74Wr83lwAYjbCrn1vs6VxKW3hPUwomM+kggWU5c3uGTfTFW1jT9tqdu57m/ZwHcdWXEVp7owM/rQiIpJtNMZFkhaOdvDSB7eyuel5xufOYXrJh6gs+RClwaNo7drOX7f/O1uaXiDPP555FVfR3LmVmqY/EYo04jUB8nMqaOncBoDfk8/Egvl0RBppaF+PJYrBi9eTQ8xGOH7idRw34Vq8Hn+vNlgbo6FjA3s7NtIU2kJTqIbG0BZiNsyMknM5atyFlOXNzMTlERGREaTgIimLxDrweXL7PbZ73ype3/5j9rS9g88TZFrRIqpKz2Vq0en4vbm0h+vY0bqCna3L2dW2klzfOCYWzGdiwQlU5M8jGuvktdo72NT4HKXBIzlz+ncYnzfXVW2aXuSDphdpC+8BwGN8FAWmURqsIhrrYlvLq1iijMudxcxxH2PmuAvJ9Y9L56UREZERouAiI8Zay96O9ykOThkw4Azlg+aXeGXrD2kL7yHgLaIz2ozXBJhSdCpVJWdTnn8MRYHJeMz+ikxHuJHNjX9k495nqGt/F4/xc2TpeVRXXMH4vLnD9eOJiEgGKLhI1uuK7uPtnb+kPdLA9OKzeqo2iWjs2MLa+sfY0PB7IrEOJuQfx5zxl+D35hOLRYjaLmI2TMBbzISCeeT5y3u93lpLU2gLtS2v0RbeTWXJ2UzIP27IhfxERGRkKLjIYaEr2sr6+qd4t+5RWru2D/i8wpzJTCg4jvF5c2ns2NQTWMB1ScVshKLAVGaOu5CZ4y6iMHBEv+exNkZ7uJ7Wrh1EbReFOZMpyJmAx2gnDRGRQ6HgIoeVmI3S2PE+AB7jx+vx4zF+2sJ17N63it1tq9i9bxUdkQb8nnwmFy1kStGpTCk8lYCviJqmpWxoeJqd+1YAkO+vwOsJ4vfk4vME8RgfbeE97OvaScxGer23wUtBzkQKA5MpCUynNHcGpcEjKQnOIOgrIRRpYl/XDlq7dtDauYNQtJlILEQ0FiISCxGzEYqDlZTnzWV83tHk+yswxtAV3Udd+1rq2tZS376WqA3H25OL35NLjreA4uA0SoIzKAlOT7nbTkQkGyi4iBzEWkt7uI5cf2mvsTMHau3cwft7/0BL1/aeYBGOdRCzYfL85RTmHEFBziQKA5PwGj+tnTto6dpOa2ctLZ21NIVqCMfaes7nMX5iNtzrPTzG3xOIvJ4gBkNLZy2WKAC5vjJyvAU0d24F3P9XC3Mm4/fmE4l1EIl1EI66r5ZY/KyGwpxJlAZnMC53JuNyj6I09yhKgtP6/KzhaAdNnTU0dWymKbSFxtAWDIZc/zhy/ePJ9Y0j1z+OHE8Bfm8efk8+fm8eQV8xPk9weH4ZIiIHUXARyQBrLW3hPTSFNtPYsZn2cB35ORUu7ORMpjBwBDnegj6vi8RCNHRspL5tLXXta+mKtjI+by7l+cdQnnc0QV9Jn9dEY2GaO7fSFIoHkI7NNIY20xSq6QlBBm+8G8u6/9lYz7Hu48XBaRg8tIfr6Yw2D/rzufA2maLAZAoDU8j3l5PrLyPPN55cfxke42Vvx/s0dGygoX09ezs2YoyHkmCVuwUqKQ5OxWN8WGuxRLHWEol10BHZS0d4Lx2RvYQijQR9JRQHKikJTqc4OI0cb+Eh/W5EJLspuIgcpqKxLppCNezteJ+m0BbXtWUM3f/zeXIpCVZSEpxBcXBKr4pMzIbpCDfSEdlLONpOONbW87U93EBr5/Z4hWl7fNr6wP+W5PsnUJY7C0uMplANrV07Bn1+N4OHHG8hXdHWAypKEPSVkucvJ88/vuerzwR6BmJHbZhorItwrINwtI1wrJ1wtC3+2hJy/WXk+krJ9ZXh9QTwGA8GL8Z4sFg6wvW0x29t4TpisS583jz8njz83jxyPPnx84wj2F2V8hYSjXUSjXUSiYWIxDqJ2Ug8kO0PiW4n90JyvAX4vQV4TQ4xGyZmIz1fPZ4c/J4gPk8efk9uz5pHMRsmGosQsxG8Hj853kJ8nkCva2ZtjK7oPkKRJiKxTryeHHyeAF4TwOvJweAGnVtsz+/AY3x4jBeDb9gGpVtridkwHuPDGC3SPlxiNkxX1H2efZ4gQV/poL+zmI3EP9uja7LBYMFFowhFxjCvJ4eyvFmU5c1K+rUe4yc/p4L8nIohnxuNddERaaA93EBHuIH2SAPRWCeluUdSljurT5UoEuugObSNls5awIIxePCCMfhM0HVV+coI+IrwGC/RWJiWzlqaO2toDm2lpXObCxaRevZ2bKQjvLcnGHhNTs/YJr8nH78nF783v2fj0I5wg3tNZG+fMUoHyvEWxENROV5vkasEhetp6ezoCQYHVqwyxWsC8RCUTzi6j1Ck+ZDa1f1Hbv9/1FrA9AS1XF8ZeX7XhRmz0V6Bqyu6r6daFoo0EbWdPW30eYLxLtEAPpOD1+OClNfk9Lx3d5jyGB8BbzG5vlICvhKCvhIsMTojLXRFW+iMtBCOtbuuVm9ez1ivmI3QHq6jLVxHe7iOjnADHuMn4C0k4Csmx1uI35NL1HbFw2WIaKyTGFGI/7wWi8Hg9xYQ9BUT8BYR8BXhjQfjaKyTiO0iGgvRFd1HZ6SZULSZzkgzXdE2PMYbD4I+jPHi8wR6AqjPk4vPEyBmIz3vH4mFiNqwe128KmqMF0uMWMyF8JiNELWdhKPtRG1Xr99XwFsUr2JWUhSYSme0ldbO2vg4uu10RlsAetrkMb747yKv5/8bB46X83ndfYNb6bw7+HdF2/B5AgR8xe56eosJ+AqZXXZJwjNAh4sqLiIy6sVsFIglVTGw1tIVbSVqO4nZGNZG43/wDbm+siH/MbY2Rme0JV6VaiAcbXN/iD1BfCbg/jAbP+aAag64Hdm7YvvoirbSFd1HLBbGY/x4PL74873EYmHCsQ4isXbCsRDRWBce4453//GJ2i66oq10RlrpjLo/5DneQoK+EoLeYoK+EnyeIFHbSSTWFf+jG4rHkG6m5/rFbARrI/EqkY1XZgwYAzZGKNrsQmm4no5IQ58/0h7jI8dbSK5vnAs5PleFitmw+wNtO3uCQjTenkisM/6H2LXK9LQnQijSRCjS1GucGIDPk0vAW+SWO7BdPWO8wrEOPMbbU4XL91eQ6xtHzEbojLa4W6SFSCzkwpPHhSmvCfTMBDTxn7e7auVe00xntIVorDP+O3UVrAMDUdBX4oKRJ58YsXiYczdXgeuIV//aicZCeDw5PUHO78nFGB+253fgvhrjdb/v+OQCr/Hj9+aTEx9n1h1UG0M18ZXFtxCKNOIxvnhXtOuSzvOXYW0sHn7CPW1yVch29zXWTiTaEf/MhYjEOgDioSaPHG8BPk8u0ViIzmgrndFmuqL7APjccX8eka5bVVxEZExze2F5k3qNMaanCpMKYzwuJPhKKKUq5fPI4KKxLkKRJozxEvAW9dkapJv7j3B7WHdLdUX34fPk9uwNN5JiNkpXtBW/p+84vZGm4CIiIlnL68lJqLvSVdpG1ziO4dbfYP+R4jHeficKpOW9M/KuIiIiIilQxWUo99/f97FjjoGTToJwGB56qO/x+fPdrb0dHnus7/EFC6C6Gpqb4Ykn+h4/9VSYPRvq6+Hpp/seP/NMmDEDdu2CJUv6Hj/nHJg6FbZtg6VL+x6/4AKYOBE2b4aXXup7/KKLYPx4WL8eXnut7/FLLoHiYlizBvobW3T55ZCXBytXutvBrrwS/H548014992+x6+