main.tex (5602B)
1 \documentclass[a4paper]{article} 2 3 4 \usepackage[T1]{fontenc} 5 \usepackage[utf8]{inputenc} 6 \usepackage{mathptmx} 7 8 %\usepackage{ngerman} % Sprachanpassung Deutsch 9 10 \usepackage{graphicx} 11 \usepackage{geometry} 12 \geometry{a4paper, top=15mm} 13 14 \usepackage{subcaption} 15 \usepackage[shortlabels]{enumitem} 16 \usepackage{amssymb} 17 \usepackage{amsthm} 18 \usepackage{mathtools} 19 \usepackage{braket} 20 \usepackage{bbm} 21 \usepackage{graphicx} 22 \usepackage{float} 23 \usepackage{yhmath} 24 \usepackage{tikz} 25 \usetikzlibrary{patterns,decorations.pathmorphing,positioning} 26 \usetikzlibrary{calc,decorations.markings} 27 28 \usepackage[backend=biber, sorting=none]{biblatex} \addbibresource{uni.bib} 29 30 \usepackage[framemethod=TikZ]{mdframed} 31 32 \tikzstyle{titlered} = 33 [draw=black, thick, fill=white,% 34 text=black, rectangle, 35 right, minimum height=.7cm] 36 37 38 \usepackage[colorlinks=true,naturalnames=true,plainpages=false,pdfpagelabels=true]{hyperref} 39 \usepackage[parfill]{parskip} 40 \usepackage{lipsum} 41 \newtheorem{definition}[section]{Definition} 42 43 44 \usepackage{tcolorbox} 45 \tcbuselibrary{skins,breakable} 46 47 \pagestyle{myheadings} 48 49 \markright{Popović\hfill 6-th Exercise \hfill} 50 51 52 \title{University of Vienna\\ Faculty of Mathematics\\ 53 \vspace{1.25cm}Seminar: Introduction to complex network analysis \\ 6-th 54 Exercise 55 } 56 \author{Milutin Popović} 57 \begin{document} 58 \maketitle 59 60 \section{Exercise 7} 61 \subsection{Bianconi-Barabasi model and network failure} 62 Consider a Bianconi-Barabasi model with two fitness values $\eta = 1$ and 63 $\eta = a$ where $0 \leq a \leq 1$, with a fitness distribution 64 \begin{align} 65 \varrho(\eta) = \frac{1}{2} \delta (\eta - 1) + \frac{1}{2} \delta (\eta 66 - a), 67 \end{align} 68 where $\delta(\eta)$ is the Dirac delta distribution. 69 70 We know that the dynamic epxonent $\beta(\eta)$ satisfies 71 \begin{align} 72 \beta(\eta) = \frac{\eta}{C}, 73 \end{align} 74 where 75 \begin{align}\label{eq: c} 76 C = \in \varrho(\eta) \frac{\eta}{1-\beta(\eta)} d\eta. 77 \end{align} 78 To calculate $C$ we plug $\varrho(\eta)$ into equation \ref{eq: c} 79 \begin{align} 80 C &= \frac{1}{2}\left( 81 \int \delta(\eta - 1) \frac{\eta}{1-\beta(\eta)}+ 82 \int \delta(\eta - a) \frac{\eta}{a-\beta(\eta)} 83 \right) =\\ 84 &= \frac{1}{2} \left(\frac{1}{1-\beta(1)} + \frac{1}{1-\beta(a)}\right). 85 \end{align} 86 Into the calculation we substitute $\beta(\eta)$, thereby getting 87 \begin{align} 88 C = \frac{1}{2} \left(\frac{C}{C-1} + \frac{Ca}{C-a}\right), 89 \end{align} 90 this expression has two solutions 91 \begin{align} 92 C_1 &= \frac{1}{4} \left(\sqrt{9a^2 - 14a + 9} +3a +3 \right), \\ 93 C_2 &= \frac{1}{4} \left(-\sqrt{9a^2 - 14a + 9} +3a +3 \right). 