basics_fluids.tex (42231B)
1 \include{./preamble.tex} 2 3 \usepackage{amsmath} 4 \numberwithin{equation}{section} 5 6 \begin{document} 7 8 \maketitle 9 \tableofcontents 10 11 \section{Governing Equations of Fluid Dynamics} 12 We first start of with a fluid with a density 13 \begin{align} 14 \rho(\mathbf{x}, t), 15 \end{align} 16 in three dimensional Cartesian coordinates $\mathbf{x} = (x, y, z)$ at time 17 $t$. For water-wave applications, we should note that we take 18 $\rho=\text{constant}$, but we will go into this fact later. The fluid moves 19 in time and space with a velocity field 20 \begin{align} 21 \mathbf{u}(\mathbf{x}, t) = (u, v, w). 22 \end{align} 23 Additionally it is also described by its pressure 24 \begin{align} 25 P(\mathbf{x}, t), 26 \end{align} 27 generally depending on time and position. When thinking of e.g. water the 28 pressure increases the deeper we go, that is with decreasing or increasing $z$ 29 direction (depending how we set up our system $z$ pointing up or down 30 respectively). 31 32 The general assumption in fluid dynamics is the \textbf{Continuum 33 Hypothesis}, which assumes continuity of $\textbf{u}, \rho$ and $P$ in 34 $\mathbf{x}$ and $t$. In other words, we premise that the velocity field, 35 density and pressure are ''nice enough`` functions of position and time, such 36 that we can do all the differential operations we desire in the framework of 37 differential analysis. 38 \subsection{Mass Conservation} 39 Our aim is to derive a model of the fluid and its dynamics, with respect to 40 time and position, in the most general way. This is usually done thinking 41 of the density of a given fluid, which is a unit mass per unit volume, 42 intrinsically an integral representation to derive these equations suggests 43 by itself. 44 45 Let us now thing of an arbitrary fluid. Within this fluid we define a fixed 46 volume $V$ relative to a chosen inertial frame and bound it by a surface $S$ 47 within the fluid, such that the fluid motion $\mathbf{u}(\mathbf{x}, t)$ may 48 cross the surface $S$. The fluid density is given by $\rho(\mathbf{x}, t)$, 49 thereby the mass of the fluid in the defined Volume $V$ is an integral 50 expression 51 \begin{align} 52 m = \int_V \rho(\mathbf{x}, t) dV. 53 \end{align} 54 The figure bellow \ref{fig:volume}, expresses the above described picture. 55 \begin{figure}[H] 56 \centering 57 \begin{tikzpicture}[>=latex,scale=1, xscale=1, opacity=.8] 58 % second sphere 59 \begin{scope}[rotate=10, xscale=3, yscale=2, shift={(2.3,-0.2)}] 60 \coordinate (O) at (0,0); 61 \shade[ball color=gray!10!] (0,0) coordinate(Hp) circle (1) ; 62 63 \draw[thick] (O) circle (1); 64 \draw[rotate=5] (O) ellipse (1cm and 0.66cm); 65 \draw[rotate=90] (O) ellipse (1cm and 0.33cm); 66 \node[circle, fill=black, inner sep=1pt] at (0.15, 0.25) {} ; \draw[-latex, thick] (0.15, 0.25) -- (1, 1) ; 67 \node[right] at (1, 1) {$\mathbf{u}(\mathbf{x}, t)$}; 68 69 \node[] at (O) {$V$}; 70 \node[] at (0.55, -0.25) {$\rho(\mathbf{x}, t)$}; 71 72 \draw[-] (0.76, -0.66) -- (1.2, -0.7); 73 \node[right] at (1.2, -0.7) {$S$}; 74 75 \draw[-latex, thick] (-0.25, -0.65) -- (-1, -1); 76 \node[left] at (-1, -1) {$\mathbf{n}$}; 77 78 \end{scope} 79 80 % axis 81 \end{tikzpicture} 82 \caption{Volume bounded by a surface in a fluid with density and momentum, 83 with a surface normal vector $\mathbf{n}$ \label{fig:volume}} 84 \end{figure} 85 86 Since we want to figure out the fluid's dynamics, we can consider the rate 87 of change in the completely arbitrary $V$. The rate of change of mass needs to 88 disappear, i.e. it is equal to zero since we cannot lose mass. Matter (mass) is 89 neither created nor destroyed anywhere in the fluid, leading us to 90 \begin{align} 91 \frac{d}{dt}\left( \int_V \rho(\mathbf{x}, t)\ dV \right) = 0. 92 \end{align} 93 \textbf{NOT SURE HERE YET!!!!!!!!!!!, CHECK LEIBINZ FORMULA} 94 To get more information we simply ''differentiate under the integral 95 sign``, also known as the Leibniz Rule of Integration, see appendix 96 \ref{appendix:leibniz}, the integral equation representing the rate of change 97 of mass reads 98 \begin{align}\label{eq:mass balance} 99 \frac{dm}{dt} = \int_V \frac{\partial \rho(\mathbf{x}, t)}{\partial t}\ dV 100 +\int_{\partial V} \rho(\mathbf{x}, t) \mathbf{u}\cdot\mathbf{n}\ dS 101 = 0. 102 \end{align} 103 \textbf{----------------------} 104 The above equation in \ref{eq:mass balance} is an underlying equation, describing that the rate of 105 change of mass in V is brought about, only by the rate of mass flowing into 106 V across S, and thus the mass does not change. 107 108 For the second integral in \ref{eq:mass balance} we utilize the Gaussian 109 integration law to acquire an integral over the volume 110 \begin{align} 111 \int_{\partial V} \rho(\mathbf{x}, t) \mathbf{u} \cdot \mathbf{n} \ dS = 112 \int_V \nabla (\rho \mathbf{u})\ dV. 113 \end{align} 114 Thereby we can put everything inside the volume integral 115 \begin{align} 116 \frac{d m}{dt} = \int_V \left(\partial_t \rho + \nabla(\rho \mathbf{u}) \right) \ dV = 0. 117 \end{align} 118 Everything under the integral sign needs to be zero, thus we obtain 119 the \textbf{Equation of Mass Conservation} or in the general sense also 120 called the \textbf{Continuity Equation} 121 \begin{align}\label{eq:continuity} 122 \partial_t \rho + \nabla(\rho \mathbf{u}) = 0 123 \end{align} 124 125 In light of the results of the equation of mass conservation 126 in \ref{eq:continuity}, an product rule gives 127 \begin{align} 128 \partial_t \rho + (\nabla \rho)\mathbf{u} + \rho(\nabla \mathbf{u}), 129 \end{align} 130 for notational purposes, we define the \textbf{material/convective derivative} 131 as follows 132 \begin{align} 133 \frac{D}{Dt} = \partial_t + \mathbf{u}\nabla. 