5xn199VXYsKH3MZ8PFi929//yF9iypffx3Fz49Kfd/RdegNra3seLiuDSS939JUvcNTxQWRl8/OPu/u9/Dw0NvY9PnOiuH8Djj0NLS+/jU6bAuee6+48+Ch0dvY9XVcFZZ7n7Dz4IkYMGh86aBaed5u7rs9f3uD577r4+e32P67Pn7qfzs9fd5jRTxUVERERGDc0qEhERkawy2KwiVVxERERk1Mi64GKMmWqMedEYs9YY864x5h8y3SYRERHJDtk4ODcCfN1a+5YxphBYYYx53lq7NtMNExERkczKuoqLtXantfat+P1WYB0wObOtEhERkWyQdcHlQMaYSuB44I1+jt1gjFlujFleV1eX9raJiIhI+mVtcDHGFAD/C3zFWtty8HFr7S+stQustQvKy8vT30ARERFJu6wMLsYYPy60PGStfTzT7REREZHskHXBxbgNJ+4F1llr78x0e0RERCR7ZF1wAU4HrgLONsasjN8+lulGiYiISOZl3XRoa+3LHO5bfIqIiEi/srHiIiIiItIvBRcREREZNRRcREREZNQYE7tDG2PqgA9G6PTjgfoROrf0pmudPrrW6aXrnT661ukzktd6urW230XaxkRwGUnGmOUDba0tw0vXOn10rdNL1zt9dK3TJ1PXWl1FIiIiMmoouIiIiMiooeAytF9kugGHEV3r9NG1Ti9d7/TRtU6fjFxrjXERERGRUUMVFxERERk1FFzijDEXGGPWG2PeN8Z8s5/jAWPMo/HjbxhjKjPQzDEhgWv9NWPMWmPMamPMUmPM9Ey0cywY6lof8LxPGmOsMUazMVKUyLU2xlwe/2y/a4x5ON1tHEsS+HdkmjHmRWPM2/F/S7TnXYqMMfcZY/YYY9YMcNwYY+6K/y5WG2NOGNEGWWsP+xvgBTYBM4AcYBVw9EHP+SJwT/z+Z4BHM93u0XhL8Fp/GMiL379R13rkrnX8eYXAS8DrwIJMt3s03hL8XM8E3gZK499XZLrdo/WW4PX+BXBj/P7RQE2m2z1ab8CZwAnAmgGOfwz4A26fwVOAN0ayPaq4OCcD71trN1tru4BHgE8c9JxPAA/E7/8WOMcYo80gkzfktbbWvmitbY9/+zowJc1tHCsS+VwD/DNwOxBKZ+PGmESu9d8CP7fWNgJYa/ekuY1jSSLX2wJF8fvFwI40tm9Msda+BOwd5CmfAH5tndeBEmPMESPVHgUXZzKw7YDva+OP9fsca20EaAbK0tK6sSWRa32gz+OSvCRvyGsdL+lOtdY+k86GjUGJfK5nAbOMMa8YY143xlyQttaNPYlc7+8Bi40xtcCzwJfS07TDUrL/rh8S30idWORQGWMWAwuAszLdlrHIGOMB7gSuyXBTDhc+XHfRh3BVxJeMMfOstU2ZbNQYdgVwv7X234wxpwL/bYypttbGMt0wOTSquDjbgakHfD8l/li/zzHG+HClx4a0tG5sSeRaY4w5F/gn4GJrbWea2jbWDHWtC4Fq4M/GmBpc3/RTGqCbkkQ+17XAU9basLV2C7ABF2QkeYlc788DjwFYa18Dgri9dWT4JfTv+nBRcHHeBGYaY6qMMTm4wbdPHfScp4DPxe9fBvzJxkclSVKGvNbGmOOB/8SFFo0DSN2g19pa22ytHW+trbTWVuLGE11srV2emeaOaon8G/IkrtqCMWY8rutocxrbOJYkcr23AucAGGPm4oJLXVpbefh4Crg6PrvoFKDZWrtzpN5MXUW4MSvGmL8HnsONVr/PWvuuMeb/AcuttU8B9+JKje/jBil9JnMtHr0SvNb/ChQA/xMf/7zVWntxxho9SiV4rWUYJHitnwPOM8asBaLAzdZaVW1TkOD1/jrwX8aYr+IG6