chap3.tex (21764B)
1 \section{The Solitary Wave and The KdV Equation} 2 The solitary wave is a wave of translation, it is stable and can travel long 3 distances. Additionally the speed depends on the size of the wave. An 4 interesting feature is that two solitary waves do not merge together to form 5 one solitary wave, but the small wave is overtaken by a larger one. If a 6 solitary wave is too big for the depth it splits into two, a big and a small 7 one. Solitary waves arise in the region $\varepsilon=O(\delta^2)$. 8 9 10 \subsection{Solitary Wave} 11 To describe 12 a solitary wave we begin with Euler's Equation of Motion, where we assume 13 there is no surface tension we set $W_e = 0$ and additionally assume 14 irrotational flow $\mathbf{\omega}=\nabla \times \mathbf{u} = 0$. This means 15 that there exists a velocity potential $\phi(\mathbf{x},t)$ given 16 by $\mathbf{u} = \nabla \phi$ satisfying the Laplace equation. In regard of a 17 solitary wave being a plane wave, we rotate our coordinate system such that 18 the propagation is in the $x$-direction and a stationary \& fixed bottom 19 $b=0$. Ultimately leaving us with the following model 20 \begin{align}\label{eq:soliton} 21 \begin{drcases} 22 & \phi_{zz} + \delta \phi_{x x } = 0,\\ 23 &\text{with the boundary conditions}\\ 24 &\begin{drcases} 25 &\phi_z = \delta^2 (\eta_t + \varepsilon \phi_x \eta_x) \\ 26 &\phi_t + \eta + \frac{1}{2}\varepsilon\left( \frac{1}{\delta^2}\phi^2_z 27 + \phi_x^2\right) =0 28 \end{drcases}\quad \text{on}\;\; z = 1+\varepsilon\eta,\\ 29 &\text{and}\\ 30 & \phi_z =0 \quad \text{on}\;\; z = b = 0. 31 \end{drcases} 32 \end{align} 33 Since the model arises in $\varepsilon = O(\delta^2)$, for convince we set 34 $\varepsilon=1$. The fact of the matter is we are seeking a traveling wave 35 solution, thereby we can go into the coordinate system of the traveling wave, 36 one in the variable $\xi = x - ct$ for a, from left to right traveling wave, 37 where $c$ is the nondimensional speed of the wave. Our goal is to find the 38 solution for the velocity potential $\phi(\xi, z)$ and the wave profile 39 $\eta(\xi)$. The chain rule gives us 40 \begin{align} 41 \frac{\partial }{\partial x} &= \frac{\partial \xi}{\partial x} 42 \frac{\partial }{\partial \xi} = \frac{\partial }{\partial \xi}, \\ 43 \frac{\partial }{\partial t} &= \frac{\partial \xi}{\partial t} 44 \frac{\partial }{\partial \xi} = -c\frac{\partial }{\partial \xi}. 45 \end{align} 46 Together with the equations in \ref{eq:soliton} we obtain 47 \begin{align}\label{eq:soliton-xi} 48 \begin{drcases} 49 & \phi_{zz} + \delta \phi_{\xi\xi} = 0,\\ 50 &\text{with the boundary conditions}\\ 51 &\begin{drcases} 52 &\phi_z = \delta^2 (\phi_\xi -c)\eta_\xi \\ 53 &-c\phi_\xi + \eta + \frac{1}{2}\varepsilon\left( \frac{1}{\delta^2}\phi^2_z 54 + \phi_\xi^2\right) =0 55 \end{drcases}\quad \text{on}\;\; z = 1+\eta,\\ 56 &\text{and}\\ 57 & \phi_z =0 \quad \text{on}\;\; z = b = 0. 