notes

uni notes
git clone git://popovic.xyz/notes.git
Log | Files | Refs

main.tex (15796B)


      1 \documentclass[fleqn]{beamer}
      2 \beamertemplatenavigationsymbolsempty
      3 
      4 \usepackage[T1]{fontenc}
      5 \usepackage[utf8]{inputenc}
      6 
      7 \usepackage{amsmath,amssymb}
      8 \usepackage{nccmath}
      9 \usepackage{graphicx}
     10 \usepackage{mathptmx}
     11 \usepackage{mathtools}
     12 \usepackage{subcaption}
     13 \usepackage{amsthm}
     14 \usepackage{tikz}
     15 \usepackage{enumitem}
     16 %\usepackage[colorlinks=true,naturalnames=true,plainpages=false,pdfpagelabels=true]{hyperref}
     17 \usetikzlibrary{patterns,decorations.pathmorphing,positioning, arrows, chains}
     18 
     19 \newcommand{\tabitem}{%
     20   \usebeamertemplate{itemize item}\hspace*{\labelsep}}
     21 
     22 \usepackage[backend=biber, sorting=none]{biblatex}
     23 \addbibresource{uni.bib}
     24 
     25 \setbeamertemplate{endpage}{%
     26     \begin{frame}
     27         \centering
     28         \Large \emph{Thank you for listening!}
     29     \end{frame}
     30 }
     31 
     32 \AtEndDocument{\usebeamertemplate{endpage}}
     33 
     34 % vertical separator macro
     35 \newcommand{\vsep}{
     36   \column{0.0\textwidth}
     37     \begin{tikzpicture}
     38       \draw[very thick,black!10] (0,0) -- (0,7.3);
     39     \end{tikzpicture}
     40 }
     41 \setlength{\mathindent}{0pt}
     42 
     43 % Beamer theme
     44 \usetheme{UniVienna}
     45 \usefonttheme[onlysmall]{structurebold}
     46 \mode<presentation>
     47 \setbeamercovered{transparent=10}
     48 
     49 \title
     50 {Mathematical Modeling of Water-Wave Problems}
     51 \subtitle{Applied PDE Seminar}
     52 %\author[Popović Milutin]
     53 %{Popović Milutin \inst{1}\\[1ex] {\small supervisor\inst{1,2}}
     54 
     55 \author[Popović Milutin]{Popović Milutin\\[10mm]{\small Supervisor: Sabine Hittmeir}}
     56 \date{29. June 2022}
     57 
     58 \begin{document}
     59     \begin{frame}
     60         \titlepage
     61         \nocite{johnson_1997}
     62         \nocite{vallis_2017}
     63         \nocite{constantin_tsunami}
     64         \nocite{rupert_2009}
     65         \nocite{mathe-physik}
     66     \end{frame}
     67 
     68 
     69     \begin{frame}
     70         \frametitle{Fluid Description}
     71         \begin{columns}[T]
     72             \column{0.34\textwidth}
     73             \hspace{50cm}
     74 
     75             The fluid is described by
     76             \begin{itemize}
     77                 \item[$\circ$] Fluid density\\ $\rho(\vec{x}, t)$
     78                 \item[$\circ$] Velocity Field\\ $\vec{u}(\vec{x}, t) = (u, v,
     79                     w)$
     80             \end{itemize}
     81             \column{0.57\textwidth}
     82 
     83             \begin{figure}[H]
     84                 \centering
     85                 \caption{Control volume of the fluid}
     86               \begin{tikzpicture}[>=latex,scale=1, xscale=1, opacity=.8]
     87             % second sphere
     88                 \begin{scope}[rotate=10, xscale=3, yscale=2, shift={(2.3,-0.2)}]
     89                   \coordinate (O) at (0,0);
     90                   \shade[ball color=gray!10!] (0,0) coordinate(Hp) circle (1) ;
     91 
     92                   \draw[thick] (O) circle (1);
     93                   \draw[rotate=5] (O) ellipse (1cm and 0.66cm);
     94                   \draw[rotate=90] (O) ellipse (1cm and 0.33cm);
     95             \node[circle, fill=black, inner sep=1pt] at (0.15, 0.25) {} ;
     96             \draw[-latex, thick] (0.15, 0.25) -- (1, 1) ;
     97                   \node[right] at (1, 1) {$\vec{u}(\vec{x}, t)$};
