notes

uni notes
git clone git://popovic.xyz/notes.git
Log | Files | Refs

chap3.tex (21764B)


      1 \section{The Solitary Wave and The KdV Equation}
      2 The solitary wave is a wave of translation, it is stable and can travel long
      3 distances. Additionally the speed depends on the size of the wave. An
      4 interesting feature is that two solitary waves do not merge together to form
      5 one solitary wave, but the small wave is overtaken by a larger one. If a
      6 solitary wave is too big for the depth it splits into two, a big and a small
      7 one. Solitary waves arise in the region $\varepsilon=O(\delta^2)$.
      8 
      9 
     10 \subsection{Solitary Wave}
     11 To describe
     12 a solitary wave we begin with Euler's Equation of Motion, where we assume
     13 there is no surface tension we set $W_e = 0$ and additionally assume
     14 irrotational flow $\mathbf{\omega}=\nabla \times  \mathbf{u} = 0$. This means
     15 that there exists a velocity potential $\phi(\mathbf{x},t)$ given
     16 by $\mathbf{u} = \nabla \phi$ satisfying the Laplace equation. In regard of a
     17 solitary wave being a plane wave, we rotate our coordinate system such that
     18 the propagation is in the $x$-direction and a stationary \& fixed bottom
     19 $b=0$. Ultimately leaving us with the following model
     20 \begin{align}\label{eq:soliton}
     21 \begin{drcases}
     22    & \phi_{zz} + \delta \phi_{x x }  = 0,\\
     23    &\text{with the boundary conditions}\\
     24    &\begin{drcases}
     25     &\phi_z = \delta^2 (\eta_t + \varepsilon \phi_x \eta_x) \\
     26     &\phi_t + \eta +  \frac{1}{2}\varepsilon\left( \frac{1}{\delta^2}\phi^2_z
     27     + \phi_x^2\right)  =0
     28   \end{drcases}\quad \text{on}\;\; z = 1+\varepsilon\eta,\\
     29    &\text{and}\\
     30    & \phi_z =0 \quad \text{on}\;\; z = b = 0.
     31 \end{drcases}
     32 \end{align}
     33 Since the model arises in $\varepsilon = O(\delta^2)$, for convince we set
     34 $\varepsilon=1$. The fact of the matter is we are seeking a traveling wave
     35 solution, thereby we can go into the coordinate system of the traveling wave,
     36 one in the variable $\xi = x - ct$ for a, from left to right traveling wave,
     37 where $c$ is the nondimensional speed of the wave. Our goal is to find the
     38 solution for the velocity potential $\phi(\xi, z)$ and the wave profile
     39 $\eta(\xi)$. The chain rule gives us
     40 \begin{align}
     41     \frac{\partial }{\partial x} &= \frac{\partial \xi}{\partial x}
     42     \frac{\partial }{\partial \xi}  = \frac{\partial }{\partial \xi}, \\
     43     \frac{\partial }{\partial t} &= \frac{\partial \xi}{\partial t}
     44     \frac{\partial }{\partial \xi}  = -c\frac{\partial }{\partial \xi}.
     45 \end{align}
     46 Together with the equations in \ref{eq:soliton} we obtain
     47 \begin{align}\label{eq:soliton-xi}
     48     \begin{drcases}
     49    & \phi_{zz} + \delta \phi_{\xi\xi}  = 0,\\
     50    &\text{with the boundary conditions}\\
     51    &\begin{drcases}
     52     &\phi_z = \delta^2 (\phi_\xi -c)\eta_\xi \\
     53     &-c\phi_\xi + \eta +  \frac{1}{2}\varepsilon\left( \frac{1}{\delta^2}\phi^2_z
     54     + \phi_\xi^2\right)  =0
     55   \end{drcases}\quad \text{on}\;\; z = 1+\eta,\\
     56    &\text{and}\\
     57    & \phi_z =0 \quad \text{on}\;\; z = b = 0.