134 \end{align} 135 With the material derivative the equation of mass conservation reads 136 \begin{align} 137 \frac{D\rho}{Dt} + \rho \nabla\mathbf{u} = 0 138 \end{align} 139 We may undertake the first case separation, initiating $\rho = \text{cosnt.}$ 140 called \textbf{incompressible flow} causes the material derivative of $\rho$ to 141 be zero, and thereby 142 \begin{align} 143 \frac{D\rho}{Dt} = 0 \quad \Rightarrow \quad \nabla \mathbf{u} = 0, 144 \end{align} 145 following that the divergence of the velocity field is zero, in this case 146 $\mathbf{u}$ is called \textbf{solenoidal}. 147 \subsection{Euler's Equation of Motion} 148 Additional consideration we undertake is the assumption of an 149 \textbf{inviscid} fluid, that is we set viscosity to zero. Otherwise we would 150 get a viscous contribution under the integral which results in the 151 Navier-Stokes equation. In this regard we apply Newton's second law to our 152 fluid in terms of infinitesimal pieces $\delta V$ of the fluid. The 153 acceleration divides into two terms, a \textbf{body force} given by gravity 154 of earth in the $z$ coordinate $\mathbf{F} = (0, 0, -g)$ and a 155 \textbf{local/short-rage force} described by the stress tensor in the fluid. 156 In the inviscid case we the local force retains the pressure $P$, producing a 157 normal force, with respect to the surface, acting onto any infinitesimal 158 element in the fluid. The integral formulation of the force would be 159 \begin{align} 160 \int_V \rho \mathbf{F}\ dV - \int_S P\mathbf{n}\ dV. 161 \end{align} 162 Now applying the Gaussian rule of integration on the second integral over the 163 surface, the resulting force in per unit volume is 164 \begin{align} 165 \int_V \left(\rho \mathbf{F} - \nabla P\right)\ dV. 166 \end{align} 167 The acceleration of the fluid particles is given by $\frac{D\mathbf{u}}{Dt}$, 168 and thus the total force per unit volume on the other hand is 169 \begin{align} 170 \int_V \rho \frac{D\mathbf{u}}{Dt}\ dV = 171 \int_V \left(\rho \mathbf{F} - \nabla P\right)\ dV. 172 \end{align} 173 Newton's Second Law for a fluid in an Volume is essentially saying that the 174 rate of change of momentum of the fluid in the fixed volume $V$, which is the particle 175 acceleration is the resulting force acting on V together with the rate of 176 flow of momentum across the surface $S$ into the volume $V$. Hence we arrive 177 at the \textbf{Euler's Equation(s) of Motion} 178 \begin{align} 179 \frac{D\mathbf{u}}{Dt} = \left(\frac{\partial \mathbf{u}}{\partial t} 180 (\mathbf{u}\nabla)\mathbf{u}\right) = 181 -\frac{1}{\rho}\nabla P + \mathbf{F}. 182 \end{align} 183 As a side note we have mentioned that there is another contribution if the 184 fluid is viscid. Indeed there is a tangential force due to the velocity 185 gradient, which into introduces the additional term 186 \begin{align} 187 \mu \nabla^2 \mathbf{u}, \qquad 188 \mu = \text{viscosity of the Fluid}. 189 \end{align} 190 Thereby the equations become 191 \begin{align} 192 \rho\frac{D\mathbf{u}}{Dt} 193 = -\nabla P + \rho \mathbf{F} + \mu \nabla^2 \mathbf{u}. 194 \end{align} 195 196 For now we have separated two simplifications, that define an 197 \textbf{idealized/perfect fluid} 198 \begin{enumerate} 199 \item \textbf{incompressible} $\qquad \mu=0$ 200 \item \textbf{inviscid} $\quad \rho = \text{const.},\ \nabla \mathbf{u}= 201 0$ 202 \end{enumerate} 203 \subsection{Vorticity and irrotational Flow} 204 The curl of the velocity field $\mathbf{\omega} = \nabla \times \mathbf{u}$ 205 of a fluid (i.e. the vorticity), describes a spinning motion of the fluid 206 near a position $\mathbf{x}$ at time $t$. The vorticity is an important 207 property of a fluid, flows or regions of flows where $\mathbf{\omega}=0$ are 208 \textbf{irrotational}, and thus can be modeled and analyzed following well 209 known routine methods. Even though real flows are rarely irrotational 210 anywhere (!), in water wave theory wave problems, from the classical aspect 211 of vorticity have a minor contribution. Hence we can assume irrotational flow 212 modeling water waves. To arrive at the vorticity in the equations of motions 213 derived in the last section we resort to a differential identity derived in appendix 214 \ref{appendix:diff identity}, which gives for the material derivative 215 \begin{align} 216 \frac{D\mathbf{u}}{Dt} = \frac{\partial \mathbf{u}}{\partial t} 217 \nabla(\frac{1}{2}\mathbf{u}\mathbf{u)} 218 - \left( \mathbf{u}\times (\nabla \times \mathbf{u} \right). 219 \end{align} 220 Thus the equations of motion become 221 \begin{align} 222 \frac{\partial \mathbf{u}}{\partial t} + \nabla\left( 223 \frac{1}{2}\mathbf{u}\mathbf{u} + \frac{P}{\rho} + \Omega \right) 224 = \mathbf{u} \times \mathbf{\omega}, 225 \end{align} 226 where $\Omega$ is the force potential per 227 unite mass given by $\mathbf{F} = -\nabla \Omega$. 228 229 At this point we may differentiate between \textbf{stead and unsteady flow}. 230 For \textbf{Steady Flow} we assume that $\mathbf{u}, P$ and $\Omega$ are time 231 independent, thus we get 232 \begin{align} 233 \nabla\left( \frac{1}{2}\mathbf{u}\mathbf{u} + \frac{P}{\rho} + \Omega 234 \right) = \mathbf{u} \times \mathbf{\omega}. 235 \end{align} 236 It is general knowledge that the gradient of a function $\nabla f$ is 237 perpendicular the level sets of $f(\mathbf{x})$, where $f(\mathbf{x}) = 238 \text{const.