     98 
     99                   \node[] at (O) {$V$};
    100                   \node[] at (0.55, -0.25) {$\rho(\vec{x}, t)$};
    101 
    102                   \draw[-] (0.76, -0.66) -- (1.2, -0.7);
    103                   \node[right] at (1.2, -0.7) {$S$};
    104 
    105                   \draw[-latex, thick] (-0.25, -0.65) -- (-1, -1);
    106                   \node[left] at (-1, -1) {$\vec{n}$};
    107                 \end{scope}
    108               \end{tikzpicture}
    109             \end{figure}
    110         \end{columns}
    111     \end{frame}
    112 
    113     \begin{frame}
    114         \frametitle{Mass Conservation}
    115         \begin{itemize}
    116             \item[$\circ$] Mass:
    117             \begin{align}
    118                 \hspace{0.3\linewidth}
    119                 m(t) = \int_V \rho(\vec{x}, t)\ dV \nonumber
    120             \end{align}
    121         \item[$\circ$] Rate of change:
    122             \begin{align}
    123                 \hspace{0.15\linewidth}
    124                 \int_V \frac{\partial \rho(\vec{x}, t)}{\partial t}\ dV = \frac{dm}{dt} =
    125                 -\int_{S} \rho(\vec{x}, t) \vec{u}\cdot\vec{n}\ dS\nonumber
    126             \end{align}
    127         \item[$\circ$] Use Gauss's law to get the \textbf{Equation of Mass
    128             conservation}
    129             \begin{align}
    130                 \hspace{0.3\linewidth} \frac{\partial \rho}{\partial t}
    131                 +\nabla \cdot (\rho \vec{u}) =
    132                 0 \nonumber
    133             \end{align}
    134         \end{itemize}
    135     \end{frame}
    136 
    137     \begin{frame}
    138         \frametitle{Euler's Equation of Motion}
    139         \centering
    140         $\rightarrow$ Apply Newton's second law to the Fluid
    141         \begin{columns}
    142             \column{0.4\textwidth}
    143             \begin{block}{\centering\textbf{Body Force}}
    144                 \centering
    145                 $\vec{F} = (0, 0, -g)$
    146             \end{block}
    147             \column{0.4\textwidth}
    148             \begin{block}{\centering\textbf{Local/Short-range Force}}
    149                 \centering
    150                 Stress tensor\\
    151                 For inviscid fluid: $P(\vec{x},t)$
    152             \end{block}
    153         \end{columns}
    154         \begin{align}
    155             \hspace{0.3\linewidth}\Rightarrow\int_V \rho \frac{D\vec{u}}{Dt}\ dV =
    156             \int_V \left( \rho \vec{F} - \nabla P \right)\ dV\nonumber
    157         \end{align}
    158         \centering
    159         $\rightarrow$ Leads us to \textbf{Euler's Equation of Motion}
    160         \begin{align}
    161             \hspace{0.4\linewidth} \frac{D\vec{u}}{Dt} =-
    162             \frac{1}{\rho}\nabla P + \vec{F}  \nonumber
    163         \end{align}
    164     \end{frame}
    165 
    166     \begin{frame}
    167         \frametitle{Vorticity}
    168         \begin{columns}
    169             \column{0.4\textwidth}
    170             \begin{block}{\centering\textbf{Vorticity}}
    171                 \centering
    172                 $\vec{\omega} = \nabla \times \vec{u}$
    173             \end{block}
    174             \column{0.4\textwidth}
    175             \begin{block}{\centering\textbf{Irrotational Flow}}
    176                 \centering
    177                 $\vec{\omega} = 0$
    178             \end{block}
    179         \end{columns}
    180         \vspace{0.5cm}
    181 
    182         \centering $\rightarrow$ Vorticity pops up in the acceleration of
    183         the fluid particles