     58     \end{drcases}
     59 \end{align}
     60 \subsubsection{Exponential Decay}
     61 We would like to analyze if the equation in \ref{eq:soliton-xi} gives viable a
     62 solution that decays exponentially, we make the ansatz
     63 \begin{align}
     64     \eta \simeq a e^{-\alpha |\psi|},\quad \phi \simeq \psi(z)e^{-\alpha
     65     |\xi|}, \qquad  \mid \xi \mid \rightarrow \infty,
     66 \end{align}
     67 where $\alpha>0$ is the exponent. The equations in \ref{eq:soliton-xi}
     68 transforms to
     69 \begin{align}
     70     \psi'' + \alpha^2 \delta^2\psi = 0.
     71 \end{align}
     72 The above equation is a standard well known ordinary differential equation
     73 reading
     74 \begin{align}
     75     \psi = A \cos(\alpha\delta z),
     76 \end{align}
     77 where $A$ is the integration constant. On the free surface $z\simeq 1$ gives
     78 \begin{align}
     79     &-cA\alpha\sin(\alpha\delta) = ca\alpha,\label{eq:sol1}\\
     80     &cA\alpha \cos(\alpha\delta) = -a \label{eq:sol2}.
     81 \end{align}
     82 Dividing equation \ref{eq:sol1} with equation \ref{eq:sol2} gives
     83 \begin{align} \label{eq:soliton-dispersion}
     84     c^2 = \frac{\tan\left(\alpha\delta  \right) }{\alpha\delta}.
     85 \end{align}
     86 We conclude that the solution for such a wave exists provided that the
     87 dispersion relation on the wave propagation speed holds, thereby solitary
     88 waves exhibit exponential decay in their tail and satisfy the dispersion
     89 relation in equation \ref{eq:soliton-dispersion}.
     90 \subsubsection{Asymptotic Analysis}
     91 The underlining equations in \ref{eq:soliton} extend from $-\infty$ to
     92 $\infty$, so the length scale is much greater than any finite depth of
     93 water. Therefore the classification $\delta \rightarrow 0$ is appropriate for
     94 a solitary wave, this however goes with the assumption
     95 $\varepsilon\rightarrow 0$ otherwise we cannot make an appropriate expansion.
     96 Let us look at the main equation
     97 \begin{align}\label{eq:sol-laplace}
     98     \phi_{zz} + \delta \phi_{x x} = 0.
     99 \end{align}
    100 For small $\delta$ we conduct the $\delta^2 = O(\varepsilon)$ standard ansatz
    101 in asymptotic analysis
    102 \begin{align}
    103     \phi_{\delta}(x, t, z) \simeq \sum_{n=0}^{\infty} \delta^{2n}\phi_n(x, t,
    104     z).
    105 \end{align}
    106 Substituting $\phi_\delta$ into equation \ref{eq:sol-laplace} we get
    107 \begin{align}
    108     \delta^{2\cdot 0}\left( \phi_{0zz} \right)  + \delta^{2\cdot 1}\left(
    109     \phi_{1zz}+\phi_{0 x x} \right)  + \delta^{2\cdot 2}\left( \phi_{2zz}+
    110     \phi_{1 x x} \right)  + O(\delta^{2\cdot 3}) = 0.
    111 \end{align}
    112 We start off with $O(\delta^{2\cdot0}) $, which gives us an arbitrary function
    113 $\phi_{0} = \theta(x, t)$. Next we may generalize the results for all
    114 $O(\delta^{2\cdot n})$ in the means of
    115 \begin{align}
    116     \phi_{n+1zz}  = -\phi_{nx x}\qquad \forall n\in \mathbb{N} .
    117 \end{align}
    118 Therefore leaving us for $\phi_1$ and $\phi_2$ with
    119 \begin{align}
    120     &\phi_1 = -\frac{1}{2} z^2 \theta_0(x,t) + \theta(x, t),\\
    121     \Rightarrow& \phi_2 =
    122     \frac{1}{24}z^4\theta_0(x,t)-\frac{1}{2}z^2\theta_1(x,t) + \theta_2(x,t).