58 \end{drcases} 59 \end{align} 60 \subsubsection{Exponential Decay} 61 We would like to analyze if the equation in \ref{eq:soliton-xi} gives viable a 62 solution that decays exponentially, we make the ansatz 63 \begin{align} 64 \eta \simeq a e^{-\alpha |\psi|},\quad \phi \simeq \psi(z)e^{-\alpha 65 |\xi|}, \qquad \mid \xi \mid \rightarrow \infty, 66 \end{align} 67 where $\alpha>0$ is the exponent. The equations in \ref{eq:soliton-xi} 68 transforms to 69 \begin{align} 70 \psi'' + \alpha^2 \delta^2\psi = 0. 71 \end{align} 72 The above equation is a standard well known ordinary differential equation 73 reading 74 \begin{align} 75 \psi = A \cos(\alpha\delta z), 76 \end{align} 77 where $A$ is the integration constant. On the free surface $z\simeq 1$ gives 78 \begin{align} 79 &-cA\alpha\sin(\alpha\delta) = ca\alpha,\label{eq:sol1}\\ 80 &cA\alpha \cos(\alpha\delta) = -a \label{eq:sol2}. 81 \end{align} 82 Dividing equation \ref{eq:sol1} with equation \ref{eq:sol2} gives 83 \begin{align} \label{eq:soliton-dispersion} 84 c^2 = \frac{\tan\left(\alpha\delta \right) }{\alpha\delta}. 85 \end{align} 86 We conclude that the solution for such a wave exists provided that the 87 dispersion relation on the wave propagation speed holds, thereby solitary 88 waves exhibit exponential decay in their tail and satisfy the dispersion 89 relation in equation \ref{eq:soliton-dispersion}. 90 \subsubsection{Asymptotic Analysis} 91 The underlining equations in \ref{eq:soliton} extend from $-\infty$ to 92 $\infty$, so the length scale is much greater than any finite depth of 93 water. Therefore the classification $\delta \rightarrow 0$ is appropriate for 94 a solitary wave, this however goes with the assumption 95 $\varepsilon\rightarrow 0$ otherwise we cannot make an appropriate expansion. 96 Let us look at the main equation 97 \begin{align}\label{eq:sol-laplace} 98 \phi_{zz} + \delta \phi_{x x} = 0. 99 \end{align} 100 For small $\delta$ we conduct the $\delta^2 = O(\varepsilon)$ standard ansatz 101 in asymptotic analysis 102 \begin{align} 103 \phi_{\delta}(x, t, z) \simeq \sum_{n=0}^{\infty} \delta^{2n}\phi_n(x, t, 104 z). 105 \end{align} 106 Substituting $\phi_\delta$ into equation \ref{eq:sol-laplace} we get 107 \begin{align} 108 \delta^{2\cdot 0}\left( \phi_{0zz} \right) + \delta^{2\cdot 1}\left( 109 \phi_{1zz}+\phi_{0 x x} \right) + \delta^{2\cdot 2}\left( \phi_{2zz}+ 110 \phi_{1 x x} \right) + O(\delta^{2\cdot 3}) = 0. 111 \end{align} 112 We start off with $O(\delta^{2\cdot0}) $, which gives us an arbitrary function 113 $\phi_{0} = \theta(x, t)$. Next we may generalize the results for all 114 $O(\delta^{2\cdot n})$ in the means of 115 \begin{align} 116 \phi_{n+1zz} = -\phi_{nx x}\qquad \forall n\in \mathbb{N} . 