}$. Thus $\mathbf{u} \times \mathbf{\omega}$ is orthogonal to 239 the surfaces where 240 \begin{align} \label{eq:bernoulli} 241 \frac{1}{2}\mathbf{u}\mathbf{u} + \frac{P}{\rho} + \Omega = 242 \text{const.}, 243 \end{align} 244 The above equation is called \textbf{Bernoulli's Equation}. 245 246 Secondly \textbf{Unsteady Flow} but irrotational (+ incompressible), first of 247 all gives us the condition for the existence of a velocity potential $\phi$ 248 in the sense 249 \begin{align} 250 \mathbf{\omega} = \nabla \times \mathbf{u} = 0 \quad \Rightarrow \quad 251 \mathbf{u} = \nabla \phi, 252 \end{align} 253 where $\phi$ needs to satisfy the Laplace equation 254 \begin{align} 255 \Delta \phi = 0. 256 \end{align} 257 According to the Theorem of Schwartz we may exchange $\frac{\partial 258 }{\partial t}$ and $\nabla$, giving us an expression for the material 259 derivative 260 \begin{align} 261 \nabla\left( \frac{\partial \phi}{\partial t} +\frac{1}{2} 262 \mathbf{u}\mathbf{u} + \frac{P}{\rho} + \Omega \right) = 0 263 \end{align} 264 Thus the expression differentiated by the $\nabla$ operator is an arbitrary 265 function $f(\mathbf{x}, t)$, writing 266 \begin{align} 267 \frac{\partial \phi}{\partial t} +\frac{1}{2} 268 \mathbf{u}\mathbf{u} + \frac{P}{\rho} + \Omega = f(\mathbf{x}, t). 269 \end{align} 270 The function $f(\mathbf{x}, t)$ can be removed by gauge transformation of 271 $\phi \rightarrow \phi + \int f(\mathbf{x}, t)\ dt$, never the less this is 272 not further discussed and left to the reader in the reference. 273 \subsection{Boundary Conditions for water waves} 274 The boundary conditions for water-wave problems vary, generally on the 275 simplification we undertake. At the surface, called the free surface as in 276 free from the velocity conditions, we have the atmospheric stress on the 277 fluid. The stress component would again have a viscid component, this however 278 is only relevant when modeling surface wind, in this review we model the 279 fluid as unaffectedly and within reason as inviscid. The atmosphere employs 280 only a pressure on the surface, this pressure is taken to be the atmospheric 281 pressure, dependent on time and point in space. Thereby any surface tension 282 effects can also include a scenario at a curved surface (e.g. wave), giving 283 rise to the pressure difference across the surface. A more precise 284 description would use Thermodynamics to derive boundary conditions coupling 285 water surface and the air above it, yet the density component of air 286 compared to that of water makes our ansatz viable. The described conditions 287 are called the \textbf{dynamic conditions} 288 289 An additional condition revolves around the fluid particles on the moving 290 surface, called the \textbf{kinematic condition}. This condition bounds 291 the vertical velocity component on the surface. 292 293 The logical step now is to define boundary conditions on the bod of the 294 fluid, i.e. the bottom. If the viscid case bottom is impermeable, we a no 295 slip condition to all fluid particles $\mathbf{u}_\text{bottom}= 0$. If we 296 assume that the fluid is inviscid then the bottom becomes a surface of the 297 fluid in the sense that the fluid particles in contact with the bed move in 298 the surface, we more or less mirror the kinematic condition of the surface. 299 For many problems the condition is going to vary, in most cases the bottom 300 will be rigid and fixed not necessarily horizontal. This condition is simply 301 called the \textbf{bottom condition}. 302 \subsubsection{Kinematic Condition} 303 Obtaining the free surface is the primary objective in the theory of modeling 304 water waves, represented by 305 \begin{align} 306 z = h(\mathbf{x}_\perp, t), 307 \end{align} 308 where $\mathbf{x}_\perp = (x, y)$ in Cartesian, or $\mathbf{x}_\perp = (r, 309 \theta)$ in cylindrical coordinates. A surfaces that moves with the fluid, 310 always contains the same fluid particles, described as 311 \begin{align} 312 \frac{D}{Dt}\left(z - h(\mathbf{x}_\perp, t \right) = 0. 313 \end{align} 314 Upon expanding the derivative we get 315 \begin{align} 316 \frac{Dz}{Dt} - \frac{Dh}{Dt} 317 &= \frac{\partial z}{\partial t}+ 318 (\mathbf{u}\nabla)z - \frac{\partial h}{\partial t} -(\mathbf{u}\nabla)\\ 319 &= w - \left(h_t - (\mathbf{u}_\perp \nabla_\perp) h\right) = 0, 320 \end{align} 321 where the subscript $\perp$ describes the components with regard to 322 $\mathbf{x}_\perp$. The \textbf{kinematic condition} reads 323 \begin{align} 324 w = h_t - (\mathbf{u}_\perp \nabla_\perp) h \qquad \text{on}\;\; 325 z=h(\mathbf{u}_\perp, t). 326 \end{align} 327 328 \subsubsection{Dynamic Condition} 329 As described in the prescript of this section, the case of an inviscid fluid, 330 requires that only the pressure $P$ needs to be described on the free surface 331 $z = h(\mathbf{x}_\perp, t)$. Assuming incompressible, irrotational, 332 unsteady flow and setting $P=P_a$ for atmospheric pressure and $\Omega = 333 g\cdot z$ for the force per unit mass potential the equations of motion are 334 \begin{align} 335 \frac{\partial \phi}{\partial t} +\frac{1}{2}\mathbf{u}\mathbf{u} 336 + P_\frac{a}{\rho}+gh = f(t) \qquad \text{on}\;\; on z=h. 337 \end{align} 338 Somewhere $\|\mathbf{x}_\perp\| \rightarrow \infty$ the fluid reaches 339 equilibrium and is thereby stationary, thereby has no motion and the pressure 340 is $P=P_a$ and the surface is a constant $h = h_0$ $f(t)$ is 341 \begin{align} 342 f(t) = \frac{P_a}{\rho}+gh_0. 