network_ana

Complex Network Anlysis
git clone git://popovic.xyz/network_ana.git
Log | Files | Refs

main.tex (4952B)


      1 \documentclass[a4paper]{article}
      2 
      3 
      4 \usepackage[T1]{fontenc}
      5 \usepackage[utf8]{inputenc}
      6 \usepackage{mathptmx}
      7 
      8 %\usepackage{ngerman}	% Sprachanpassung Deutsch
      9 
     10 \usepackage{graphicx}
     11 \usepackage{geometry}
     12 \geometry{a4paper, top=15mm}
     13 
     14 \usepackage{subcaption}
     15 \usepackage[shortlabels]{enumitem}
     16 \usepackage{amssymb}
     17 \usepackage{amsthm}
     18 \usepackage{mathtools}
     19 \usepackage{braket}
     20 \usepackage{bbm}
     21 \usepackage{graphicx}
     22 \usepackage{float}
     23 \usepackage{yhmath}
     24 \usepackage{tikz}
     25 \usetikzlibrary{patterns,decorations.pathmorphing,positioning}
     26 \usetikzlibrary{calc,decorations.markings}
     27 
     28 \usepackage[backend=biber, sorting=none]{biblatex} \addbibresource{uni.bib}
     29 
     30 \usepackage[framemethod=TikZ]{mdframed}
     31 
     32 \tikzstyle{titlered} =
     33     [draw=black, thick, fill=white,%
     34         text=black, rectangle,
     35         right, minimum height=.7cm]
     36 
     37 
     38 \usepackage[colorlinks=true,naturalnames=true,plainpages=false,pdfpagelabels=true]{hyperref}
     39 \usepackage[parfill]{parskip}
     40 \usepackage{lipsum}
     41 
     42 
     43 \usepackage{tcolorbox}
     44 \tcbuselibrary{skins,breakable}
     45 
     46 \pagestyle{myheadings}
     47 
     48 \markright{Popović\hfill 1st Exercise \hfill}
     49 
     50 
     51 \title{University of Vienna\\ Faculty of Mathematics\\
     52     \vspace{1.25cm}Seminar: Introduction to complex network analysis \\ 5th
     53 Exercise
     54 }
     55 \author{Milutin Popović}
     56 \begin{document}
     57 \maketitle
     58 
     59 Looking at a social graph with $N$ nodes, the expected degree of a random
     60 node is $\langle k\rangle$. Each of $\langle k \rangle$ edges points to a
     61 different node. The probability that a random edge is connected to a node
     62 $i$ with degree $k_i$ is
     63 \begin{align}\label{eq: annd}
     64     p(k_i) = \frac{k_i}{\sum_{j}^N k_j} \;\;\;\;
     65 \end{align}
     66 for all $i = 1,\dots,N$. Thus the average degree is calculated by the
     67 weighted average
     68 \begin{align}
     69     \langle k_{nn} \rangle = \sum_i^N k_i p(k_i) = \frac{\sum_i^N
     70     k_i^2}{\sum_j^N k_j} = \frac{\langle k^2\rangle}{\langle k\rangle}.
     71 \end{align}
     72 For scale-free networks we have a power law distribution, meaning
     73 \begin{align}
     74     p(k) = c\cdot k^{-\gamma}
     75 \end{align}
     76 Thereby we can calculate the $n-th$ moment of the degree distribution
     77 \begin{align}
     78     \langle k^n \rangle = \int_{k_{\text{min}}}^{k_{\text{max}}} k^n p(k) dk
     79     = c \frac{k_{\text{max}}^{n-\gamma+1} -
     80     k_{\text{min}}^{n-\gamma+1}}{n-\gamma +1}
     81 \end{align}
     82 We can substitute the $1$-st and $2$-th moment of the degree distribution in
