network_ana

Complex Network Anlysis
git clone git://popovic.xyz/network_ana.git
Log | Files | Refs

main.tex (5602B)


      1 \documentclass[a4paper]{article}
      2 
      3 
      4 \usepackage[T1]{fontenc}
      5 \usepackage[utf8]{inputenc}
      6 \usepackage{mathptmx}
      7 
      8 %\usepackage{ngerman}	% Sprachanpassung Deutsch
      9 
     10 \usepackage{graphicx}
     11 \usepackage{geometry}
     12 \geometry{a4paper, top=15mm}
     13 
     14 \usepackage{subcaption}
     15 \usepackage[shortlabels]{enumitem}
     16 \usepackage{amssymb}
     17 \usepackage{amsthm}
     18 \usepackage{mathtools}
     19 \usepackage{braket}
     20 \usepackage{bbm}
     21 \usepackage{graphicx}
     22 \usepackage{float}
     23 \usepackage{yhmath}
     24 \usepackage{tikz}
     25 \usetikzlibrary{patterns,decorations.pathmorphing,positioning}
     26 \usetikzlibrary{calc,decorations.markings}
     27 
     28 \usepackage[backend=biber, sorting=none]{biblatex} \addbibresource{uni.bib}
     29 
     30 \usepackage[framemethod=TikZ]{mdframed}
     31 
     32 \tikzstyle{titlered} =
     33     [draw=black, thick, fill=white,%
     34         text=black, rectangle,
     35         right, minimum height=.7cm]
     36 
     37 
     38 \usepackage[colorlinks=true,naturalnames=true,plainpages=false,pdfpagelabels=true]{hyperref}
     39 \usepackage[parfill]{parskip}
     40 \usepackage{lipsum}
     41 \newtheorem{definition}[section]{Definition}
     42 
     43 
     44 \usepackage{tcolorbox}
     45 \tcbuselibrary{skins,breakable}
     46 
     47 \pagestyle{myheadings}
     48 
     49 \markright{Popović\hfill 6-th Exercise \hfill}
     50 
     51 
     52 \title{University of Vienna\\ Faculty of Mathematics\\
     53     \vspace{1.25cm}Seminar: Introduction to complex network analysis \\ 6-th
     54 Exercise
     55 }
     56 \author{Milutin Popović}
     57 \begin{document}
     58 \maketitle
     59 
     60 \section{Exercise 7}
     61 \subsection{Bianconi-Barabasi model and network failure}
     62 Consider a Bianconi-Barabasi model with two fitness values $\eta = 1$ and
     63 $\eta = a$ where $0 \leq a \leq 1$, with a fitness distribution
     64 \begin{align}
     65     \varrho(\eta) = \frac{1}{2} \delta (\eta - 1) + \frac{1}{2} \delta (\eta
     66     - a),
     67 \end{align}
     68 where $\delta(\eta)$ is the Dirac delta distribution.
     69 
     70 We know that the dynamic epxonent $\beta(\eta)$ satisfies
     71 \begin{align}
     72     \beta(\eta) = \frac{\eta}{C},
     73 \end{align}
     74 where
     75 \begin{align}\label{eq: c}
     76     C = \in \varrho(\eta) \frac{\eta}{1-\beta(\eta)} d\eta.
     77 \end{align}
     78 To calculate $C$ we plug $\varrho(\eta)$ into equation \ref{eq: c}
     79 \begin{align}
     80     C &= \frac{1}{2}\left(
     81         \int \delta(\eta - 1) \frac{\eta}{1-\beta(\eta)}+
     82         \int \delta(\eta - a) \frac{\eta}{a-\beta(\eta)}
     83     \right) =\\
     84       &= \frac{1}{2} \left(\frac{1}{1-\beta(1)} + \frac{1}{1-\beta(a)}\right).
     85 \end{align}
     86 Into the calculation we substitute $\beta(\eta)$, thereby getting
     87 \begin{align}
     88     C = \frac{1}{2} \left(\frac{C}{C-1} + \frac{Ca}{C-a}\right),
     89 \end{align}
     90 this expression has two solutions
     91 \begin{align}
     92     C_1 &= \frac{1}{4} \left(\sqrt{9a^2 - 14a + 9} +3a +3 \right), \\
     93     C_2 &= \frac{1}{4} \left(-\sqrt{9a^2 - 14a + 9} +3a +3 \right).
     94 \end{align}
     95 We choose $C = C_1$ because
     96 \begin{align}
