main.tex (3116B)
1 \documentclass[a4paper]{article} 2 3 4 \usepackage[T1]{fontenc} 5 \usepackage[utf8]{inputenc} 6 \usepackage{mathptmx} 7 8 %\usepackage{ngerman} % Sprachanpassung Deutsch 9 10 \usepackage{graphicx} 11 \usepackage{geometry} 12 \geometry{a4paper, top=15mm} 13 14 \usepackage{subcaption} 15 \usepackage[shortlabels]{enumitem} 16 \usepackage{amssymb} 17 \usepackage{amsthm} 18 \usepackage{mathtools} 19 \usepackage{braket} 20 \usepackage{bbm} 21 \usepackage{graphicx} 22 \usepackage{float} 23 \usepackage{yhmath} 24 \usepackage{tikz} 25 \usetikzlibrary{patterns,decorations.pathmorphing,positioning} 26 \usetikzlibrary{calc,decorations.markings} 27 28 \usepackage[backend=biber, sorting=none]{biblatex} \addbibresource{uni.bib} 29 30 \usepackage[framemethod=TikZ]{mdframed} 31 32 \tikzstyle{titlered} = 33 [draw=black, thick, fill=white,% 34 text=black, rectangle, 35 right, minimum height=.7cm] 36 37 38 \usepackage[colorlinks=true,naturalnames=true,plainpages=false,pdfpagelabels=true]{hyperref} 39 \usepackage[parfill]{parskip} 40 \usepackage{lipsum} 41 42 43 \usepackage{tcolorbox} 44 \tcbuselibrary{skins,breakable} 45 46 \pagestyle{myheadings} 47 48 \markright{Popović\hfill 1st Exercise \hfill} 49 50 51 \title{University of Vienna\\ Faculty of Mathematics\\ \vspace{1.25cm}Seminar: Introduction to complex network analysis \\ 1st 52 Exercise 53 } 54 \author{Milutin Popovic} 55 \date{03. November, 2021} 56 57 \begin{document} 58 \maketitle 59 60 \section{Ordering Graphs} 61 Without computation we can order the following graphs in figure \ref{fig: graphs} 62 by 63 \begin{figure}[H] 64 \centering 65 \includegraphics[width=\textwidth]{./graphs.png} 66 \caption{Three graphs, labeled as A, B and C\label{fig: graphs}} 67 \end{figure} 68 \begin{enumerate} 69 \item Diameter $B \rightarrow C \rightarrow A$ 70 \item Density $A \rightarrow C \rightarrow B$ 71 \item Average clustering coefficient $A \rightarrow B \rightarrow C$ 72 \end{enumerate} 73 74 \section{Three Graphs} 75 We have three graphs $X_1, X_2, X_3$. From which two are real world graphs 76 and one is a ER network, below ist the data of these three networks, where 77 $n$ is the number of nodes, $L$ the number of edges and $\langle C \rangle$ 78 is the average clustering coefficient 79 80 \begin{center} 81 \begin{tabular}{ l | c c c } 82 \hline 83 & $n$ & $L$ & $\langle C\rangle$\\ 84 \hline 85 $X_1$ & 4941 & 6594 & 0.08 \\ 86 $X_2$ & 125 & 560 & 0.07 \\ 87 $X_3$ & 256985 & 7778954 & 0.009 \\ 88 \hline 89 \end{tabular} 90 \end{center} 91 According to the distribution law of the ER random network we can calculate 92 the avarage clustering coefficient with the number of nodes and number of 93 edges of the network. 94 \begin{align} 95 \langle C\rangle = \frac{\langle k \rangle}{N} = \frac{L}{N^2} \simeq 96 \begin{cases} 97 0.0026 & \text{for} \;\;\; X_1 \\ 98 0.038 & \text{for} \;\;\; X_2 \\ 99 0.000117 & \text{for} \;\;\; X_3 \\ 100 \end{cases} 101 \end{align} 102 For graph $X_2$ the avrage clustering coefficient is $\langle C\rangle = 103 0.07$, and according to the calculation $0.038$ which is the closest we got 104 with in comparison to other graphs. Meaning $X_2$ is most likely the graph 105 that models an ER network . 106 107 \nocite{code} 108 \printbibliography 109 110 \end{document}