main.tex (4075B)
1 \documentclass[a4paper]{article} 2 3 4 \usepackage[T1]{fontenc} 5 \usepackage[utf8]{inputenc} 6 \usepackage{mathptmx} 7 8 %\usepackage{ngerman} % Sprachanpassung Deutsch 9 10 \usepackage{graphicx} 11 \usepackage{geometry} 12 \geometry{a4paper, top=15mm} 13 14 \usepackage{subcaption} 15 \usepackage[shortlabels]{enumitem} 16 \usepackage{amssymb} 17 \usepackage{amsthm} 18 \usepackage{mathtools} 19 \usepackage{braket} 20 \usepackage{bbm} 21 \usepackage{graphicx} 22 \usepackage{float} 23 \usepackage{yhmath} 24 \usepackage{tikz} 25 \usetikzlibrary{patterns,decorations.pathmorphing,positioning} 26 \usetikzlibrary{calc,decorations.markings} 27 28 \usepackage[backend=biber, sorting=none]{biblatex} \addbibresource{uni.bib} 29 30 \usepackage[framemethod=TikZ]{mdframed} 31 32 \tikzstyle{titlered} = 33 [draw=black, thick, fill=white,% 34 text=black, rectangle, 35 right, minimum height=.7cm] 36 37 38 \usepackage[colorlinks=true,naturalnames=true,plainpages=false,pdfpagelabels=true]{hyperref} 39 \usepackage[parfill]{parskip} 40 \usepackage{lipsum} 41 \newtheorem{definition}[section]{Definition} 42 43 44 \usepackage{tcolorbox} 45 \tcbuselibrary{skins,breakable} 46 47 \pagestyle{myheadings} 48 49 \markright{Popović\hfill 6-th Exercise \hfill} 50 51 52 \title{University of Vienna\\ Faculty of Mathematics\\ 53 \vspace{1.25cm}Seminar: Introduction to complex network analysis \\ 6-th 54 Exercise 55 } 56 \author{Milutin Popović} 57 \begin{document} 58 \maketitle 59 60 \section{Exercise 6} 61 \subsection{Consider a Barabasi-Albert} 62 We consider a Barabasi-Albert model with a preferential attachment given by 63 \begin{align} 64 \Pi(k_i) = \frac{1}{m_0 + t - 1}. 65 \end{align} 66 With the following differential equation 67 \begin{align} 68 \frac{\partial k_i}{\partial t} = m \Pi(k_i) \;\;\;\; k_i(t_i) = m 69 \end{align} 70 we can solve for the degree dynamics. By simply integrating we get 71 \begin{align} 72 k_i(t) &= \int \frac{m}{m_0 +t -1}dt \nonumber\\ 73 &=m\ln(m_0 + t - 1) + c. 74 \end{align} 75 With the initial condition $k_i(t_i) = m$ we get the degree dynamics 76 \begin{align} 77 k_i(t) = m \ln(e\cdot\frac{m_0 + t - 1}{m_0 + t_i - 1}). 78 \end{align} 79 To calculate the degree distribution, we look at nodes with degree $k_i < k$, 80 which by substitution is essentially 81 \begin{align} 82 t_i > e^{-\frac{k}{m}}e\cdot (m+t-1) -m_0 + 1. 83 \end{align} 84 Meaning that every node that entered after time $t_i$ has degree smaller than 85 $k$. There are exactly $t_i - t$ such nodes, thus the probability to find 86 such node is 87 \begin{align} 88 P(k) = 1 - e^{-\frac{k}{m}}e\cdot (m+t-1) +m_0 - 1. 89 \end{align} 90 By differentiating with respect to $k$ we get the degree distribution 91 \begin{align} 92 p(k) = \frac{\partial P(k_i<k)}{\partial k} = 93 \frac{e}{m}e^{-\frac{m}{k}}(m_0 + t -1) 94 \end{align} 95 For $t \gg m_0$ we get 96 \begin{align} 97 p(k) = \frac{e}{m} e^{-\frac{e}{m}}. 98 \end{align} 99 \subsection{Betweeness- and Closeness Centrality} 100 \begin{definition} 101 The betweenness centrality of a node $k$ is given by 102 \begin{align} 103 g(k) = \sum_{i \neq j \neq k} 104 \frac{\sigma_{k_ik_j}(k)}{\sigma_{k_ik_j}}, 105 \end{align} 106 where $\sigma_{k_ik_j}$ is the number of shortest paths from node $k_i$ to 107 node $k_j$, and $\sigma_{k_i k_j}(k)$ is the number of shortest paths 108 from node $k_i$ to node $k_j$ that pass through node $k$. 109 \end{definition} 110 Betweenness centrality of a node $k$, basically describes how good the node 111 is connected in term of shortest paths. The maximum of this function would 112 give us a node that is especially well connected by shortest paths to most of 113 the nodes in the network. 114 115 \begin{definition} 116 The closeness centrality $C(k)$ of a node $k$ in a connected graph with 117 $N$ number of nodes is given by 118 \begin{align} 119 C(k) = \frac{N - 1}{\sum_{i} d(k_i, k)}, 120 \end{align} 121 where $d(k_i, k)$ is the shortest distance from node $k_i$ to node $k$. 122 \end{definition} 123 Closeness centrality of a node $k$, resembles how well closed up with respect 124 to a node $k$ a network is. With this function we can find nodes that are 125 close to other nodes, i.e. how efficient a given node is. 126 127 128 129 130 \nocite{code} 131 \nocite{barabasi2016network} 132 \printbibliography 133 134 \end{document}