    123 \end{align}
    124 The boundary condition on the bottom comes around to be
    125 \begin{align}
    126     \phi_{nz} =0 \quad \text{on}\;\; z=0.
    127 \end{align}
    128 The free surface boundary condition $z= 1+\varepsilon\eta$ involves more calculation, we consider
    129 only terms up the order of $\delta^2$, initializing with
    130 \begin{align}
    131     &\phi_z = \delta^2(\eta_t + \varepsilon\phi_x \eta_x)\\
    132     \Leftrightarrow &\frac{1}{\delta}\phi_z = \eta_t + \varepsilon\phi_x
    133     \eta_x,
    134 \end{align}
    135 substituting $\phi_\delta$ into the above proceeds to be
    136 \begin{align}
    137     \frac{1}{\delta^2}\underbrace{\phi_{0z}}_{=0} + \phi_{1z}+ \delta^2\phi_{zz}
    138     O(\delta^{2\cdot 2})
    139     &= -z\theta_{x x} + \delta^2\left( \frac{1}{6}z^3\theta_{0 x x x x} - z
    140     \theta_{0x x} \right) + O(\delta^{2\cdot 2})\\
    141     &=-(1+\varepsilon\eta)\theta_{0 x x} + \delta^2\left(
    142     \frac{1}{6}(1+\varepsilon\eta)^3\theta_{0 x x} -
    143 (1+\varepsilon\eta)\theta_{0 x x} \right) \label{eq:soliton-scale-boundary1}\\
    144     &= \eta_t + \varepsilon\eta_x \left(
    145         \theta_{0x}
    146     \delta^2(\theta_{1x}-\frac{1}{2}( 1+ \varepsilon\eta)^2 \theta_{0x x
    147     x}\label{eq:soliton-scale-boundary2}
    148 \right).
    149 \end{align}
    150 The second condition is
    151 \begin{align}
    152     \phi_t + \eta + \frac{1}{2}\varepsilon \left( \frac{1}{\delta}\phi^2_z
    153     +\phi_x^2\right)  = 0,
    154 \end{align}
    155 becomes after substitution
    156 \begin{align}
    157     &\theta_{0t}+ \delta^2\left( -\frac{1}{2}(1+\varepsilon\eta)^2\theta_{0 x xt}
    158     + \theta_{1t}\right) + \eta + O(\delta^{2\cdot 2})
    159 \label{eq:soliton-scale-boundary3}
    160     \\&=-\frac{1}{2}\delta^2\varepsilon(-(1+\varepsilon\eta)\theta_{0 x x
    161     })^2\label{eq:soliton-scale-boundary4}
    162     -\frac{1}{2}\left( \theta_{0 x} + \delta^2\left( \theta_{1x} -
    163     \frac{1}{2}(1+\varepsilon\eta)^2\theta_{0 x x x x}  \right)  \right) ^2
    164 \end{align}
    165 In the order of $O(\delta^{0})$ as $\varepsilon \rightarrow 0$ gives us the conditions
    166 \begin{align}
    167     -\theta_{0 x x} &= \eta_t \simeq \text{and}\quad
    168     \theta_{0t}\simeq-\eta\label{eq:solitonO0}\\
    169     &\Rightarrow \theta_{0 x x} - \theta_{0 t t} \simeq 0.
    170 \end{align}
    171 This gives us the wave equation, a simple solution in the frame of the right
    172 moving wave dependent on $\xi = x -t$ the chain rule gives us
    173 \begin{align}
    174     \frac{\partial \theta_0(\xi(x, t))}{\partial t}
    175     &= \frac{\partial
    176     \theta_0}{\partial \xi} \underbrace{\frac{\partial \xi}{\partial t}}_{=-1}
    177     + \frac{\partial
    178     \theta_0}{\partial t} \underbrace{\frac{\partial t}{\partial t}}_{=1}
    179         + \frac{\partial \theta_0}{\partial x} \underbrace{\frac{\partial
    180         x}{\partial t}}_{=0}\\
    181     &=-\theta_{0\xi}+\theta_{0t}.