343 \end{align} 344 The simplest description for the \textbf{dynamic condition} may be written as 345 \begin{align} 346 \frac{\partial \phi}{\partial t} 347 +\frac{1}{2}\mathbf{u}\mathbf{u}+g(h-h_0) = 0 \qquad \text{on}\;\; z=h. 348 \end{align} 349 350 Regarding the pressure difference on a curved surface, we may expand the 351 dynamic condition by introducing the pressure difference known as the 352 \textbf{Young-Laplace Equation} 353 \begin{align} 354 \Delta P = \frac{\Gamma}{R}, 355 \end{align} 356 where $\Gamma>0$ is the coefficient of surface tension and $\frac{1}{R}$ is 357 the curvature representing an implicit function, in our case the implicit 358 function is $z - h(\mathbf{x}_\perp, t)$ for fixed time. The curvature in 359 Cartesian coordinates takes the form 360 \begin{align} 361 \frac{1}{R} = \frac{(1+h_y^2)h_{x x}+(1+h_y^2)h_{yy} - 362 2h_xh_yh_{xy}}{\left( h_x^2+h_y^2+1 \right)^{\frac{3}{2}} }, 363 \end{align} 364 the derivation is precisely described in \ref{appendix:curvature} 365 366 367 368 \subsubsection{The Bottom Condition} 369 The representation for the bottom is 370 \begin{align} 371 z = b(\mathbf{x}_\perp, t), 372 \end{align} 373 where the fluid surface needs to satisfy 374 \begin{align} 375 \frac{D}{Dt} \left(z - b(\mathbf{x}_\perp) \right) = 0. 376 \end{align} 377 Hence we arrive at the bottom boundary conditions 378 \begin{align} 379 w = b_t + (\mathbf{u}_\perp \nabla_\perp)b \qquad \text{on}\;\; z=b , 380 \end{align} 381 where $b(\mathbf{x}_\perp, t)$ is already known for most water wave 382 problems. If we consider a stationary bottom then the time derivative 383 vanishes, leaving us with the following condition 384 \begin{align} 385 w = (\mathbf{u}_\perp \nabla_\perp)b \qquad \text{on}\;\; z=b 386 \end{align} 387 388 389 \subsubsection{Integrated Mass Condition} 390 In this section we want to combine the kinematics of both the free and the 391 bottom surface with the mass conservation equation on the perpendicular 392 components 393 \begin{align} 394 \nabla \mathbf{u} = \nabla_\perp \mathbf{u}_\perp + w_z = 0 . 395 \end{align} 396 Integrating the above expression from bottom to surface, i.e. from 397 $z=b(\mathbf{x}_\perp,t)$ to $z = h (\mathbf{x},t)$ gives 398 \begin{align} 399 \int_b^h \nabla_\perp \mathbf{u}_\perp\ dz + w\bigg|_{z=b}^{z=h} = 0, 400 \end{align} 401 where we insert the conditions on the free surface and on the bottom surface 402 \begin{align} 403 w &= h_t + (\mathbf{u}_{\perp \text{s}} \nabla_\perp) h \quad 404 \text{on}\;\; z = h\\ 405 w &= b_t + (\mathbf{u}_{\perp \text{b}} \nabla_\perp) h \quad 406 \text{on}\;\; z =b, 407 \end{align} 408 with the subscript $s$ and $b$ indicating the evaluation of a quantity 409 on the free surface and the bottom surface respectively. Inserting the 410 boundary conditions we get 411 \begin{align} 412 \int_b^h \nabla_\perp \mathbf{u}_\perp 413 + h_t + (\mathbf{u}_{\perp \text{s}} \nabla_\perp) h 414 - b_t - (\mathbf{u}_{\perp \text{b}} \nabla_\perp) b= 0. 415 \end{align} 416 To simplify the equation we resort again to the Leibniz Rule of Integration 417 \begin{align} 418 \int_b^h \nabla_\perp\mathbf{u}_\perp = 419 \nabla_\perp \int_b^h \mathbf{u}_\perp\ dz - (\mathbf{u}_{\perp \text{s}} 420 \nabla_\perp)h - (\mathbf{u}_{\perp \text{b}})b. 421 \end{align} 422 As a consequence the \textbf{Integrated Mass Condition} is given by 423 \begin{align} 424 \nabla_\perp \int_b^h \mathbf{u}_\perp\ dz + \underbrace{h_t - 425 b_t}_{=d_t} = 0. 426 \end{align} 427 \subsection{Energy Equation} 428 To derive the energy equation we start off with Euler's Equation of Motion 429 \begin{align} 430 \mathbf{u} _t + \nabla 431 (\frac{1}{2}\mathbf{u}\mathbf{u}+\frac{P}{\rho}+\Omega) = \mathbf{u}\times 432 \mathbf{w}, 433 \end{align} 434 multiplying the equation with $\mathbf{u}$ we get 435 \begin{align} 436 &\mathbf{u}\mathbf{u} _t \label{eq:energy1} \\ 437 &+(\mathbf{u}\nabla)(\frac{1}{2}\mathbf{u}\mathbf{u}+\frac{P}{\rho}+\Omega)\label{eq:energy2}\\ 438 &= \mathbf{u}(\mathbf{u}\times 439 \mathbf{w})\label{eq:energy3}. 440 \end{align} 441 The first equation given in \ref{eq:energy1} can we rewritten using inverse 442 product rule of differentiation 443 \begin{align} 444 \mathbf{u}\frac{\partial \mathbf{u}}{\partial t} 445 &= \frac{\partial 446 }{\partial t} (\mathbf{u}\mathbf{u}) - \frac{\partial \mathbf{u}}{\partial t} 447 \mathbf{u} \\ 448 &= \frac{\partial 449 }{\partial t} (\mathbf{u}\mathbf{u}) - \mathbf{u}\frac{\partial 450 \mathbf{u}}{\partial t}\\ 451 \Rightarrow\quad & \mathbf{u} \frac{\partial \mathbf{u}}{\partial t} = 452 \frac{1}{2}\frac{\partial }{\partial t} (\mathbf{u}\mathbf{u}). 453 \end{align} 454 Then we may add 455 \begin{align} 456 \left(\frac{1}{2} \mathbf{u}\mathbf{u}+\frac{P}{\rho} +\Omega \right) 457 \underbrace{(\nabla u)}_{=0} = 0, 458 \end{align} 459 to above not changing anything. Thereby getting 460 \begin{align} 461 \frac{\partial }{\partial t} (\frac{1}{2}\mathbf{u}\mathbf{u}) 462 +(\mathbf{u}\nabla \mathbf{u})\left( 463 \frac{1}{2}\mathbf{u}\mathbf{u}+\frac{P}{\rho} \right) 464 +\left( \frac{1}{2}\mathbf{u}\mathbf{u}+\frac{P}{\rho} + \Omega \right) 465 (\nabla \mathbf{u}) = 0. 466 \end{align} 467 Applying the product rule we can simplify 468 \begin{align} 469 \frac{\partial }{\partial t} \left(\frac{1}{2}\mathbf{u}\mathbf{u}\right) 470 +\nabla \left(\mathbf{u}\left(\mathbf{u}( 471 \frac{1}{2}\mathbf{u}\mathbf{u}+\frac{P}{\rho}\right) \right) = 0, 472 \end{align} 473 additionally adding $\frac{\partial \Omega}{\partial t} =0$ leads us to 474 \begin{align} 475 \underbrace{\frac{\partial }{\partial t} \left(\frac{1}{2}\mathbf{u}\mathbf{u} 476 +\Omega\right)}_{\text{change of total energy density}} 477 +\underbrace{\nabla \left(\mathbf{u}\left(\mathbf{u}( 478 \frac{1}{2}\mathbf{u}\mathbf{u}+\frac{P}{\rho}\right) 479 \right)}_{\text{energy flow of the velocity field}} = 0.