117 \end{align} 118 Therefore leaving us for $\phi_1$ and $\phi_2$ with 119 \begin{align} 120 &\phi_1 = -\frac{1}{2} z^2 \theta_0(x,t) + \theta(x, t),\\ 121 \Rightarrow& \phi_2 = 122 \frac{1}{24}z^4\theta_0(x,t)-\frac{1}{2}z^2\theta_1(x,t) + \theta_2(x,t). 123 \end{align} 124 The boundary condition on the bottom comes around to be 125 \begin{align} 126 \phi_{nz} =0 \quad \text{on}\;\; z=0. 127 \end{align} 128 The free surface boundary condition $z= 1+\varepsilon\eta$ involves more calculation, we consider 129 only terms up the order of $\delta^2$, initializing with 130 \begin{align} 131 &\phi_z = \delta^2(\eta_t + \varepsilon\phi_x \eta_x)\\ 132 \Leftrightarrow &\frac{1}{\delta}\phi_z = \eta_t + \varepsilon\phi_x 133 \eta_x, 134 \end{align} 135 substituting $\phi_\delta$ into the above proceeds to be 136 \begin{align} 137 \frac{1}{\delta^2}\underbrace{\phi_{0z}}_{=0} + \phi_{1z}+ \delta^2\phi_{zz} 138 O(\delta^{2\cdot 2}) 139 &= -z\theta_{x x} + \delta^2\left( \frac{1}{6}z^3\theta_{0 x x x x} - z 140 \theta_{0x x} \right) + O(\delta^{2\cdot 2})\\ 141 &=-(1+\varepsilon\eta)\theta_{0 x x} + \delta^2\left( 142 \frac{1}{6}(1+\varepsilon\eta)^3\theta_{0 x x} - 143 (1+\varepsilon\eta)\theta_{0 x x} \right) \label{eq:soliton-scale-boundary1}\\ 144 &= \eta_t + \varepsilon\eta_x \left( 145 \theta_{0x} 146 \delta^2(\theta_{1x}-\frac{1}{2}( 1+ \varepsilon\eta)^2 \theta_{0x x 147 x}\label{eq:soliton-scale-boundary2} 148 \right). 149 \end{align} 150 The second condition is 151 \begin{align} 152 \phi_t + \eta + \frac{1}{2}\varepsilon \left( \frac{1}{\delta}\phi^2_z 153 +\phi_x^2\right) = 0, 154 \end{align} 155 becomes after substitution 156 \begin{align} 157 &\theta_{0t}+ \delta^2\left( -\frac{1}{2}(1+\varepsilon\eta)^2\theta_{0 x xt} 158 + \theta_{1t}\right) + \eta + O(\delta^{2\cdot 2}) 159 \label{eq:soliton-scale-boundary3} 160 \\&=-\frac{1}{2}\delta^2\varepsilon(-(1+\varepsilon\eta)\theta_{0 x x 161 })^2\label{eq:soliton-scale-boundary4} 162 -\frac{1}{2}\left( \theta_{0 x} + \delta^2\left( \theta_{1x} - 163 \frac{1}{2}(1+\varepsilon\eta)^2\theta_{0 x x x x} \right) \right) ^2 164 \end{align} 165 In the order of $O(\delta^{0})$ as $\varepsilon \rightarrow 0$ gives us the conditions 166 \begin{align} 167 -\theta_{0 x x} &= \eta_t \simeq \text{and}\quad 168 \theta_{0t}\simeq-\eta\label{eq:solitonO0}\\ 169 &\Rightarrow \theta_{0 x x} - \theta_{0 t t} \simeq 0. 170 \end{align} 171 This gives us the wave equation, a simple solution in the frame of the right 172 moving wave dependent on $\xi = x -t$ the chain rule gives us 173 \begin{align} 174 \frac{\partial \theta_0(\xi(x, t))}{\partial t} 175 &= \frac{\partial 176 \theta_0}{\partial \xi} \underbrace{\frac{\partial \xi}{\partial t}}_{=-1} 177 + \frac{\partial 178 \theta_0}{\partial t} \underbrace{\frac{\partial t}{\partial t}}_{=1} 179 + \frac{\partial \theta_0}{\partial x} \underbrace{\frac{\partial 180 x}{\partial t}}_{=0}\\ 181 &=-\theta_{0\xi}+\theta_{0t}. 