    182 \end{align}
    183 substituting into \label{eq:solitionO0} we get
    184 \begin{align}
    185         &2\theta_{0t\xi}\simeq\theta_{0t t},\\
    186     \Rightarrow\;\;&\eta= \theta_{0\xi}+O(\varepsilon).
    187 \end{align}
    188 As for the surface boundary condition we see that the derivatives in $t$ are
    189 ''small``. So we can proceed by the scaling $\tau = \varepsilon t$ as
    190 $\varepsilon\rightarrow 0$, we proceed with equation given in
    191 \ref{eq:soliton-scale-boundary1} and \ref{eq:soliton-scale-boundary2} in the
    192 $O(\varepsilon), O(\delta^2)$
    193 \begin{align}\label{eq:soliton-scale-boundary5}
    194     -(1+\varepsilon\eta)\theta_{0\xi\xi}+
    195     \delta^2\left(\frac{1}{6}\theta_{0\xi\xi\xi\xi} - \theta_{1\xi\xi}\right)\simeq
    196     \varepsilon\eta_\tau -\eta_\xi +\varepsilon\eta\theta_{0\xi}
    197 \end{align}
    198 and boundary equations in \ref{eq:soliton-scale-boundary3},
    199 \ref{eq:soliton-scale-boundary4} produce
    200 \begin{align}\label{eq:soliton-scale-boundary6}
    201    \varepsilon\theta_{0\tau}-\theta_{0\xi}+\delta^2\left(
    202    \frac{1}{2}\theta_{0\xi\xi\xi} - \theta_{1\xi} \right) +\eta \simeq
    203    -\frac{1}{2}\varepsilon \theta^2_{0\xi}.
    204 \end{align}
    205 Doing the following operation to the above equations
    206 \ref{eq:soliton-scale-boundary5} $-$ $\frac{\partial }{\partial
    207 \xi}$\ref{eq:soliton-scale-boundary6} turns out to be
    208 \begin{align}
    209     &-\theta_{0\xi\xi}-
    210     \varepsilon\eta\theta_{0\xi\xi}+
    211     \delta\left(\frac{1}{6}\theta_{0\xi\xi\xi\xi}-\theta_{1\xi\xi}\right)
    212     - \varepsilon\theta_{0\xi\tau}+\theta_{0\xi\xi}-\delta^2\left(
    213         \frac{1}{2}\theta_{0\xi\xi\xi\xi} -
    214     \theta_{1\xi\xi}\right)+\eta_{\xi}\\
    215     &\simeq \varepsilon\eta_t - \eta_\xi+
    216     \varepsilon\eta\theta_{0\xi}+\varepsilon\theta_{0\xi\xi}\theta_{0\xi}.
    217 \end{align}
    218 In the above equation we can simplify, i.e. short some terms out and
    219 substitute $\eta = \theta_{0\xi} + O(\varepsilon)$ and because of $\delta^2 =
    220 O(\varepsilon)$ we set $\delta^2 = K\varepsilon$ for constant $K$, leaving us
    221 with the equation for the surface profile, called the \textbf{Korteweg-de
    222 Vries}, KdV equation (1895)
    223 \begin{align}
    224     2\eta_\tau + 3\eta\eta_\xi + \frac{K}{3}\eta_{\xi\xi\xi} = 0.
    225 \end{align}
    226 The KdV equation describes the balance between linearity and dispersion in
    227 the change of time of the wave profile. By rewriting $\eta = f(\xi-ct)$ we
    228 get
    229 \begin{align}
    230     -2cf' + 3ff' + \frac{K}{3}f''' = 0\\
    231     \text{with} \quad f, f', f''' \rightarrow 0\quad \text{as}\;\;  |\xi-ct|
    232     \Rightarrow \infty.