\label{eq:energy} 480 \end{align} 481 This is called the \textbf{energy equation} and is a general result for a 482 inviscid and incompressible fluids, which we can apply to study water waves. 483 We start off with replacing $\nabla = \nabla_\perp + \frac{\partial }{\partial 484 z} $ and $\Omega = g z$ and multiplying by $\rho$, then our energy equation 485 in \ref{eq:energy} becomes 486 \begin{align} 487 \frac{\partial }{\partial t}\left( \frac{1}{2}\rho\mathbf{u}\mathbf{u} + \rho 488 g z\right) + \nabla_\perp\left( \mathbf{u}_\perp\left( 489 \frac{1}{2}\rho\mathbf{u}\mathbf{u}+P+\rho gz \right) \right) 490 \frac{\partial}{\partial z} \left( w\left( 491 \frac{1}{2}\rho\mathbf{u}\mathbf{u}+P+\rho g z \right) \right) = 0. 492 \end{align} 493 Integrating from bottom to top, i.e. from bed to free surface gets us to 494 \begin{align} 495 &\int_b^h\frac{\partial }{\partial t}\left( \frac{1}{2}\rho\mathbf{u}\mathbf{u} + \rho 496 g z\right)\ dz \label{eq:e-int1}\\ 497 &+ \int_b^h \nabla_\perp\left( \mathbf{u}_\perp\left( 498 \frac{1}{2}\rho\mathbf{u}\mathbf{u}+P+\rho gz \right) \right)\ 499 dz\label{eq:e-int2}\\ 500 &+ \left(\frac{\partial}{\partial z} \left( w\left( 501 \frac{1}{2}\rho\mathbf{u}\mathbf{u}+P+\rho g z \right) 502 \right)\right)\Bigg|_b^h \label{eq:e-int3} 503 = 0. 504 \end{align} 505 For equation \ref{eq:e-int1} we use Leibniz Rule of Integration, leaving us 506 with 507 \begin{align} 508 \int_b^h\frac{\partial }{\partial t}\left( \frac{1}{2}\rho\mathbf{u}\mathbf{u} + \rho 509 g z\right)\ dz 510 &= \frac{\partial }{\partial t} \int_b^h 511 \frac{1}{2}\rho\mathbf{u}\mathbf{u} + \rho gz \ dz\\ 512 &+ \left( \frac{1}{2}\rho \mathbf{u}_s \mathbf{u}_s + \rho g h \right) 513 h_t\\ 514 &- \left( \frac{1}{2}\rho \mathbf{u}_b \mathbf{u}_b + \rho g b \right) 515 b_t 516 \end{align} 517 For equation \ref{eq:e-int2} we again take note of the Leibniz Rule of 518 Integration, getting 519 \begin{align} 520 \int_b^h \nabla_\perp\left( \mathbf{u}_\perp\left( 521 \frac{1}{2}\rho\mathbf{u}\mathbf{u}+P+\rho gz \right) \right)\ 522 dz 523 &= \nabla_\perp \int_b^h \mathbf{u}_\perp\left( 524 \frac{1}{2}\rho\mathbf{u}\mathbf{u} + P + \rho g z \right) \ dz\\ 525 &- \left( \frac{1}{2}\rho \mathbf{u}_s\mathbf{u}_s + P + \rho g h \right) 526 \left( \mathbf{u}_{\perp s} \nabla_\perp \right) h\\ 527 &+\left( \frac{1}{2}\rho \mathbf{u}_b\mathbf{u}_b + P + \rho g b \right) 528 \left( \mathbf{u}_{\perp b} \nabla_\perp \right) b 529 \end{align} 530 Thereby transforming our equation into 531 \begin{align} 532 \frac{\partial }{\partial t} \underbrace{\int_b^h \frac{1}{2}\rho 533 \mathbf{u}\mathbf{u}+\rho g z\ dz}_{=:\mathcal{E}} 534 + \nabla_\perp&\underbrace{\int_b^h 535 \mathbf{u}_\perp\left( \frac{1}{2}\rho\mathbf{u}\mathbf{u} + \rho g z 536 \right)\ dz}_{:=\mathcal{F}} 537 + \underbrace{P_s h_t - P_b b_t}_{:=\mathcal{P}} = 0\\ 538 \nonumber\\ 539 &\frac{\partial \mathcal{E}}{\partial t} 540 + \nabla_\perp \mathcal{F} + \mathcal{P} = 0, 541 \end{align} 542 where $\mathcal{E}$ represents the energy in the flow per unit horizontal 543 area, since we are integrating from bed to free surface. Where $\mathcal{F}$ 544 is the horizontal energy flux vector and lastly $\mathcal{P} = P_s h_t - 545 P_b b_t$ is the net energy input due to the pressure forces doing work on the 546 upper and lower boundaries, i.e. bottom and free surface of the fluid. 547 Assuming stationary rigid bottom condition and constant surface pressure, we 548 can set $P_s=0$, such that $\mathcal{P} =0$ leaving us with the equation 549 \begin{align} 550 \frac{\partial \mathcal{E}}{\partial t} 551 + \nabla_\perp \mathcal{F} = 0. 552 \end{align} 553 We note that the assumption $P_s=0$ is only possible if the coefficient of 554 surface tension is set to 0, which usually is not the case. 555 \section{Dimensional Analysis} 556 Our derived model of fluid dynamics yields formal connections between 557 physical quantities. These quantities bear units, e.g. the velocity of fluid 558 particles $\mathbf{u}$ has the ``SI'' unites of $\frac{m}{s}$, meters per 559 second. The idea is the make use of these scales and formulate a model, where 560 the quantities are nondimensionalized, i.e. to get rid of physical units by 561 scaling each quantity appropriately. The appropriate length scales are that 562 of the typical water depth $h_0$ and the typical wavelength $\lambda$ of a 563 surface wave. 564 565 \subsection{Nondimensionalisation} 566 In summary we use these adaptations 567 \begin{itemize} 568 \item $h_0$ for the typical water depth 569 \item $\lambda$ for the typical wavelength 570 \item $\frac{\lambda}{\sqrt{g h_0}}$ time scale of wave propagation 571 \item $\sqrt{g h_0}$ velocity scale of waves in $(x, y)$ 572 \item $\frac{h_0 \sqrt{g h_0} }{\lambda}$ velocity scale in the $z$ 573 direction. 