182 \end{align} 183 substituting into \label{eq:solitionO0} we get 184 \begin{align} 185 &2\theta_{0t\xi}\simeq\theta_{0t t},\\ 186 \Rightarrow\;\;&\eta= \theta_{0\xi}+O(\varepsilon). 187 \end{align} 188 As for the surface boundary condition we see that the derivatives in $t$ are 189 ''small``. So we can proceed by the scaling $\tau = \varepsilon t$ as 190 $\varepsilon\rightarrow 0$, we proceed with equation given in 191 \ref{eq:soliton-scale-boundary1} and \ref{eq:soliton-scale-boundary2} in the 192 $O(\varepsilon), O(\delta^2)$ 193 \begin{align}\label{eq:soliton-scale-boundary5} 194 -(1+\varepsilon\eta)\theta_{0\xi\xi}+ 195 \delta^2\left(\frac{1}{6}\theta_{0\xi\xi\xi\xi} - \theta_{1\xi\xi}\right)\simeq 196 \varepsilon\eta_\tau -\eta_\xi +\varepsilon\eta\theta_{0\xi} 197 \end{align} 198 and boundary equations in \ref{eq:soliton-scale-boundary3}, 199 \ref{eq:soliton-scale-boundary4} produce 200 \begin{align}\label{eq:soliton-scale-boundary6} 201 \varepsilon\theta_{0\tau}-\theta_{0\xi}+\delta^2\left( 202 \frac{1}{2}\theta_{0\xi\xi\xi} - \theta_{1\xi} \right) +\eta \simeq 203 -\frac{1}{2}\varepsilon \theta^2_{0\xi}. 204 \end{align} 205 Doing the following operation to the above equations 206 \ref{eq:soliton-scale-boundary5} $-$ $\frac{\partial }{\partial 207 \xi}$\ref{eq:soliton-scale-boundary6} turns out to be 208 \begin{align} 209 &-\theta_{0\xi\xi}- 210 \varepsilon\eta\theta_{0\xi\xi}+ 211 \delta\left(\frac{1}{6}\theta_{0\xi\xi\xi\xi}-\theta_{1\xi\xi}\right) 212 - \varepsilon\theta_{0\xi\tau}+\theta_{0\xi\xi}-\delta^2\left( 213 \frac{1}{2}\theta_{0\xi\xi\xi\xi} - 214 \theta_{1\xi\xi}\right)+\eta_{\xi}\\ 215 &\simeq \varepsilon\eta_t - \eta_\xi+ 216 \varepsilon\eta\theta_{0\xi}+\varepsilon\theta_{0\xi\xi}\theta_{0\xi}. 217 \end{align} 218 In the above equation we can simplify, i.e. short some terms out and 219 substitute $\eta = \theta_{0\xi} + O(\varepsilon)$ and because of $\delta^2 = 220 O(\varepsilon)$ we set $\delta^2 = K\varepsilon$ for constant $K$, leaving us 221 with the equation for the surface profile, called the \textbf{Korteweg-de 222 Vries}, KdV equation (1895) 223 \begin{align} 224 2\eta_\tau + 3\eta\eta_\xi + \frac{K}{3}\eta_{\xi\xi\xi} = 0. 225 \end{align} 226 The KdV equation describes the balance between linearity and dispersion in 227 the change of time of the wave profile. By rewriting $\eta = f(\xi-ct)$ we 228 get 229 \begin{align} 230 -2cf' + 3ff' + \frac{K}{3}f''' = 0\\ 231 \text{with} \quad f, f', f''' \rightarrow 0\quad \text{as}\;\; |\xi-ct| 232 \Rightarrow \infty. 