    233 \end{align}
    234 The solution is a $\text{sech}$ function
    235 \begin{align}
    236     f = 2c\ \text{sech}^2\left( \sqrt{\frac{3}{2K}}(\xi-ct)\right)
    237 \end{align}
    238 \subsection{KdV Equation\label{sec:kdv}}
    239 In this section we will go over the more general prerequisites and therefore
    240 a more convincing expedition for the Korteweg-de Vries equation. We still
    241 want to derive the wave profile of a wave in shallow water, small amplitude
    242 regime $\delta^2 = O(\varepsilon)$, where the bottom is horizontal \&
    243 stationary. The propagating wave can be seen as a plane wave, therefore the
    244 coordinate system is rotated in such a way that the propagating direction is
    245 the $x$ direction. For irrotational, inviscid flow without surface tension
    246 $W_e=0$ that is for gravity waves, nondimensional and rescaled Euler's
    247 Equations of Motion for such a flow are
    248 \begin{align}
    249     \begin{drcases}
    250         \frac{Du}{Dt}=-p_x,\quad \quad \delta^2
    251         \frac{Dw}{Dt} = -p_z,\\
    252     \text{where}\\
    253     \frac{D}{Dt} = \frac{\partial }{\partial t}  + \varepsilon
    254     \left(
    255     u\frac{\partial u}{\partial x}
    256     +w\frac{\partial w}{\partial z}\right)
    257 \\
    258     \text{with}\\
    259     \frac{\partial u}{\partial x} +\frac{\partial w}{\partial z}  = 0
    260     \end{drcases}
    261 \end{align}
    262 with free surface boundary conditions
    263 \begin{align}
    264     \begin{drcases}
    265         p=\eta\\
    266         w=\eta_t+\varepsilon u \eta_x
    267     \end{drcases}
    268     \text{on}\;\; z= 1+\varepsilon\eta,
    269 \end{align}
    270 and bottom boundary condition
    271 \begin{align}
    272     w = 0 \quad \text{on}\;\; z=b =0.
    273 \end{align}
    274 We note here that the solution for such a wave is a solitary wave as in
    275 described in the previous section. In principle we expect to find such waves
    276 rather rarely in nature, since $\delta^2 = O(\varepsilon)$ is a very special
    277 case. Never the less this is not the case. We demonstrate that $\forall\
    278 \delta$ as $\varepsilon$ goes to $0$ there exists a region in the position
    279 space $(x, t)$ where the KdV balance in terms of linearity and dispersion
    280 is observed. Indeed we can ''generate`` KdV solitary waves, provided a small
    281 enough amplitude in the sense of $\varepsilon$ goes to $0$. First of all we
    282 introduce a rescaling of the variables adjusted to our problem definition
    283 \begin{align}\label{eq:epsdelta}
    284     x \rightarrow \frac{\delta}{\sqrt{\varepsilon} }\tilde{x}, \quad t
    285     \rightarrow \frac{\delta}{\sqrt{\varepsilon} }\tilde{t}\quad
    286     w \rightarrow \frac{\sqrt{\varepsilon} }{\delta}\tilde{w}.
    287 \end{align}
    288 Then the material derivative is transformed to be
    289 \begin{align}
    290     \frac{D}{Dt} = \frac{\sqrt{\varepsilon}}{\delta}(\frac{\partial
    291     }{\partial \tilde{t}} +\varepsilon \tilde{\mathbf{u}} \nabla).
    292 \end{align}
    293 The initial equations become
    294 \begin{align}
    295     \frac{Du}{Dt} = \frac{\sqrt{\varepsilon}}{\delta} =-
    296     \frac{\sqrt{\varepsilon} }{\delta} p_{\tilde{x}}\;\; &\Rightarrow\;\;
    297     u_{\tilde{t}} + \varepsilon(u u_{\tilde{x}} + wu_z)= -p_{\tilde{x}}.\\
    298     \frac{Dw}{Dt} = \frac{\varepsilon}{\delta^2}
    299     \frac{D\tilde{w}}{D\tilde{t}}=-p_z \;\;&\Rightarrow\;\;
    300     \varepsilon\left(\tilde{w}_{\tilde{t}} + \varepsilon\left(
    301     u\tilde{w}_{\tilde{x}}+ \tilde{w}\tilde{w}_z \right)   \right)  = -p_z,
    302 \end{align}
    303 with
    304 \begin{align}
    305     &w
    306     = \frac{\varepsilon}{\delta}\tilde{w}
    307     = \frac{\sqrt{\varepsilon} }{\delta}
    308     \eta_{\tilde{t}}+\varepsilon u\frac{\sqrt{\varepsilon}}{\delta}
    309     \eta_{\tilde{x}}\\
    310     &\Rightarrow\;\;
    311     \begin{drcases}
    312     \tilde{w} = \eta_{\tilde{t}}+ \varepsilon u
    313     \eta_{\tilde{x}}\\
    314     p=\eta
    315     \end{drcases}
    316     \text{on}\;\; z = 1+\varepsilon\eta
    317 \end{align}
    318 and
    319 \begin{align}
    320     w = 0 \quad \text{on}\;\; z= b = 0.