     97     C = C_1 = \frac{1}{4} \left(\sqrt{9a^2 - 14a + 9} +3a +3 \right) =
     98     \begin{cases}
     99         \frac{3}{2} \;\;\;\;\; \text{for} \;\;\; a=0 \\
    100         2 \;\;\;\;\; \text{for} \;\;\; a=1
    101     \end{cases}
    102 \end{align}
    103 satisfies to the calculation of the reduced model for $a = 0$, which is the
    104 Barabasi-Albert model. Thus the stationary $p_k$ degree distribution can be
    105 calculated
    106 \begin{align}
    107     p_k &~ C\int d\eta \frac{\varrho(\eta)}{\eta} \left(\frac{m}{k}
    108         \right)^{\frac{C}{\eta} +1} =\\
    109         &= \frac{C}{2} \left(\frac{m}{k}\right) \left(\left(\frac{m}{k}\right)^C + \frac{1}{4}
    110         \left(\frac{m}{k}\right)^{\frac{C}{a}} \right)
    111 \end{align}
    112 Thereby the degree exponent $\gamma$ is estimated to be around
    113 \begin{align}
    114     \gamma \simeq C + 1
    115 \end{align}
    116 Which agrees with the boundaries $a=0$ and $a=1$. The figure below shows the
    117 relations
    118 \begin{figure}[H]
    119     \centering
    120     \includegraphics[width=\textwidth]{./ex_71.png}
    121     \caption{Constant $C$ and degree exponent $\gamma$ against $0\leq a \leq$}
    122 \end{figure}
    123 \subsection{The Breakdown Threshold}
    124 The breakdown threshold $f_c$ of networks with a given degree distribution
    125 $p_k$ can be written as
    126 \begin{align}
    127     f_c = 1- \frac{1}{\kappa - 1} \;\;\;\;\; \kappa = \frac{\langle k^2
    128     \rangle}{\langle k \rangle},
    129 \end{align}
    130 For Scale Erdős Rényi networks the distribution is
    131 \begin{align}
    132     p_k = \begin{bmatrix}N \\ k\end{bmatrix} p^k (1-p)^{N-k},
    133 \end{align}
    134 with $N$ number of nodes for a node with degree $k$ and probability of
    135 connectivity $p$. Thereby we can calculate the first and second moment of the
    136 degree $\langle k^m \rangle$ for $m = 1, 2$ just by extending the summation
    137 to the continuum
    138 \begin{align}
    139     \langle k \rangle &= \int_0^N k p_k dk = Np\\
    140     \langle k^2 \rangle &= \int_0^N k^2 p_k dk = p(1-p)N + p^2N^2.\\
    141 \end{align}
    142 Thereby the degree dynamics is
    143 \begin{align}
    144     \kappa = 1+(N-1)p,
    145 \end{align}
    146 and the for the breakdown threshold
    147 \begin{align}
    148     f_c = 1 - \frac{1}{(N-1)p} \underset{N\rightarrow
    149     \infty}{{\longrightarrow}} 1
    150 \end{align}
    151 
    152 For the scale free network we have a exponential distribution
    153 \begin{align}
    154     p(k) = c \cdot k^{-\gamma}.
    155 \end{align}
    156 We calculated the degree dynamics $\kappa$ in exercise 5, with
    157 $k_{\text{max}} = k_{\text{min}} N^{\frac{1}{N-\gamma}}$ we have the
    158 following
    159 \begin{align}
    160     \kappa = k_{\text{min}}\frac{2- \gamma}{3-\gamma}
    161     \frac{N^{\frac{3-\gamma}{\gamma-1}} - 1}{N^{\frac{2-\gamma}{\gamma-1}} -
    162     1} \;\;\;\; \underset{N\rightarrow \infty}{{\longrightarrow}} \;\; \infty
    163 \end{align}
    164 thereby the breakdown threshold is
    165 \begin{align}
    166     f_c = 1 -  \frac{1}{k_{\text{min}}\frac{2- \gamma}{3-\gamma}
    167     \frac{N^{\frac{3-\gamma}{\gamma-1}} - 1}{N^{\frac{2-\gamma}{\gamma-1}} -
    168     1} - 1}  \;\;\;\; \underset{N\rightarrow \infty}{{\longrightarrow}} \;\; 1
    169 \end{align}
    170 
    171 \nocite{code}
    172 \nocite{barabasi2016network}
    173 \printbibliography
    174 
    175 \end{document}