notes

uni notes
git clone git://popovic.xyz/notes.git
Log | Files | Refs

appendix.tex (4233B)


      1 \appendix
      2 \section{Appendix}
      3 \subsection{Leibniz Rule of Integration}
      4 \label{appendix:leibniz}
      5 The Leibniz integral rule for differentiation under the integral sign
      6 initiates with an integral
      7 \begin{align}
      8     \mathcal{I}(t, x) = \int_{a(t)}^{b(t)} f(t, x) dx = \mathcal{I}(t, a(t,
      9     a(t), b(t))).
     10 \end{align}
     11 And upon differentiation w.r.t. $t$, utilizes the chain rule on $a(t)$ and
     12 $b(t)$ respectively, by
     13 \begin{align}
     14     \frac{d\mathcal{I}}{dt} =
     15     \frac{\partial \mathcal{I}}{\partial t}+
     16     \frac{\partial \mathcal{I}}{\partial b}\frac{\partial b}{\partial t}+
     17     \frac{\partial \mathcal{I}}{\partial a}\frac{\partial a}{\partial t}.
     18 \end{align}
     19 Which in integral representation reads
     20 \begin{align}
     21     \frac{d\mathcal{I}}{dt} = \int_{a(t)}^{b(t)}\frac{\partial f(t,
     22     x)}{\partial t} dx + f(t, b(t)) \frac{\partial b(t)}{\partial t}
     23     - f(t, a(t)) \frac{\partial a(t)}{\partial t}
     24 \end{align}
     25 
     26 \subsection{Identity for Vorticity}
     27 \label{appendix:diff identity}
     28 We start off with the standard material derivative
     29 \begin{align}
     30     \frac{D\mathbf{u}}{Dt} = \frac{\partial \mathbf{u}}{\partial t}
     31     +(\mathbf{u}\nabla)\mathbf{u}.
     32 \end{align}
     33 We will use Einstein's Summation Convention, where we sum over indices
     34 appearing at the bottom and the top. To rewrite the second part of the
     35 material derivative $(\mathbf{u}\nabla)\mathbf{u}$ into
     36 \begin{align}
     37     (\mathbf{u}\times (\nabla \times \mathbf{u}))^i
     38     &= \varepsilon^{ijk}u_j(\nabla \times  \mathbf{u})_k \\
     39     &= \varepsilon^{ijk}u_j\varepsilon_{klm}\partial^l u^m\\
     40     &=(\delta^i_l\delta^j_m-\delta^i_m\delta^j_l)u_j\partial^l u^m\\
     41     &=u_m\partial^i u^m - u_l \partial^l u^i.\label{eq:identity split}
     42 \end{align}
     43 Now the first part in equation \ref{eq:identity split} can be rewritten into
     44 \begin{align}
     45     u_m\partial^i u^m =\partial^i (\frac{1}{2}u_mu^m) .
     46 \end{align}
     47 Thus we get
     48 \begin{align}
     49     (\mathbf{u}\times (\nabla \times \mathbf{u}))^i
     50     = \frac{1}{2}\partial^i(u_m u^m) + u_l \partial^l u^i,
     51 \end{align}
     52 which is
     53 \begin{align}
     54     (\mathbf{u}\nabla)\mathbf{u} = \nabla(\frac{1}{2}\mathbf{u}\mathbf{u}) -
     55     \left(\mathbf{u}\times (\nabla \times  \mathbf{u})\right)
     56 \end{align}
     57 \subsection{Middle Curvature of an Implicit Function}
     58 \label{appendix:curvature}
     59 In our case the implicit function for fixed time reads
     60 \begin{align}
     61     z-h\left(x_1,x_2\right) = 0.
     62 \end{align}
     63 The parametric representation is
     64 \begin{align}
     65     \vec{\sigma} = \begin{pmatrix} x_1 \\ x_2 \\ h \end{pmatrix} .
     66 \end{align}
     67 The middle curvature of the surface parametrized by $\vec{\sigma}$ is
     68 \begin{align}
     69     \frac{1}{R} = \text{Tr}(G^{-1}B),
     70 \end{align}
     71 where $G$ and $B$ are given by
     72 \begin{align}
     73     G_{ij} = \frac{\partial \vec{\sigma}}{\partial x_i} \frac{\partial
     74     \vec{\sigma}}{\partial x_j}, \\
     75     B_{ij} = -\mathbf{N} \frac{\partial^2 \vec{\sigma}}{\partial
     76     x_i\partial x_j},
     77 \end{align}
     78 where $i, j = 1, 2$ and $\mathbf{N}$ is the normal, normalized surface vector given by
     79 \begin{align}
     80     \mathbf{N} &= \frac{\frac{\partial \vec{\sigma}}{\partial x_1}\times
     81     \frac{\partial \vec{\sigma}}{\partial x_2}}{\|\frac{\partial \vec{\sigma}}{\partial x_1}\times
     82     \frac{\partial \vec{\sigma}}{\partial x_2}\|} \\
     83                &= \frac{1}{\sqrt{h_x^2 + h_y^2 +1}} \begin{pmatrix}
     84                -h_x\\-h_y\\1 \end{pmatrix}.
     85 \end{align}
     86 Thereby the matrices $B$ and $G$ are calculated to be
     87 \begin{align}
     88     G = \begin{pmatrix} 1+h_x^2 & h_xh_y\\h_xh_y & 1+h_y^2 \end{pmatrix}
     89     \qquad
     90     B =\frac{1}{\sqrt{h_x^2 +h_y^2 +1} } \begin{pmatrix}h_{x x} &
     91     h_{yx}\\h_{x y} & h_{yy}  \end{pmatrix}.
     92 \end{align}
     93 The inverse of $G$ is
     94 \begin{align}
     95     G^{-1}
     96     &= \frac{1}{\det(G)} \text{adj}(G)\\
     97     &= \frac{1}{h_x^2+h_y^2 +1} \begin{pmatrix}1+h_y^2 & -h_xh_y \\-h_xh_y  &
     98     1+h_x^2\end{pmatrix} .
     99 \end{align}
    100 Hence the middle curvature is given by the follwing
    101 \begin{align}
    102     \frac{1}{R} &
    103     = \text{Tr}(G^{-1}B)\\
    104                 &= \frac{1}{(h_x^2 + h_y^2+1)^{\frac{3}{2}}}
    105     \text{Tr}\begin{pmatrix} (1+h_y)^2 h_{x x} - h_x h_y h_{xy} & *\\
    106     * & (1+h_x^2)h_{yy}-h_xh_yh_{xy}\end{pmatrix}\\
    107     &=\frac{(1+h_y^2)h_{x x}+(1+h_y^2)h_{yy} -
    108     2h_xh_yh_{xy}}{\left( h_x^2+h_y^2+1 \right)^{\frac{3}{2}} }.
    109 \end{align}