main.tex (4952B)
1 \documentclass[a4paper]{article} 2 3 4 \usepackage[T1]{fontenc} 5 \usepackage[utf8]{inputenc} 6 \usepackage{mathptmx} 7 8 %\usepackage{ngerman} % Sprachanpassung Deutsch 9 10 \usepackage{graphicx} 11 \usepackage{geometry} 12 \geometry{a4paper, top=15mm} 13 14 \usepackage{subcaption} 15 \usepackage[shortlabels]{enumitem} 16 \usepackage{amssymb} 17 \usepackage{amsthm} 18 \usepackage{mathtools} 19 \usepackage{braket} 20 \usepackage{bbm} 21 \usepackage{graphicx} 22 \usepackage{float} 23 \usepackage{yhmath} 24 \usepackage{tikz} 25 \usetikzlibrary{patterns,decorations.pathmorphing,positioning} 26 \usetikzlibrary{calc,decorations.markings} 27 28 \usepackage[backend=biber, sorting=none]{biblatex} \addbibresource{uni.bib} 29 30 \usepackage[framemethod=TikZ]{mdframed} 31 32 \tikzstyle{titlered} = 33 [draw=black, thick, fill=white,% 34 text=black, rectangle, 35 right, minimum height=.7cm] 36 37 38 \usepackage[colorlinks=true,naturalnames=true,plainpages=false,pdfpagelabels=true]{hyperref} 39 \usepackage[parfill]{parskip} 40 \usepackage{lipsum} 41 42 43 \usepackage{tcolorbox} 44 \tcbuselibrary{skins,breakable} 45 46 \pagestyle{myheadings} 47 48 \markright{Popović\hfill 1st Exercise \hfill} 49 50 51 \title{University of Vienna\\ Faculty of Mathematics\\ 52 \vspace{1.25cm}Seminar: Introduction to complex network analysis \\ 5th 53 Exercise 54 } 55 \author{Milutin Popović} 56 \begin{document} 57 \maketitle 58 59 Looking at a social graph with $N$ nodes, the expected degree of a random 60 node is $\langle k\rangle$. Each of $\langle k \rangle$ edges points to a 61 different node. The probability that a random edge is connected to a node 62 $i$ with degree $k_i$ is 63 \begin{align}\label{eq: annd} 64 p(k_i) = \frac{k_i}{\sum_{j}^N k_j} \;\;\;\; 65 \end{align} 66 for all $i = 1,\dots,N$. Thus the average degree is calculated by the 67 weighted average 68 \begin{align} 69 \langle k_{nn} \rangle = \sum_i^N k_i p(k_i) = \frac{\sum_i^N 70 k_i^2}{\sum_j^N k_j} = \frac{\langle k^2\rangle}{\langle k\rangle}. 71 \end{align} 72 For scale-free networks we have a power law distribution, meaning 73 \begin{align} 74 p(k) = c\cdot k^{-\gamma} 75 \end{align} 76 Thereby we can calculate the $n-th$ moment of the degree distribution 77 \begin{align} 78 \langle k^n \rangle = \int_{k_{\text{min}}}^{k_{\text{max}}} k^n p(k) dk 79 = c \frac{k_{\text{max}}^{n-\gamma+1} - 80 k_{\text{min}}^{n-\gamma+1}}{n-\gamma +1} 81 \end{align} 82 We can substitute the $1$-st and $2$-th moment of the degree distribution in 83 to the equation \ref{eq: annd}, giving us 84 \begin{align} 85 \langle k_{nn} \rangle \frac{}{} = \frac{\gamma-2}{\gamma-3}\; \cdot \; 86 \frac{k_{\text{max}}^{3-\gamma} - 87 k_{\text{min}}^{3-\gamma}}{k_{\text{max}}^{2-\gamma} - 88 k_{\text{min}}^{2-\gamma}} 89 \end{align} 90 In the cases of $\gamma \rightarrow 2$ and $\gamma \rightarrow 3$ we have the 91 friendship paradox. Let us compute both cases 92 \begin{align}\label{eq: scalefree} 93 \lim_{\gamma \rightarrow 2} = \frac{\gamma-2}{\gamma-3}\; \cdot \; 94 \frac{k_{\text{max}}^{3-\gamma} - 95 k_{\text{min}}^{3-\gamma}}{k_{\text{max}}^{2-\gamma} - 96 k_{\text{min}}^{2-\gamma}}, 97 \end{align} 98 we will need to use the L'Hopital rule once since we have the case 99 $\frac{0}{0}$. By applying differentiation in both the numerator and the 100 denominator we get 101 \begin{align} 102 \lim_{\gamma \rightarrow 2}& \frac{ 103 \frac{d}{d\gamma}}{\frac{d}{d\gamma}}\frac{(\gamma-2)}{(\gamma-3)} 104 \frac{(k_{\text{max}}^{3-\gamma} - 105 k_{\text{min}}^{3-\gamma})}{(k_{\text{max}}^{2-\gamma} - 106 k_{\text{min}}^{2-\gamma})}=\nonumber \\ 107 &= \frac{k_{\text{max}} - k_{\text{min}}}{\ln(k_{\text{max}}) - 108 \ln(k_{\text{min}})}. 109 \end{align} 110 Similarly for the $\gamma \rightarrow 3$ case we need to apply the rule of 111 l'Hopital, giving us 112 \begin{align} 113 \lim_{\gamma \rightarrow 3}& \frac{ 114 \frac{d}{d\gamma}}{\frac{d}{d\gamma}}\frac{(\gamma-2)}{(\gamma-3)} 115 \frac{(k_{\text{max}}^{3-\gamma} - 116 k_{\text{min}}^{3-\gamma})}{(k_{\text{max}}^{2-\gamma} - 117 k_{\text{min}}^{2-\gamma})}=\nonumber\\ 118 &= \frac{k_{\text{max}}k_{\text{min}}\left(\ln(k_{\text{max}}) - 119 \ln(k_{\text{min}})\right)}{k_{\text{max}} - k_{\text{min}}}. 120 \end{align} 121 We can compare this to a random network which follows a Poisson distribution, 122 where the 1st and 2nd moments are 123 \begin{align} 124 \langle k^2 \rangle = k^2 \\ 125 \langle k \rangle = k, 126 \end{align} 127 giving us 128 \begin{align} 129 \langle k_{nn}\rangle = \frac{k^2}{k} = k. 130 \end{align} 131 132 We will now take \ref{eq: scalefree} and substitute $k_{\text{max}}$ with the 133 natural cutoff (largest expected hub) to get an approximate expression 134 depending on the number of nodes $N$. Explicitly we substitute 135 \begin{align} 136 k_{\text{max}} = k_{\text{min}} N^{\frac{1}{\gamma -1}}. 137 \end{align} 138 This will give us 139 \begin{align} 140 \langle k_{nn} \rangle = k_{\text{min}}\frac{2- \gamma}{3-\gamma} 141 \frac{N^{\frac{3-\gamma}{\gamma-1}} - 1}{N^{\frac{2-\gamma}{\gamma-1}} - 142 1} \;\;\;\; \underset{N\rightarrow \infty}{{\longrightarrow}} \;\; \infty 143 \end{align} 144 145 \nocite{code} 146 \nocite{barabasi2016network} 147 \printbibliography 148 149 \end{document}