     83 to the equation \ref{eq: annd}, giving us
     84 \begin{align}
     85     \langle k_{nn} \rangle \frac{}{} = \frac{\gamma-2}{\gamma-3}\; \cdot \;
     86     \frac{k_{\text{max}}^{3-\gamma} -
     87     k_{\text{min}}^{3-\gamma}}{k_{\text{max}}^{2-\gamma} -
     88 k_{\text{min}}^{2-\gamma}}
     89 \end{align}
     90 In the cases of $\gamma \rightarrow 2$ and $\gamma \rightarrow 3$ we have the
     91 friendship paradox. Let us compute both cases
     92 \begin{align}\label{eq: scalefree}
     93     \lim_{\gamma \rightarrow 2} = \frac{\gamma-2}{\gamma-3}\; \cdot \;
     94     \frac{k_{\text{max}}^{3-\gamma} -
     95     k_{\text{min}}^{3-\gamma}}{k_{\text{max}}^{2-\gamma} -
     96 k_{\text{min}}^{2-\gamma}},
     97 \end{align}
     98 we will need to use the L'Hopital rule once since we have the case
     99 $\frac{0}{0}$. By applying differentiation in both the numerator and the
    100 denominator we get
    101 \begin{align}
    102     \lim_{\gamma \rightarrow 2}& \frac{
    103     \frac{d}{d\gamma}}{\frac{d}{d\gamma}}\frac{(\gamma-2)}{(\gamma-3)}
    104     \frac{(k_{\text{max}}^{3-\gamma} -
    105     k_{\text{min}}^{3-\gamma})}{(k_{\text{max}}^{2-\gamma} -
    106 k_{\text{min}}^{2-\gamma})}=\nonumber \\
    107     &= \frac{k_{\text{max}} - k_{\text{min}}}{\ln(k_{\text{max}}) -
    108     \ln(k_{\text{min}})}.
    109 \end{align}
    110 Similarly for the $\gamma \rightarrow 3$ case we need to apply the rule of
    111 l'Hopital, giving us
    112 \begin{align}
    113     \lim_{\gamma \rightarrow 3}& \frac{
    114     \frac{d}{d\gamma}}{\frac{d}{d\gamma}}\frac{(\gamma-2)}{(\gamma-3)}
    115     \frac{(k_{\text{max}}^{3-\gamma} -
    116     k_{\text{min}}^{3-\gamma})}{(k_{\text{max}}^{2-\gamma} -
    117 k_{\text{min}}^{2-\gamma})}=\nonumber\\
    118     &= \frac{k_{\text{max}}k_{\text{min}}\left(\ln(k_{\text{max}}) -
    119     \ln(k_{\text{min}})\right)}{k_{\text{max}} - k_{\text{min}}}.
    120 \end{align}
    121 We can compare this to a random network which follows a Poisson distribution,
    122 where the 1st and 2nd moments are
    123 \begin{align}
    124     \langle k^2 \rangle = k^2 \\
    125     \langle k \rangle = k,
    126 \end{align}
    127 giving us
    128 \begin{align}
    129     \langle k_{nn}\rangle = \frac{k^2}{k} = k.
    130 \end{align}
    131 
    132 We will now take \ref{eq: scalefree} and substitute $k_{\text{max}}$ with the
    133 natural cutoff (largest expected hub) to get an approximate expression
    134 depending on the number of nodes $N$. Explicitly we substitute
    135 \begin{align}
    136     k_{\text{max}} = k_{\text{min}} N^{\frac{1}{\gamma -1}}.
    137 \end{align}
    138 This will give us
    139 \begin{align}
    140     \langle k_{nn} \rangle = k_{\text{min}}\frac{2- \gamma}{3-\gamma}
    141     \frac{N^{\frac{3-\gamma}{\gamma-1}} - 1}{N^{\frac{2-\gamma}{\gamma-1}} -
    142     1} \;\;\;\; \underset{N\rightarrow \infty}{{\longrightarrow}} \;\; \infty
    143 \end{align}
    144 
    145 \nocite{code}
    146 \nocite{barabasi2016network}
    147 \printbibliography
    148 
    149 \end{document}