233 \end{align} 234 The solution is a $\text{sech}$ function 235 \begin{align} 236 f = 2c\ \text{sech}^2\left( \sqrt{\frac{3}{2K}}(\xi-ct)\right) 237 \end{align} 238 \subsection{KdV Equation\label{sec:kdv}} 239 In this section we will go over the more general prerequisites and therefore 240 a more convincing expedition for the Korteweg-de Vries equation. We still 241 want to derive the wave profile of a wave in shallow water, small amplitude 242 regime $\delta^2 = O(\varepsilon)$, where the bottom is horizontal \& 243 stationary. The propagating wave can be seen as a plane wave, therefore the 244 coordinate system is rotated in such a way that the propagating direction is 245 the $x$ direction. For irrotational, inviscid flow without surface tension 246 $W_e=0$ that is for gravity waves, nondimensional and rescaled Euler's 247 Equations of Motion for such a flow are 248 \begin{align} 249 \begin{drcases} 250 \frac{Du}{Dt}=-p_x,\quad \quad \delta^2 251 \frac{Dw}{Dt} = -p_z,\\ 252 \text{where}\\ 253 \frac{D}{Dt} = \frac{\partial }{\partial t} + \varepsilon 254 \left( 255 u\frac{\partial u}{\partial x} 256 +w\frac{\partial w}{\partial z}\right) 257 \\ 258 \text{with}\\ 259 \frac{\partial u}{\partial x} +\frac{\partial w}{\partial z} = 0 260 \end{drcases} 261 \end{align} 262 with free surface boundary conditions 263 \begin{align} 264 \begin{drcases} 265 p=\eta\\ 266 w=\eta_t+\varepsilon u \eta_x 267 \end{drcases} 268 \text{on}\;\; z= 1+\varepsilon\eta, 269 \end{align} 270 and bottom boundary condition 271 \begin{align} 272 w = 0 \quad \text{on}\;\; z=b =0. 273 \end{align} 274 We note here that the solution for such a wave is a solitary wave as in 275 described in the previous section. In principle we expect to find such waves 276 rather rarely in nature, since $\delta^2 = O(\varepsilon)$ is a very special 277 case. Never the less this is not the case. We demonstrate that $\forall\ 278 \delta$ as $\varepsilon$ goes to $0$ there exists a region in the position 279 space $(x, t)$ where the KdV balance in terms of linearity and dispersion 280 is observed. Indeed we can ''generate`` KdV solitary waves, provided a small 281 enough amplitude in the sense of $\varepsilon$ goes to $0$. First of all we 282 introduce a rescaling of the variables adjusted to our problem definition 283 \begin{align}\label{eq:epsdelta} 284 x \rightarrow \frac{\delta}{\sqrt{\varepsilon} }\tilde{x}, \quad t 285 \rightarrow \frac{\delta}{\sqrt{\varepsilon} }\tilde{t}\quad 286 w \rightarrow \frac{\sqrt{\varepsilon} }{\delta}\tilde{w}. 287 \end{align} 288 Then the material derivative is transformed to be 289 \begin{align} 290 \frac{D}{Dt} = \frac{\sqrt{\varepsilon}}{\delta}(\frac{\partial 291 }{\partial \tilde{t}} +\varepsilon \tilde{\mathbf{u}} \nabla). 292 \end{align} 293 The initial equations become 294 \begin{align} 295 \frac{Du}{Dt} = \frac{\sqrt{\varepsilon}}{\delta} =- 296 \frac{\sqrt{\varepsilon} }{\delta} p_{\tilde{x}}\;\; &\Rightarrow\;\; 297 u_{\tilde{t}} + \varepsilon(u u_{\tilde{x}} + wu_z)= -p_{\tilde{x}}.