574 \end{itemize} 575 $(x, z, t)$, then 576 \begin{align} 577 u = \psi _z, \qquad w = - \psi_x; 578 \end{align} 579 and the scale of $\psi$ must be $h_0\sqrt{g h_0}$. Additionally we write the 580 boundary condition on the free surface as follows 581 \begin{align} 582 h = h_0 + a \eta (\mathbf{x}_\perp, t) = z, 583 \end{align} 584 where $a$ is the typical amplitude and $\eta$ nondimensional function. All in 585 all we have the following scaling for the physical quantities of our context 586 \begin{align} 587 &x \rightarrow\ \lambda x, \quad u \rightarrow \sqrt{gh_0} u, \\ 588 &y \rightarrow\ \lambda y, \quad v \rightarrow \sqrt{gh_0} v, \qquad 589 t\rightarrow \frac{\lambda}{\sqrt{gh_0}}t,\\ 590 &z \rightarrow\ h_0 z, \quad w \rightarrow 591 \frac{h_0\sqrt{gh_0}}{\lambda} w. 592 \end{align} 593 with 594 \begin{align} 595 h = h_0 + a \eta, \qquad b \rightarrow h_0 b. 596 \end{align} 597 The pressure is also rewritten into 598 \begin{align} 599 P = P_a + \rho g(h_0 -z) + \rho g h_0 p, 600 \end{align} 601 where $P_a$ is the atmospheric pressure, the term $h_0-z$ represent the 602 hydrostatic pressure distribution, i.e. pressure at depth and the term with the pressure 603 variable $p$ measures the deviation from the hydrostatic pressure 604 distribution. Indeed $p\neq 0 $ for wave propagation. Now we can perform a 605 rescaling of the Euler's Equation of Motion, we introduce the notation 606 \begin{align} 607 &t = \frac{\lambda}{\sqrt{gh_0}}\tau,\quad x = \lambda \xi,\quad u = 608 \sqrt{gh_0} \tilde{u}\\ 609 &y = \lambda \chi,\quad v = \sqrt{gh_0} \tilde{v}\\ 610 &z = h_0 \zeta, \quad w = \frac{h_0\sqrt{gh_0} }{\lambda}\tilde{w}. 611 \end{align} 612 We start off with the $x$ coordinate, substitute and apply the chain rule 613 leading us to 614 \begin{align} 615 \frac{Du}{Dt} 616 &= \frac{\partial u}{\partial t} +u \frac{\partial 617 u}{\partial x} \\ 618 &= \sqrt{gh_{0}}\frac{\partial \tilde{u}}{\partial \tau} \frac{\partial 619 \tau}{\partial t} +gh_0 \tilde{u} \frac{\partial \tilde{u}}{\partial \xi} 620 \frac{\partial \xi}{\partial x} \\ 621 &= \frac{gh_0}{\lambda} \left( \frac{\partial \tilde{u}}{\partial \tau} 622 \tilde{u} \frac{\partial \tilde{u}}{\partial \xi} \right), 623 \end{align} 624 on the other hand 625 \begin{align} 626 \frac{gh_0}{\lambda} \left( \frac{\partial \tilde{u}}{\partial \tau} 627 \tilde{u} \frac{\partial \tilde{u}}{\partial \xi} \right) 628 &=-\frac{1}{\rho}\frac{1}{\lambda}\frac{\partial P}{\partial x} \\ 629 &=-\frac{ g h_0 }{\lambda}\rho \frac{\partial p}{\partial \xi}. 630 \end{align} 631 Thereby the rescaling evolves to 632 \begin{align} 633 \frac{D \tilde{u}}{D\tau} = -\frac{\partial p}{\partial \xi}. 634 \end{align} 635 Because of the same scaling in $y$ we get the same result as in $x$, that is 636 \begin{align} 637 \frac{D \tilde{v}}{D\tau} = -\frac{\partial p}{\partial \chi}. 638 \end{align} 639 In the $z$ coordinate we have 640 \begin{align} 641 \frac{Dw}{Dt} 642 &= \frac{\partial w}{\partial t} +w \frac{\partial 643 w}{\partial \zeta} \\ 644 &= \frac{h_0\sqrt{gh_0}}{\lambda} \frac{\sqrt{gh_0}}{\lambda} 645 \frac{\partial \tilde{w}}{\partial \tau} + \frac{1}{h_0} 646 \frac{h_0\sqrt{gh_0} }{\lambda} \frac{h_0\sqrt{gh_0}}{\lambda} 647 \tilde{w}\frac{\partial \tilde{v}}{\partial \zeta}\\ 648 &= \frac{h_0^2g}{\lambda}\left( \frac{\partial \tilde{w}}{\partial \tau} 649 + \tilde{w}\frac{\partial \tilde{w}}{\partial \zeta} \right) . 650 \end{align} 651 On the other side we have 652 \begin{align} 653 \frac{h_0^2g}{\lambda}\left( \frac{\partial \tilde{w}}{\partial \tau} 654 + \tilde{w}\frac{\partial \tilde{w}}{\partial \zeta} \right) 655 &= 656 -\frac{1}{h_0\rho} \frac{\partial P}{\partial z} +g \\ 657 &=-\frac{1}{h_0\rho}(-\rho gh_0 \frac{\partial \zeta}{\partial \zeta} 658 \rho gh_0 659 \frac{\partial p}{\partial \zeta} ) + g \\ 660 &= -g \frac{\partial p}{\partial z}. 661 \end{align} 662 In total for the $z$ direction we get 663 \begin{align} 664 \underbrace{\left( \frac{h_0}{\lambda} \right)^2}_{=: \delta^2} 665 \frac{Dw}{Dt} = -\frac{\partial p}{\partial z}, 666 \end{align} 667 where $\delta$ is the \textbf{long wavelength} or \textbf{shallowness} 668 parameter, a very important constant for developing model hierarchies. For 669 clarity we resubstitute for $x, y, z, t, u, v$ and $w$, and for completeness 670 the we display the equations again, which are 671 \begin{align}\label{eq:nondim-motion} 672 \frac{Du}{Dt} = - \frac{\partial p}{\partial x}&, \quad 673 \frac{Dv}{Dt} = - \frac{\partial p}{\partial y}, \quad 674 \delta^2\frac{Dw}{Dt} = - \frac{\partial p}{\partial z}, \\ 675 &\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} 676 +\frac{\partial w}{\partial z} = 0. 677 \end{align} 678 We can now turn our attention to the boundary conditions, on both free 679 surface $z=h$ and the bottom $z=b$ we have $z \Rightarrow h_0 z$ and thereby 680 \begin{align} 681 z = 1+ 682 \underbrace{\frac{a}{h_0}}_{:=\varepsilon}\eta(\mathbf{x}_\perp,t) \quad 683 \text{and}\quad z= b, 684 \end{align} 685 where we arrive at our second very important parameter $\varepsilon$ called 686 the \textbf{amplitude} parameter. As for the kinematic condition, we 687 substitute the free surface $z=h = 1+\varepsilon \eta$ and get 688 \begin{align} 689 \frac{Dz}{Dt} = \varepsilon\left(\eta_t + (\mathbf{u}_\perp 690 \nabla_\perp)\eta\right) \qquad \text{on}\;\; z= 1+\varepsilon \eta. 691 \end{align} 692 Respectively the bottom condition is not changed 693 \begin{align} 694 w = b_t + (\mathbf{u}_\perp \nabla_\perp) b \quad \text{on}\;\; z= b. 695 \end{align} 696 The general dynamic condition for $h = h(x, y, t)$ yields a rescaling of the 697 curvature in terms of 698 \begin{align} 699 \frac{1}{R} 700 &= \frac{(1+h_y^2)h_{x x} + (1+h_x^2)h_yy - 2h_xh_yh_{xy} 701 }{\left(h_x^2+h_y^2 +1 \right)^{\frac{3}{2}} } \\ 702 &= -\frac{\varepsilon h_0}{\lambda^2} \frac{( 703 1+\varepsilon^2\delta^2\eta_y^2 )\eta_{x x}+ 704 (1+\varepsilon^2\delta^2\eta_x^2)\eta_{yy} - 705 2\varepsilon^2\delta^2\eta_x\eta_y\eta_{xy}}{\left( 706 1+\varepsilon^2\delta^2\eta_x^2+\varepsilon^2\delta^2\eta_y^2 707 \right)^{\frac{3}{2}} }, 708 \end{align} 709 together with the pressure difference 710 \begin{align} 711 \Delta P = \rho g h_0(p - \varepsilon \eta) = \frac{\Gamma}{R}, 712 \end{align} 713 leaving us ultimately with the dynamic condition 714 \begin{align} 715 p-\varepsilon\eta= \varepsilon\left( \frac{\Gamma}{\rho g\lambda^2} 716 \right) \left(\frac{\lambda^2}{\varepsilon h_0}\frac{1}{R}\right), 717 \end{align} 718 where $W_e = \frac{\Gamma}{\rho g h_0^2}$ is the \textbf{Weber number}. This 719 dimensionless parameter can be considered as a measure of the fluid's inertia 720 compered to its surface tension, which satisfies the relation 721 \begin{align} 722 \delta^2 W_e = \frac{\Gamma}{\rho g \lambda^2}. 