    321 \end{align}
    322 Now we replace the region $\delta^2$ with $\varepsilon = \delta^2$, while we
    323 let $\varepsilon$ go to $0$. We conclude to the following equations, after
    324 replacing to $x, t$ and $w$
    325 \begin{align}\label{eq:kdv3}
    326     \begin{drcases}
    327     u_t = -p_x, \quad p_z = 0\\
    328     u_x + w_z = 0,\\
    329     \text{with}\\
    330     w=\eta_t \quad p=\eta \quad \text{on}\;\; z= 1\\
    331     w = 0 \quad \text{on}\;\; z= 0.
    332     \end{drcases}
    333 \end{align}
    334 Modification to these equations on the boundary condition, i.e. on $z=1$
    335 leaves us with
    336 \begin{align}
    337     u = -p_x = -\eta_x \quad \Rightarrow \quad u_t + \eta_x = 0
    338     \label{eq:kdv1}\\
    339     w = -zu_x\Big|_{z=1} = -u_x = \eta_t \quad \Rightarrow \quad u_x + \eta_t
    340     =0.\label{eq:kdv2}
    341 \end{align}
    342 By doing differentiation \ref{eq:kdv1} with respect to $x$ and subtracting
    343 the equation \ref{eq:kdv2} differentiated with respect to $t$ we get the
    344 standard wave equation for the profile of the wave
    345 \begin{align}
    346     \eta_{x x}  - \eta_{t t} = 0 .
    347 \end{align}
    348 We choose a solution for a right going wave and go into the frame of the
    349 moving wave by a coordinate transformation as in the last section to $\xi =
    350 x- t$. Additionally we want to introduce a long term variable, since we have
    351 a uniformity as $t$ (or $x$) goes to infinity. This is usually done by
    352 rescaling $t = \varepsilon \tau$. In summary we have that $\xi = O(1)$ as
    353 well as $\tau = O(1)$. This is for  \textbf{far field region} of the wave, and
    354 therefore the region, where we expect KdV type balance, between dispersion
    355 and linearity. The fact of this matter can be rigorously proven, it needs to
    356 be show that any sufficiently fast decaying smooth solution will eventually
    357 split into a finite superposition of two solitary waves traveling to the
    358 right and a decaying dispersive part traveling to the left. However will not
    359 go into this here. To transform the equations in \ref{eq:kdv3}, we look at
    360 the chain rule w.r.t $\xi ,\tau$ evolving to
    361 \begin{align}
    362     \frac{\partial }{\partial t} &= -\frac{\partial }{\partial \xi}
    363     +\varepsilon \frac{\partial }{\partial \tau} \\
    364     \frac{\partial }{\partial x} &= \frac{\partial }{\partial \xi}.
    365 \end{align}
    366 Then we get
    367 \begin{align}\label{eq:kdv5}
    368     \begin{drcases}
    369         -u_\xi + \varepsilon\left(u_\tau + uu_\xi + w u_z  \right)  =
    370         -p_\xi\\
    371         \varepsilon\left( -w_\xi + \varepsilon\left( w_\tau + u w_\xi + w w_z
    372         \right)  \right)  = - p_z\\
    373         u_\xi + w_z = 0\\
    374         \text{with}\\
    375         \begin{drcases}
    376         w = -\eta_\xi+\varepsilon(\eta_\tau+u \eta_\xi)\\
    377         p=\eta
    378         \end{drcases}
    379         \text{on} \;\; z=1+\varepsilon\eta\\
    380         \text{and}\\
    381         w = 0 \quad \;\; z = b =0.