l6j/9hMjTHmN7jQPT4+Zui7gB/AWnsPbgzRx4D3gXbg2hFtj36PIiIiMlqoq0hERERGDQUXERERGTUUXERERGTUUHARERGRUUPBRUREREYNBRcREREZNRRcREREZNRQcBGRrGaMGW+MscaYrxpj3jTGhIwxG4wx52W6bSKSfgouIpLt5se/Xg98AzgWWA08bIzJzVSjRCQzFFxEJNvNxy2Rf4m19k/W2g24AFMGzMlkw0Qk/RRcRCTbzQd+Hw8s3Voy1BYRyTAFFxHJdvOBtw967DQgBKxPe2tEJKMUXEQkaxljgsBs+v5b9XXgEWtte/pbJSKZ5Mt0A0REBlENGOAKY8xSYA9wC3AUcHkmGyYimaGKi4hks/nARuC7wG9wXUalwCJr7a4MtktEMsRYazPdBhGRfhljfgZUWGtVXRERQBUXEclu83FrtoiIAAouIpKljDGG/YvNiYgA6ioSERGRUUQVFxERERk1FFxERERk1FBwERERkVFDwUVERERGDQUXERERGTUUXERERGTUUHARERGRUUPBRUREREaN/w+OydSMtAIYRgAAAABJRU5ErkJggg==\n", 56 "text/plain": [ 57 "<Figure size 648x432 with 1 Axes>" 58 ] 59 }, 60 "metadata": { 61 "needs_background": "light" 62 }, 63 "output_type": "display_data" 64 } 65 ], 66 "source": [ 67 "plt.figure(figsize=(9,6))\n", 68 "plt.plot(p_i, spl_4, label=r'spl for $k = 4$', c='deepskyblue')\n", 69 "plt.plot(p_i, spl_8, label=r'spl for $k = 8$', c='yellowgreen')\n", 70 "plt.legend(loc='best')\n", 71 "plt.xlabel(r'$p$', fontsize=14)\n", 72 "plt.ylabel(r'$l_k(p)$', fontsize=14)\n", 73 "plt.plot(p_i, [np.log(N)/np.log(4) for i in p_i], linestyle='dashed', c='r', alpha=0.5)\n", 74 "plt.plot(p_i, [np.log(N)/np.log(8) for i in p_i], linestyle='dashed', c='r', alpha=0.5)" 75 ] 76 }, 77 { 78 "cell_type": "code", 79 "execution_count": null, 80 "id": "ba1705d4", 81 "metadata": {}, 82 "outputs": [], 83 "source": [] 84 } 85 ], 86 "metadata": { 87 "kernelspec": { 88 "display_name": "Python 3 (ipykernel)", 89 "language": "python", 90 "name": "python3" 91 }, 92 "language_info": { 93 "codemirror_mode": { 94 "name": "ipython", 95 "version": 3 96 }, 97 "file_extension": ".py", 98 "mimetype": "text/x-python", 99 "name": "python", 100 "nbconvert_exporter": "python", 101 "pygments_lexer": "ipython3", 102 "version": "3.9.7" 103 } 104 }, 105 "nbformat": 4, 106 "nbformat_minor": 5 107 }