    184         \begin{align}
    185             \hspace{0.25\linewidth}
    186             \frac{D\vec{u}}{Dt} = \frac{\partial \vec{u}}{\partial t}+
    187             \nabla \left( \frac{1}{2} \vec{u} \cdot \vec{u}\right)  - \left(
    188             \vec{u}\times \vec{\omega}  \right)\nonumber
    189         \end{align}
    190 
    191         \centering $\rightarrow$ We can incorporate vorticity into Euler's
    192         Equation of Motion
    193         \begin{align}
    194             \hspace{0.25\linewidth}\frac{\partial \vec{u}}{\partial t} + \nabla\left(
    195             \frac{1}{2}\vec{u}\cdot\vec{u} + \frac{P}{\rho} + \Omega \right)
    196             = \vec{u} \times \vec{\omega} \nonumber
    197         \end{align}
    198     \end{frame}
    199 
    200     \begin{frame}
    201         \frametitle{Perfect Fluid}
    202         \begin{itemize}
    203             \item \textbf{inviscid} $\mu = 0$
    204             \item \textbf{incompressible} $\rho = \text{const}.$, then
    205                 $\nabla \vec{u} = 0$
    206         \end{itemize}
    207 
    208     \end{frame}
    209 
    210     \begin{frame}
    211         \frametitle{Boundary Conditions for Water Waves}
    212         \begin{center}
    213         \begin{tabular}{@{}l@{}}
    214         \tabitem \textbf{Kinematic Condition}: Fluid particles at the
    215             surface\\
    216         \tabitem \textbf{Dynamic Condition}: Atmospheric Pressure on
    217             the surface\\
    218         \tabitem \textbf{Bottom Condition}: Rigid and fixed bottom\\
    219         \tabitem (\textbf{Integrated Mass Condition}): Combination
    220         \end{tabular}
    221         \end{center}
    222    \end{frame}
    223 
    224     \begin{frame}
    225         \frametitle{Nondimensionalisation}
    226         \begin{center}
    227         \begin{tabular}{@{}l@{}}
    228                 \tabitem $h_0$ for the typical water depth\\
    229                 \tabitem $\lambda$ for the typical wavelength\\
    230                 \tabitem $\sqrt{g h_0}$ velocity scale of waves in
    231                 $(x, y)$\\
    232                 \tabitem $\frac{\lambda}{\sqrt{g h_0}}$ time scale
    233                 of wave propagation\\
    234                 \tabitem $\frac{h_0 \sqrt{g h_0} }{\lambda}$ velocity scale in $z$
    235         \end{tabular}
    236         \end{center}
    237         \centering
    238         $\rightarrow$ \textbf{Shallowness parameter} $\delta =
    239         \frac{h_0}{\lambda}$
    240         \\
    241         \centering
    242         $\rightarrow$ \textbf{Amplitude parameter}
    243         $\varepsilon=\frac{a}{h_0}$
    244     \end{frame}
    245 
    246     \begin{frame}
    247         \frametitle{Nondimensionalisation}
    248         $\rightarrow$ Nondimensionalisation
    249         \begin{ceqn}
    250         \begin{align}
    251             &x \rightarrow\ \lambda x, \quad u \rightarrow \sqrt{gh_0} u,
    252             \nonumber \\
    253               &y \rightarrow\ \lambda y, \quad v \rightarrow \sqrt{gh_0} v, \qquad
    254               t\rightarrow \frac{\lambda}{\sqrt{gh_0}}t,\nonumber\\
    255               &z \rightarrow\ h_0 z, \quad w \rightarrow
    256             \frac{h_0\sqrt{gh_0}}{\lambda} w.\nonumber
    257         \end{align}
    258         \end{ceqn}
    259         \centering
    260         $\rightarrow$ Top and Bottom conditions
    261         \begin{ceqn}
    262         \begin{align}
    263         h = h_0 + a \eta(\vec{x}_\perp,t), \qquad  b \rightarrow h_0
    264         b(\vec{x}_\perp, t)\nonumber
    265         \end{align}
    266         \end{ceqn}
    267         \centering