    382     \end{drcases}
    383 \end{align}
    384 The crucial part now is to consider an asymptotic expansion of in
    385 $\varepsilon$ for velocity of the fluid particles $u, w$ and also the wave
    386 profile $\eta$ and for the pressure variable $p$. The general asymptotic
    387 ansatz is of the form
    388 \begin{align}
    389     q\left( \xi, \tau, z; \varepsilon \right)  = \sum_{n=0}^{\infty}
    390     \varepsilon^n q_n\left( \xi, \tau, z \right).
    391 \end{align}
    392 The first equation in \ref{eq:kdv5} up to the order of $O(\varepsilon^2)$ is
    393 of the form
    394 \begin{align}
    395     \varepsilon^0\left( p_{0\xi} - u_{0\xi}\right) + \varepsilon^1\left(
    396     p_{1\xi} - u_{1\xi} + u_{0\tau} + u_0 u_{0\xi} + w_0u_{0z} \right)
    397     +O(\varepsilon^2) = 0,
    398 \end{align}
    399 with the main condition $p_{0\xi} = u_{0\xi}$. For the second equation in
    400 \ref{eq:kdv5} becomes
    401 \begin{align}
    402     \varepsilon^0\left( p_{0z} \right)
    403     +\varepsilon^1\left( p_{1z}-w_{0\xi} + w_{0\tau} + u_0w_{0\xi}+w_0w_{0z} \right)
    404     + O(\varepsilon^2) = 0,
    405 \end{align}
    406 the main condition $p_{0z} =0 $. The third equation in \ref{eq:kdv5} is the
    407 following
    408 \begin{align}
    409     \varepsilon^0(u_{0\xi}+w_{0z}) + \varepsilon^1\left( u_{1\xi}+w_{1z}
    410     \right)
    411     O(\varepsilon^2) =0,
    412 \end{align}
    413 where the main condition satisfies $u_{n\xi} = -w_{n\xi}$ for all $n \in
    414 \mathbb{N}$. Further the surface condition is expanded into
    415 \begin{align}
    416     p_n = \eta_n \qquad \forall\ n \in \mathbb{N},
    417 \end{align}
    418 and
    419 \begin{align}
    420     \varepsilon^0\left(w_0 + \eta_{0\xi}\right)+
    421     \varepsilon^1\left( w_1 + \eta_{1\xi} + \eta_{0\tau} + \eta_0 \eta_{0\xi}\right)
    422     + O(\varepsilon^2) = 0,
    423 \end{align}
    424 Do note that the condition for for $\varepsilon^0$ is $z=1$ and for
    425 $\varepsilon^1$ is $z=\varepsilon\eta$. The main conclusion from the above
    426 equation is however $w_0 = -\eta_{0\xi}$. And lastly the bottom condition
    427 remains unchanged for all $n$ as
    428 \begin{align}
    429     w_n = 0 \quad \text{on}\;\; z= b=0
    430 \end{align}
    431 In essence $O(\varepsilon^0)$ give us the equations
    432 \begin{align}
    433     u_{0\xi}=p_{0\xi},\quad p_{0z} =0,\quad u_{0\xi} + w_{0z} = 0,
    434 \end{align}
    435 with
    436 \begin{align}
    437     p_0 = \eta_0, \quad w_0 = -\eta_{0\xi} \quad \text{on}\;\; z=1\\
    438     w_0 = 0 \quad \text{on}\;\; z=b=0.
    439 \end{align}
    440 They lead us tot he following solution which satisfies the boundary
    441 \begin{align}
    442     p_0 = \eta_0, \quad u_0 = \eta_0, \quad w_0 = -z\eta_{0\xi} \quad
    443     \forall\ z\in[0, 1].