94 \end{align} 95 We choose $C = C_1$ because 96 \begin{align} 97 C = C_1 = \frac{1}{4} \left(\sqrt{9a^2 - 14a + 9} +3a +3 \right) = 98 \begin{cases} 99 \frac{3}{2} \;\;\;\;\; \text{for} \;\;\; a=0 \\ 100 2 \;\;\;\;\; \text{for} \;\;\; a=1 101 \end{cases} 102 \end{align} 103 satisfies to the calculation of the reduced model for $a = 0$, which is the 104 Barabasi-Albert model. Thus the stationary $p_k$ degree distribution can be 105 calculated 106 \begin{align} 107 p_k &~ C\int d\eta \frac{\varrho(\eta)}{\eta} \left(\frac{m}{k} 108 \right)^{\frac{C}{\eta} +1} =\\ 109 &= \frac{C}{2} \left(\frac{m}{k}\right) \left(\left(\frac{m}{k}\right)^C + \frac{1}{4} 110 \left(\frac{m}{k}\right)^{\frac{C}{a}} \right) 111 \end{align} 112 Thereby the degree exponent $\gamma$ is estimated to be around 113 \begin{align} 114 \gamma \simeq C + 1 115 \end{align} 116 Which agrees with the boundaries $a=0$ and $a=1$. The figure below shows the 117 relations 118 \begin{figure}[H] 119 \centering 120 \includegraphics[width=\textwidth]{./ex_71.png} 121 \caption{Constant $C$ and degree exponent $\gamma$ against $0\leq a \leq$} 122 \end{figure} 123 \subsection{The Breakdown Threshold} 124 The breakdown threshold $f_c$ of networks with a given degree distribution 125 $p_k$ can be written as 126 \begin{align} 127 f_c = 1- \frac{1}{\kappa - 1} \;\;\;\;\; \kappa = \frac{\langle k^2 128 \rangle}{\langle k \rangle}, 129 \end{align} 130 For Scale Erdős Rényi networks the distribution is 131 \begin{align} 132 p_k = \begin{bmatrix}N \\ k\end{bmatrix} p^k (1-p)^{N-k}, 133 \end{align} 134 with $N$ number of nodes for a node with degree $k$ and probability of 135 connectivity $p$. Thereby we can calculate the first and second moment of the 136 degree $\langle k^m \rangle$ for $m = 1, 2$ just by extending the summation 137 to the continuum 138 \begin{align} 139 \langle k \rangle &= \int_0^N k p_k dk = Np\\ 140 \langle k^2 \rangle &= \int_0^N k^2 p_k dk = p(1-p)N + p^2N^2.\\ 141 \end{align} 142 Thereby the degree dynamics is 143 \begin{align} 144 \kappa = 1+(N-1)p, 145 \end{align} 146 and the for the breakdown threshold 147 \begin{align} 148 f_c = 1 - \frac{1}{(N-1)p} \underset{N\rightarrow 149 \infty}{{\longrightarrow}} 1 150 \end{align} 151 152 For the scale free network we have a exponential distribution 153 \begin{align} 154 p(k) = c \cdot k^{-\gamma}. 155 \end{align} 156 We calculated the degree dynamics $\kappa$ in exercise 5, with 157 $k_{\text{max}} = k_{\text{min}} N^{\frac{1}{N-\gamma}}$ we have the 158 following 159 \begin{align} 160 \kappa = k_{\text{min}}\frac{2- \gamma}{3-\gamma} 161 \frac{N^{\frac{3-\gamma}{\gamma-1}} - 1}{N^{\frac{2-\gamma}{\gamma-1}} - 162 1} \;\;\;\; \underset{N\rightarrow \infty}{{\longrightarrow}} \;\; \infty 163 \end{align} 164 thereby the breakdown threshold is 165 \begin{align} 166 f_c = 1 - \frac{1}{k_{\text{min}}\frac{2- \gamma}{3-\gamma} 167 \frac{N^{\frac{3-\gamma}{\gamma-1}} - 1}{N^{\frac{2-\gamma}{\gamma-1}} - 168 1} - 1} \;\;\;\; \underset{N\rightarrow \infty}{{\longrightarrow}} \;\; 1 169 \end{align} 170 171 \nocite{code} 172 \nocite{barabasi2016network} 173 \printbibliography 174 175 \end{document}