    268         $\rightarrow$ Rewrite Pressure
    269         \begin{ceqn}
    270         \begin{align}
    271             P = P_a + \rho g(h_0 -z) + \rho g h_0 p(\vec{x})  \nonumber
    272         \end{align}
    273         \end{ceqn}
    274     \end{frame}
    275 
    276     \begin{frame}
    277         \frametitle{Scaling}
    278         \centering
    279         $\rightarrow$ $w$, $p$ and the free surface $z$ are $\propto$
    280         $\varepsilon$, leading to the scaling
    281         \begin{ceqn}
    282             \begin{align}
    283                 p \rightarrow \varepsilon p, \quad w \rightarrow \varepsilon w, \quad
    284                 \vec{u}_\perp \rightarrow \varepsilon
    285                 \vec{u}_\perp\nonumber
    286             \end{align}
    287         \end{ceqn}
    288         \end{frame}
    289 
    290     \begin{frame}
    291         \frametitle{Results}
    292         \centering
    293         $\rightarrow$ Nondimensionalized Euler's Equation of motion
    294         \begin{ceqn}
    295         \begin{align}
    296             \frac{Du}{Dt} = - p_x \quad
    297             &\frac{Dv}{Dt} = - p_y \quad
    298             \delta^2\frac{Dw}{Dt} = - p_z \nonumber\\
    299             \nonumber\\
    300             &\nabla \cdot \vec{u}  = 0\nonumber
    301         \end{align}
    302         \end{ceqn}
    303         \centering
    304         $\rightarrow$ With boundary conditions
    305         \begin{ceqn}
    306         \begin{align}
    307             \begin{drcases}
    308             p = \eta - \frac{\delta^2\varepsilon h_0}{\lambda^2} \frac{W_e}{R}\\
    309             w = \frac{1}{\varepsilon}\eta_t + (\mathbf{u}_\perp \nabla_\perp)\eta
    310             \end{drcases} \quad
    311             \text{on}\;\; z = 1+\varepsilon\eta\\
    312             w =\frac{1}{\varepsilon}b_t + (\mathbf{u}_\perp \nabla_\perp)b \quad
    313             \text{on}\;\; z=b
    314         \end{align}
    315         \end{ceqn}
    316     \end{frame}
    317 
    318     \begin{frame}
    319         \frametitle{History of the Soliton}
    320         \begin{itemize}
    321         \item[$\circ$] John Scott Russell discovered the solitary wave in 1834,
    322             firstly calling it the \textbf{wave of translation}
    323         \item[$\circ$] a \textbf{soliton} is a solitary wave that resists
    324             dispersion, maintaining its shape while it propagates at constant
    325             velocity\\
    326         \end{itemize}
    327     \end{frame}
    328 
    329     \begin{frame}
    330         \frametitle{Korteweg-de Vries equation (KdV)}
    331         Korteweg-de Vries equation: nonlinear PDE
    332         \begin{ceqn}
    333         \begin{align}
    334             \eta_t + 6K \eta \eta_{x} + \eta_{x x x} = 0\nonumber
    335         \end{align}
    336         \end{ceqn}
    337         With Solution
    338         \begin{ceqn}
    339         \begin{align}
    340             \eta(x, t) = 2c^2 \text{sech}^2\Big( c
    341             \left(x - 4c^2t\right)  \Big)\nonumber
    342         \end{align}
    343         \end{ceqn}
    344     \end{frame}
    345 
    346     \begin{frame}
    347         \frametitle{KdV Regime}
    348         \begin{itemize}
    349             \item[$1$)]  The KdV equation arises in the $\varepsilon = O(\delta^2)$
    350             \item[$2$)] by rescaling $\delta$ in favor of $\varepsilon$ in
    351                 Euler's Equations of motion
    352             \item[$3$)] going into the frame of the moving wave $(\xi = x- t, \tau = \varepsilon t)$
    353             \item[$4$)] conducting an Asymptotic expansion of $u , w, p$ and $\eta$.