    444 \end{align}
    445 Do notice who $w_0 = -z\eta_{0\xi}$ automatically satisfies the boundary
    446 conditions for both $z=0$ and $z=1$. Before we go on to consider
    447 $O(\varepsilon)$, we expand $u, w$ and $p$ around $z=1$ via Taylor expansion.
    448 This makes only since in the case $\varepsilon\rightarrow 0$
    449 \begin{align}
    450     \begin{drcases}
    451     p_0 + \varepsilon\eta_0 p_{0z} + \varepsilon p_1 = \eta_0
    452     \varepsilon\eta_1 + O(\varepsilon^2)\\
    453     w_0 +\varepsilon\eta_0w_{0z} + \varepsilon w_1 = -\eta_{0\xi} -
    454     \varepsilon\eta_{1\xi} + \varepsilon\left( \eta_0 + u_0 \eta_{0\xi}
    455     \right) +O\left(\varepsilon^2  \right).
    456     \end{drcases} \text{on}\;\; z=1
    457 \end{align}
    458 Right off the equations of order $O(\varepsilon^1)$ become
    459 \begin{align}
    460     -u_{1\xi} + u_{0\tau} + u_0u_{0\xi} + w_{0}u_{0z} = -p_{1\xi},\\
    461     p_{1z} = w_{0\xi} \quad \text{and} \quad u_{1\xi} + w_{1z} = 0,
    462 \end{align}
    463 with the boundary conditions
    464 \begin{align}
    465     \begin{drcases}
    466         p_1 + \eta_0 p_{0z} = \eta_1\\
    467         w_1 + \eta_0 w_{0z} = -\eta_{1\xi} + \eta_{0t} + u
    468     \end{drcases}
    469     \text{on}\;\; z=1\\
    470     w_1 = 0 \quad \text{on}\;\; z =b = 0.
    471 \end{align}
    472 Thus
    473 \begin{align}
    474     &p_{1z} = w_{0\xi} = -z\eta_{0\xi}\\
    475     \Rightarrow &p_1 = -\frac{1}{2}z^2 \eta_{0\xi\xi} +c,
    476 \end{align}
    477 where $c$ is the integration constant, together with the boundary condition
    478 on $z=1$ we get that
    479 \begin{align}
    480     c = \eta_1 + \frac{1}{2} \eta_{0\xi\xi},
    481 \end{align}
    482 for $p_1$ leaving is with
    483 \begin{align}
    484     p_1 = \frac{1}{2} \left( 1-z^2 \right)  \eta_{0\xi\xi} +\eta_1
    485 \end{align}
    486 As for the condition $w_{1z} = -u_{1\xi}$ we get
    487 \begin{align}
    488     w_{1z} &= -u_{1\xi} = -p_{1\xi} - u_{0\tau} - u_0u_{0\xi} - u_0u_{0z} \\
    489     &=\frac{1}{2} (1-z^2)\eta_{0\xi\xi\xi} - \eta_{1\xi} -\eta_{0\tau}
    490     -\eta_{0\xi}.
    491 \end{align}
    492 By integration and evaluation on $z=1$ of the above equation we get
    493 \begin{align}\label{eq:kdv6}
    494     w_1\Big|_{z=1} = -\frac{1}{3} \eta_{0\xi\xi\xi} - \eta_{1\xi} -
    495     \eta_{0\tau} -\eta_0\eta_{0\xi},
    496 \end{align}
    497 on the other hand we have the original boundary condition
    498 \begin{align}\label{eq:kdv7}
    499     w_1\Big|_{z=1} = -\eta_{1\xi} + \eta_{0\tau} +2\eta_{0}\eta_{0\xi} .
    500 \end{align}
    501 Subtracting equation \ref{eq:kdv6} from \ref{eq:kdv7} we get the KdV equation
    502 \begin{align}
    503     \frac{1}{3} \eta_{0\xi\xi\xi} - 2\eta_{0\tau} - 3\eta_0\eta_{0\xi} = 0.
    504 \end{align}
    505 
    506 
    507 
    508 
    509