723 \end{align} 724 \subsection{Scaling of Variables} 725 Admits a simple observation of the governing equations in the last chapter we 726 notice that $w$ and $p$ on the free surface $z = 1 + \varepsilon\eta$ are 727 directly proportional to $\varepsilon$. Hence we want to ''scale this way`` 728 by introducing the following transformation 729 \begin{align} 730 p \rightarrow \varepsilon p, \quad w \rightarrow \varepsilon w, \quad 731 \mathbf{u}_\perp \rightarrow \varepsilon \mathbf{u}_\perp. 732 \end{align} 733 Because of this scaling our material derivative changes slightly to 734 \begin{align}\label{eq:mod-material} 735 \frac{D}{Dt} = \frac{\partial }{\partial t} + \varepsilon\left(u 736 \frac{\partial }{\partial x} + v \frac{\partial }{\partial y} + w 737 \frac{\partial }{\partial z} \right) 738 \end{align} 739 A simple recalculation yields the rescaled, nondimensionalized Euler's 740 Equation of motion are the same as in equations \ref{eq:nondim-motion} with 741 the modified material derivative from \ref{eq:mod-material}, and the boundary 742 conditions are 743 \begin{align} 744 p &= \eta - \frac{\delta^2\varepsilon h_0}{\lambda^2} \frac{W_e}{R}\\ 745 w &= \frac{1}{\varepsilon}\eta_t + (\mathbf{u}_\perp \nabla_\perp)\eta 746 \quad \text{on}\;\; z = 1+\varepsilon\eta\\ 747 w &=\frac{1}{\varepsilon}b_t + (\mathbf{u}_\perp \nabla_\perp)b \quad 748 \text{on}\;\; z=b 749 \end{align} 750 \subsection{Model Hierarchies} 751 As we have derived a model of fluid dynamics, with small parameters 752 $\varepsilon$ and $\delta$, we can conduct a series of classifications and 753 perform asymptotic analysis on them. The main hierarchies important in this 754 review are derived from the following problem classifications 755 \begin{itemize} 756 \item $\varepsilon\rightarrow 0$: linearized problem, small amplitude 757 \item $\delta\rightarrow 0$: shallow Water, long-wave 758 \item$\delta \rightarrow 0;\; \varepsilon~1$: shallow Water, large 759 amplitude 760 \item $\delta\ll 1;\; \varepsilon~\delta$: shallow water, medium 761 amplitude 762 \item $\delta\ll 1;\; \varepsilon~\delta^2$: shallow water, small 763 amplitude 764 \item $\delta \gg 1;\; \varepsilon\delta\ll 1$: deep water, small 765 steepness. 766 \end{itemize} 767 768 \section{The Solitary Wave and The KdV Equation} 769 The solitary wave is a wave of translation, it is stable and can travel long 770 distances additionally the speed depends on the size of the wave. An 771 interesting feature is that two solitary waves do not merge together to form 772 one solitary wave, rather the small wave is overtaken by a larger one. If a 773 solitary wave is too big for the depth it splits into two, a big and a small 774 one. Solitary waves arise in the region $\varepsilon=O(\delta^2)$. 775 776 777 \subsection{Solitary Wave} 778 To describe 779 a solitary wave we begin with Euler's Equation of Motion, where we assume 780 there is no surface tension we set $W_e = 0$ and additionally assume 781 irrotational flow $\mathbf{\omega}=\nabla \times \mathbf{u} = 0$. This means 782 that there exists a velocity potential $\phi(\mathbf{x},t)$ given 783 by$\mathbf{u} = \nabla \phi$ satisfying the Laplace equation. In regard of a 784 solitary wave being a plane wave, we rotate our coordinate system such that 785 the propagation is in the $x$-direction and a stationary \& fixed bottom 786 $b=0$. Ultimately leaving us with the following model 787 \begin{align}\label{eq:soliton} 788 \begin{drcases} 789 & \phi_{zz} + \delta \phi_{x x } = 0,\\ 790 &\text{with the boundary conditions}\\ 791 &\begin{drcases} 792 &\phi_z = \delta^2 (\eta_t + \varepsilon \phi_x \eta_x) \\ 793 &\phi_t + \eta + \frac{1}{2}\varepsilon\left( \frac{1}{\delta^2}\phi^2_z 794 + \phi_x^2\right) =0 795 \end{drcases}\quad \text{on}\;\; z = 1+\varepsilon\eta,\\ 796 &\text{and}\\ 797 & \phi_z =0 \quad \text{on}\;\; z = b = 0. 798 \end{drcases} 799 \end{align} 800 Since the model arises $\varepsilon = O(\delta^2)$, for convince we set 801 $\varepsilon=1$. The fact of the matter is we are seeking a traveling wave 802 solution, thereby we can go into the coordinate system of the traveling wave, 803 one in the variable $\xi = x - ct$ for a from left to right traveling wave, 804 where $c$ is the nondimensional speed of the wave. Our goal is to find the 805 solution for the velocity potential $\phi(\xi, z)$ and the wave profile 806 $\eta(\xi)$. The chain rule gives us 807 \begin{align} 808 \frac{\partial }{\partial x} &= \frac{\partial \xi}{\partial x} 809 \frac{\partial }{\partial \xi} = \frac{\partial }{\partial \xi}, \\ 810 \frac{\partial }{\partial t} &= \frac{\partial \xi}{\partial t} 811 \frac{\partial }{\partial \xi} = -c\frac{\partial }{\partial \xi}. 