\\ 298 \frac{Dw}{Dt} = \frac{\varepsilon}{\delta^2} 299 \frac{D\tilde{w}}{D\tilde{t}}=-p_z \;\;&\Rightarrow\;\; 300 \varepsilon\left(\tilde{w}_{\tilde{t}} + \varepsilon\left( 301 u\tilde{w}_{\tilde{x}}+ \tilde{w}\tilde{w}_z \right) \right) = -p_z, 302 \end{align} 303 with 304 \begin{align} 305 &w 306 = \frac{\varepsilon}{\delta}\tilde{w} 307 = \frac{\sqrt{\varepsilon} }{\delta} 308 \eta_{\tilde{t}}+\varepsilon u\frac{\sqrt{\varepsilon}}{\delta} 309 \eta_{\tilde{x}}\\ 310 &\Rightarrow\;\; 311 \begin{drcases} 312 \tilde{w} = \eta_{\tilde{t}}+ \varepsilon u 313 \eta_{\tilde{x}}\\ 314 p=\eta 315 \end{drcases} 316 \text{on}\;\; z = 1+\varepsilon\eta 317 \end{align} 318 and 319 \begin{align} 320 w = 0 \quad \text{on}\;\; z= b = 0. 321 \end{align} 322 Now we replace the region $\delta^2$ with $\varepsilon = \delta^2$, while we 323 let $\varepsilon$ go to $0$. We conclude to the following equations, after 324 replacing to $x, t$ and $w$ 325 \begin{align}\label{eq:kdv3} 326 \begin{drcases} 327 u_t = -p_x, \quad p_z = 0\\ 328 u_x + w_z = 0,\\ 329 \text{with}\\ 330 w=\eta_t \quad p=\eta \quad \text{on}\;\; z= 1\\ 331 w = 0 \quad \text{on}\;\; z= 0. 332 \end{drcases} 333 \end{align} 334 Modification to these equations on the boundary condition, i.e. on $z=1$ 335 leaves us with 336 \begin{align} 337 u = -p_x = -\eta_x \quad \Rightarrow \quad u_t + \eta_x = 0 338 \label{eq:kdv1}\\ 339 w = -zu_x\Big|_{z=1} = -u_x = \eta_t \quad \Rightarrow \quad u_x + \eta_t 340 =0.\label{eq:kdv2} 341 \end{align} 342 By doing differentiation \ref{eq:kdv1} with respect to $x$ and subtracting 343 the equation \ref{eq:kdv2} differentiated with respect to $t$ we get the 344 standard wave equation for the profile of the wave 345 \begin{align} 346 \eta_{x x} - \eta_{t t} = 0 . 347 \end{align} 348 We choose a solution for a right going wave and go into the frame of the 349 moving wave by a coordinate transformation as in the last section to $\xi = 350 x- t$. Additionally we want to introduce a long term variable, since we have 351 a uniformity as $t$ (or $x$) goes to infinity. This is usually done by 352 rescaling $t = \varepsilon \tau$. In summary we have that $\xi = O(1)$ as 353 well as $\tau = O(1)$. This is for \textbf{far field region} of the wave, and 354 therefore the region, where we expect KdV type balance, between dispersion 355 and linearity. The fact of this matter can be rigorously proven, it needs to 356 be show that any sufficiently fast decaying smooth solution will eventually 357 split into a finite superposition of two solitary waves traveling to the 358 right and a decaying dispersive part traveling to the left. However will not 359 go into this here. To transform the equations in \ref{eq:kdv3}, we look at 360 the chain rule w.r.t $\xi ,\tau$ evolving to 361 \begin{align} 362 \frac{\partial }{\partial t} &= -\frac{\partial }{\partial \xi} 363 +\varepsilon \frac{\partial }{\partial \tau} \\ 364 \frac{\partial }{\partial x} &= \frac{\partial }{\partial \xi}. 