    354             \item[$5$)] KdV equation is present in the $\varepsilon^1$ term
    355         \end{itemize}
    356     \end{frame}
    357 
    358     \begin{frame}
    359         \frametitle{2004 Tsunami: Description}
    360 
    361         \begin{figure}[htpb]
    362             \centering
    363             \includegraphics[width=0.35\textwidth]{./pics/water-surface.png}
    364             \caption{Earthquake generating a tsunami with $\lambda = 100\
    365             \text{km},\;\; a = 1\ \text{m}$ (found in \cite{graph_meter})}
    366         \end{figure}
    367     \end{frame}
    368 
    369     \begin{frame}
    370         \frametitle{2004 Tsunami: $\varepsilon=O\left(\delta^2\right)$}
    371 
    372         \begin{itemize}
    373             \item[$\circ$] $\varepsilon = \frac{a}{h_0}$ and $\delta =
    374                 \frac{h_0}{\lambda}$ need to enter the regime
    375                 $\varepsilon=O(\delta^2)$ for the KdV equation to become
    376                 relevant
    377             \item[$\circ$] But also the geophysical scales need to be $\xi = O(1)$ and $\tau =
    378                 O(1)$ for the KdV dynamics to become relevant, that is
    379                 \begin{ceqn}
    380                 \begin{align}
    381                     x = O\left(\varepsilon^{-1} \lambda \right)
    382                 \end{align}
    383                 \end{ceqn}
    384             \item[$\circ$] KdV dynamics is when the waves are ordered with the
    385                 highest in front following an oscillatory tale
    386             \item[$\circ$] This happens because wave amplitude is proportional to
    387                 wave speed
    388         \end{itemize}
    389 
    390     \end{frame}
    391 
    392     \begin{frame}
    393         \frametitle{2004 Tsunami: Regime of Validity}
    394         \begin{ceqn}
    395         \begin{align}
    396             \lambda = 100\ \text{km}\qquad a = 1\ \text{m}\nonumber
    397         \end{align}
    398         \end{ceqn}
    399         \begin{columns}
    400             \column{0.45\textwidth}
    401             Waves propagating westwards to India/Sri Lanka
    402             \begin{align}
    403             h_0 = 4\ \text{km} \Rightarrow
    404             \begin{cases}
    405                 \varepsilon \simeq 25 \cdot 10^{-5}\\
    406                 \delta \simeq 4\cdot 10^{-2}
    407             \end{cases}\nonumber
    408             \end{align}
    409 
    410             \column{0.45\textwidth}
    411             Waves propagating eastwards to Thailand
    412             \begin{align}
    413             h_0 = 1\ \text{km} \Rightarrow
    414             \begin{cases}
    415                 \varepsilon \simeq 10^{-3}\\
    416                 \delta \simeq 10^{-2}
    417             \end{cases}\nonumber
    418             \end{align}
    419         \end{columns}
    420         \vspace{0.5cm}
    421         \centering
    422         $\Rightarrow$ Both enter the regime $\varepsilon = O(\delta^2)$
    423     \end{frame}
    424 
    425     \begin{frame}
    426         \frametitle{2004 Tsunami: Regime of Validity}
    427         \begin{columns}
    428             \column{0.45\textwidth}
    429             Waves propagating westwards to India/Sri Lanka ($\simeq 1600\ \text{km}$)
    430             \begin{align}
    431                 \begin{drcases}
    432                     \varepsilon \simeq 25\cdot 10^{-5}\\
    433                     \lambda = 100\text{km}
    434                 \end{drcases}\Rightarrow\; x \simeq 4\cdot 10^{5}\ \text{km}\nonumber
    435             \end{align}
    436 
    437             \column{0.45\textwidth}
    438             Waves propagating eastwards to Thailand ($\simeq 700\ \text{km}$)
    439             \begin{align}
    440                 \begin{drcases}
    441                     \varepsilon \simeq 10^{-3}\\
    442                     \lambda = 100\text{km}
    443                 \end{drcases}\Rightarrow\; x \simeq 10^{5}\ \text{km}\nonumber
    444             \end{align}
    445         \end{columns}
    446         \vspace{0.5cm}
    447         \centering
    448         $\Rightarrow$ The propagation distance of the tsunami waves in both
    449         directions is not enough for KdV dynamics to take place.
    450     \end{frame}
    451 
    452     \begin{frame}{Bibliography}
    453         \printbibliography
    454     \end{frame}
    455 \end{document}
    456