812 \end{align} 813 Together with the equations in \ref{eq:soliton} we obtain 814 \begin{align}\label{eq:soliton-xi} 815 \begin{drcases} 816 & \phi_{zz} + \delta \phi_{\xi\xi} = 0,\\ 817 &\text{with the boundary conditions}\\ 818 &\begin{drcases} 819 &\phi_z = \delta^2 (\phi_\xi -c)\eta_\xi \\ 820 &-c\phi_\xi + \eta + \frac{1}{2}\varepsilon\left( \frac{1}{\delta^2}\phi^2_z 821 + \phi_\xi^2\right) =0 822 \end{drcases}\quad \text{on}\;\; z = 1+\eta,\\ 823 &\text{and}\\ 824 & \phi_z =0 \quad \text{on}\;\; z = b = 0. 825 \end{drcases} 826 \end{align} 827 \subsubsection{Exponential Decay} 828 We would like to analyze if the equation in \ref{eq:soliton-xi} gives viable a 829 solution that decays exponentially, we make the ansatz 830 \begin{align} 831 \eta \simeq a e^{-\alpha |\psi|},\quad \phi \simeq \psi(z)e^{-\alpha 832 |\xi|}, \qquad \mid \xi \mid \rightarrow \infty, 833 \end{align} 834 where $\alpha>0$ is the exponent. The equations in \ref{eq:soliton-xi} 835 transforms to 836 \begin{align} 837 \psi'' + \alpha^2 \delta^2\psi = 0. 838 \end{align} 839 The above equation is a standard well known ordinary differential equation 840 reading 841 \begin{align} 842 \psi = A \cos(\alpha\delta z), 843 \end{align} 844 where $A$ is the integration constant. On the free surface $z\simeq 1$ gives 845 \begin{align} 846 &-cA\alpha\sin(\alpha\delta) = ca\alpha,\label{eq:sol1}\\ 847 &cA\alpha \cos(\alpha\delta) = -a \label{eq:sol2}. 848 \end{align} 849 Dividing equation \ref{eq:sol1} with equation \ref{eq:sol2} gives 850 \begin{align} \label{eq:soliton-dispersion} 851 c^2 = \frac{\tan\left(\alpha\delta \right) }{\alpha\delta}. 852 \end{align} 853 We conclude that the solution for such a wave exists provided that the 854 dispersion relation on the wave propagation speed holds, thereby all solitary 855 waves exhibit exponential decay in their tail and satisfy the dispersion 856 relation in equation \ref{eq:soliton-dispersion}. 857 \subsubsection{Asymptotic Analysis} 858 The underlining equations in \ref{eq:soliton} extend from $-\infty$ to 859 $\infty$, so the length scale is much greater than any finite depth of 860 water. Therefore the classification $\delta \rightarrow 0$ is appropriate for 861 a solitary wave, this however goes with the assumption 862 $\varepsilon\rightarrow 0$ otherwise we cannot make an appropriate expansion. 863 Let us look at the main equation 864 \begin{align}\label{eq:sol-laplace} 865 \phi_{zz} + \delta \phi_{x x} = 0. 866 \end{align} 867 For small $\delta$ we conduct the $\delta^2 = O(\varepsilon)$ standard ansatz 868 in asymptotic analysis 869 \begin{align} 870 \phi_{\delta}(x, t, z) \simeq \sum_{n=0}^{\infty} \delta^{2n}\phi_n(x, t, 871 z). 872 \end{align} 873 Substituting $\phi_\delta$ into equation \ref{eq:sol-laplace} we get 874 \begin{align} 875 \delta^{2\cdot 0}\left( \phi_{0zz} \right) + \delta^{2\cdot 1}\left( 876 \phi_{1zz}+\phi_{0 x x} \right) + \delta^{2\cdot 2}\left( \phi_{2zz}+ 877 \phi_{1 x x} \right) + O(\delta^{2\cdot 3}) = 0. 878 \end{align} 879 We start off with $O(\delta^{2\cdot0}) $, which gives us an arbitrary function 880 $\phi_{0} = \theta(x, t)$. Next we may generalize the results for all 881 $O(\delta^{2\cdot n})$ in the means of 882 \begin{align} 883 \phi_{n+1zz} = -\phi_{nx x}\qquad \forall n\in \mathbb{N} . 884 \end{align} 885 Therefore leaving us for $\phi_1$ and $\phi_2$ with 886 \begin{align} 887 &\phi_1 = -\frac{1}{2} z^2 \theta_0(x,t) + \theta(x, t),\\ 888 \Rightarrow& \phi_2 = 889 \frac{1}{24}z^4\theta_0(x,t)-\frac{1}{2}z^2\theta_1(x,t) + \theta_2(x,t). 890 \end{align} 891 The boundary condition on the bottom comes around to be 892 \begin{align} 893 \phi_{nz} =0 \quad \text{on}\;\; z=0. 894 \end{align} 895 The free surface boundary condition $z= 1+\varepsilon\eta$ n evolves more calculation, we consider 896 only terms up the order of $\delta^2$, initializing with 897 \begin{align} 898 &\phi_z = \delta^2(\eta_t + \varepsilon\phi_x \eta_x)\\ 899 \Leftrightarrow &\frac{1}{\delta}\phi_z = \eta_t + \varepsilon\phi_x 900 \eta_x, 901 \end{align} 902 substituting $\phi_\delta$ into the above proceeds to be 903 \begin{align} 904 \frac{1}{\delta^2}\underbrace{\phi_{0z}}_{=0} + \phi_{1z}+ \delta^2\phi_{zz} 905 O(\delta^{2\cdot 2}) 906 &= -z\theta_{x x} + \delta^2\left( \frac{1}{6}z^3\theta_{0 x x x x} - z 907 \theta_{0x x} \right) + O(\delta^{2\cdot 2})\\ 908 &=-(1+\varepsilon\eta)\theta_{0 x x} + \delta^2\left( 909 \frac{1}{6}(1+\varepsilon\eta)^3\theta_{0 x x} - 910 (1+\varepsilon\eta)\theta_{0 x x} \right) +O(\delta^{2\cdot 2})\\ 911 &= \eta_t + \varepsilon\eta_x \left( \theta_{0x} 912 \delta^2(\theta_{1x}-\frac{1}{2}( 1+ \varepsilon\eta)^2 \theta_{0x x x} 913 \right). 914 \end{align} 915 The second condition is 916 \begin{align} 917 \phi_t + \eta + \frac{1}{2}\varepsilon \left( \frac{1}{\delta}\phi^2_z 918 \phi_x^2\right) = 0, 919 \end{align} 920 becomes after substitution 921 \begin{align} 922 \theta_{0t}+ \delta^2\left( -\frac{1}{2}(1+\varepsilon\eta)^2\theta_{0 x xt} 923 + \theta_{1t}\right) + \eta + O(\delta^{2\cdot 2}) 924 &=-\frac{1}{2}\delta^2\varepsilon(-(1+\varepsilon\eta)\theta_{0 x x 925 })^2\\ 926 &-\frac{1}{2}\left( \theta_{0 x} + \delta^2\left( \theta_{1x} - 927 \frac{1}{2}(1+\varepsilon\eta)^2\theta_{0 x x x x} \right) \right) ^2 928 \end{align} 929 The simplest case is $\varepsilon,\delta \rightarrow 0$. 930 931 932 933 934 935 936 937 938 939 940 941 942 \newpage 943 \include{appendix.tex} 944 945 946 947 \nocite{johnson_1997} 948 \nocite{vallis_2017} 949 \nocite{constantin_tsunami} 950 \nocite{rupert_2009} 951 \nocite{mathe-physik} 952 953 \printbibliography 954 955 \end{document}