365 \end{align} 366 Then we get 367 \begin{align}\label{eq:kdv5} 368 \begin{drcases} 369 -u_\xi + \varepsilon\left(u_\tau + uu_\xi + w u_z \right) = 370 -p_\xi\\ 371 \varepsilon\left( -w_\xi + \varepsilon\left( w_\tau + u w_\xi + w w_z 372 \right) \right) = - p_z\\ 373 u_\xi + w_z = 0\\ 374 \text{with}\\ 375 \begin{drcases} 376 w = -\eta_\xi+\varepsilon(\eta_\tau+u \eta_\xi)\\ 377 p=\eta 378 \end{drcases} 379 \text{on} \;\; z=1+\varepsilon\eta\\ 380 \text{and}\\ 381 w = 0 \quad \;\; z = b =0. 382 \end{drcases} 383 \end{align} 384 The crucial part now is to consider an asymptotic expansion of in 385 $\varepsilon$ for velocity of the fluid particles $u, w$ and also the wave 386 profile $\eta$ and for the pressure variable $p$. The general asymptotic 387 ansatz is of the form 388 \begin{align} 389 q\left( \xi, \tau, z; \varepsilon \right) = \sum_{n=0}^{\infty} 390 \varepsilon^n q_n\left( \xi, \tau, z \right). 391 \end{align} 392 The first equation in \ref{eq:kdv5} up to the order of $O(\varepsilon^2)$ is 393 of the form 394 \begin{align} 395 \varepsilon^0\left( p_{0\xi} - u_{0\xi}\right) + \varepsilon^1\left( 396 p_{1\xi} - u_{1\xi} + u_{0\tau} + u_0 u_{0\xi} + w_0u_{0z} \right) 397 +O(\varepsilon^2) = 0, 398 \end{align} 399 with the main condition $p_{0\xi} = u_{0\xi}$. For the second equation in 400 \ref{eq:kdv5} becomes 401 \begin{align} 402 \varepsilon^0\left( p_{0z} \right) 403 +\varepsilon^1\left( p_{1z}-w_{0\xi} + w_{0\tau} + u_0w_{0\xi}+w_0w_{0z} \right) 404 + O(\varepsilon^2) = 0, 405 \end{align} 406 the main condition $p_{0z} =0 $. The third equation in \ref{eq:kdv5} is the 407 following 408 \begin{align} 409 \varepsilon^0(u_{0\xi}+w_{0z}) + \varepsilon^1\left( u_{1\xi}+w_{1z} 410 \right) 411 O(\varepsilon^2) =0, 412 \end{align} 413 where the main condition satisfies $u_{n\xi} = -w_{n\xi}$ for all $n \in 414 \mathbb{N}$. Further the surface condition is expanded into 415 \begin{align} 416 p_n = \eta_n \qquad \forall\ n \in \mathbb{N}, 417 \end{align} 418 and 419 \begin{align} 420 \varepsilon^0\left(w_0 + \eta_{0\xi}\right)+ 421 \varepsilon^1\left( w_1 + \eta_{1\xi} + \eta_{0\tau} + \eta_0 \eta_{0\xi}\right) 422 + O(\varepsilon^2) = 0, 423 \end{align} 424 Do note that the condition for for $\varepsilon^0$ is $z=1$ and for 425 $\varepsilon^1$ is $z=\varepsilon\eta$. The main conclusion from the above 426 equation is however $w_0 = -\eta_{0\xi}$. And lastly the bottom condition 427 remains unchanged for all $n$ as 428 \begin{align} 429 w_n = 0 \quad \text{on}\;\; z= b=0 430 \end{align} 431 In essence $O(\varepsilon^0)$ give us the equations 432 \begin{align} 433 u_{0\xi}=p_{0\xi},\quad p_{0z} =0,\quad u_{0\xi} + w_{0z} = 0, 434 \end{align} 435 with 436 \begin{align} 437 p_0 = \eta_0, \quad w_0 = -\eta_{0\xi} \quad \text{on}\;\; z=1\\ 438 w_0 = 0 \quad \text{on}\;\; z=b=0. 439 \end{align} 440 They lead us tot he following solution which satisfies the boundary 441 \begin{align} 442 p_0 = \eta_0, \quad u_0 = \eta_0, \quad w_0 = -z\eta_{0\xi} \quad 443 \forall\ z\in[0, 1]. 444 \end{align} 445 Do notice who $w_0 = -z\eta_{0\xi}$ automatically satisfies the boundary 446 conditions for both $z=0$ and $z=1$. Before we go on to consider 447 $O(\varepsilon)$, we expand $u, w$ and $p$ around $z=1$ via Taylor expansion. 448 This makes only since in the case $\varepsilon\rightarrow 0$ 449 \begin{align} 450 \begin{drcases} 451 p_0 + \varepsilon\eta_0 p_{0z} + \varepsilon p_1 = \eta_0 452 \varepsilon\eta_1 + O(\varepsilon^2)\\ 453 w_0 +\varepsilon\eta_0w_{0z} + \varepsilon w_1 = -\eta_{0\xi} - 454 \varepsilon\eta_{1\xi} + \varepsilon\left( \eta_0 + u_0 \eta_{0\xi} 455 \right) +O\left(\varepsilon^2 \right). 456 \end{drcases} \text{on}\;\; z=1 457 \end{align} 458 Right off the equations of order $O(\varepsilon^1)$ become 459 \begin{align} 460 -u_{1\xi} + u_{0\tau} + u_0u_{0\xi} + w_{0}u_{0z} = -p_{1\xi},\\ 461 p_{1z} = w_{0\xi} \quad \text{and} \quad u_{1\xi} + w_{1z} = 0, 462 \end{align} 463 with the boundary conditions 464 \begin{align} 465 \begin{drcases} 466 p_1 + \eta_0 p_{0z} = \eta_1\\ 467 w_1 + \eta_0 w_{0z} = -\eta_{1\xi} + \eta_{0t} + u 468 \end{drcases} 469 \text{on}\;\; z=1\\ 470 w_1 = 0 \quad \text{on}\;\; z =b = 0. 471 \end{align} 472 Thus 473 \begin{align} 474 &p_{1z} = w_{0\xi} = -z\eta_{0\xi}\\ 475 \Rightarrow &p_1 = -\frac{1}{2}z^2 \eta_{0\xi\xi} +c, 476 \end{align} 477 where $c$ is the integration constant, together with the boundary condition 478 on $z=1$ we get that 479 \begin{align} 480 c = \eta_1 + \frac{1}{2} \eta_{0\xi\xi}, 481 \end{align} 482 for $p_1$ leaving is with 483 \begin{align} 484 p_1 = \frac{1}{2} \left( 1-z^2 \right) \eta_{0\xi\xi} +\eta_1 485 \end{align} 486 As for the condition $w_{1z} = -u_{1\xi}$ we get 487 \begin{align} 488 w_{1z} &= -u_{1\xi} = -p_{1\xi} - u_{0\tau} - u_0u_{0\xi} - u_0u_{0z} \\ 489 &=\frac{1}{2} (1-z^2)\eta_{0\xi\xi\xi} - \eta_{1\xi} -\eta_{0\tau} 490 -\eta_{0\xi}. 491 \end{align} 492 By integration and evaluation on $z=1$ of the above equation we get 493 \begin{align}\label{eq:kdv6} 494 w_1\Big|_{z=1} = -\frac{1}{3} \eta_{0\xi\xi\xi} - \eta_{1\xi} - 495 \eta_{0\tau} -\eta_0\eta_{0\xi}, 496 \end{align} 497 on the other hand we have the original boundary condition 498 \begin{align}\label{eq:kdv7} 499 w_1\Big|_{z=1} = -\eta_{1\xi} + \eta_{0\tau} +2\eta_{0}\eta_{0\xi} . 500 \end{align} 501 Subtracting equation \ref{eq:kdv6} from \ref{eq:kdv7} we get the KdV equation 502 \begin{align} 503 \frac{1}{3} \eta_{0\xi\xi\xi} - 2\eta_{0\tau} - 3\eta_0\eta_{0\xi} = 0. 504 \end{align} 505 506 507 508 509