notes

uni notes
git clone git://popovic.xyz/notes.git
Log | Files | Refs

prb1.tex (12547B)


      1 \include{preamble.tex}
      2 
      3 \begin{document}
      4 \maketitle
      5 \tableofcontents
      6 
      7 \section{Sheet 1}
      8 
      9 \subsection{Fall from high}
     10 We consider a free fall ($\dot{x}(t=0)=0$) of an object with mass $20\
     11 \text{kg}$ from a height $x(0) = h = 20\; \text{km}$, such that the
     12 gravitational force depends on the height $x(t)$ in the following way
     13 \begin{align}\label{eq: free fall}
     14     \ddot{x}(t) = -g\frac{R^2}{(x(t) + R)^2},
     15 \end{align}
     16 where $R$ is the radius of the earth $R \approx 6000\; \text{km}$ and $g
     17 \approx 9.81\ \frac{m}{s^2}$ is the gravitational acceleration on the surface
     18 of the earth. For this problem there are two possible non-dimensionalisations,
     19 but first let us rewrite the variables in terms of non-dimensional variables
     20 and some dimensional constants, a priori let
     21 \begin{align}
     22     t &= t_c \tau \;\;\; \text{and}\\
     23     x &= x_c \xi.
     24 \end{align}
     25 With the above ansatz we get the following second derivative in
     26 time
     27 \begin{align}
     28         \frac{d^2}{dt^2} &= \frac{1}{t_c^2}\frac{d^2}{d\tau^2} \\
     29         \Rightarrow \frac{d^2x}{dt^2} &= \frac{x_c}{t_c^2}
     30         \frac{d^2\xi}{d\tau^2},
     31 \end{align}
     32 and thus the initial conditions can be rewritten as
     33 \begin{align}
     34     \xi(0) = \frac{h}{x_c},\\
     35     \dot{\xi} = 0.
     36 \end{align}
     37 Now we can rewrite the equation of the free fall in \ref{eq: free fall} in
     38 terms of $\xi(\tau)$ as
     39 \begin{align}
     40    \frac{x_c}{gt_c^2} \ddot{\xi} = -\frac{1}{(\frac{x_c}{R}\xi +1)^2}.
     41 \end{align}
     42 Thereby we have three dimensional constants constants $\Pi_1, \Pi_2, \Pi_3$,
     43 as follows
     44 \begin{align}
     45     \Pi_1 = \frac{x_c}{R}, \;\;\;\; \Pi_2 = \frac{h}{x_c}, \;\;\;\;
     46     \Pi_3 = \frac{x_c}{gt_c^2}.
     47 \end{align}
     48 
     49 The first scaling is done by reducing $\Pi_1$ and $\Pi_3$ to 1, by setting
     50 \begin{align}
     51         x_c = R, \;\;\;\; t_c = \sqrt{\frac{R}{g}},
     52 \end{align}
     53 reformulating the initial problem in equation \ref{eq: free fall} to
     54 \begin{align}
     55     &\ddot{\xi} = -\frac{1}{(\xi + 1)^2},\;\;\;\;
     56     \text{with} \nonumber\\
     57     &\xi(0) = \frac{h}{R}, \;\;\;\; \dot{\xi}(0) = 0.
     58 \end{align}
     59 Reducing the problem, meaning if $\frac{h}{R} \rightarrow 0$ makes the first
     60 initial condition $\xi(0) \rightarrow 0$. We can conclude that this scaling
     61 is bad since it changes the initial condition in the reduced problem.
     62 
     63 The second scaling option reduces $\Pi_2$ and $\Pi_3$ to 1, by setting
     64 \begin{align}
     65         x_c = h, \;\;\;\; t_c = \sqrt{\frac{h}{g}},
     66 \end{align}
     67 reformulating the initial problem in equation \ref{eq: free fall} to
     68 \begin{align}
     69     &\ddot{\xi} = -\frac{1}{(\frac{h}{R}\xi + 1)^2},\;\;\;\;
     70     \text{with} \nonumber\\
     71     &\xi(0) = 1, \;\;\;\; \dot{\xi}(0) = 0.
     72 \end{align}
     73 By letting $R \rightarrow \infty$ we get the following reduced problem
     74 \begin{align}\label{eq: free fall reduced}
     75     \ddot{\xi} = -1.
     76 \end{align}
     77 Integrating and solving for $\xi(\tau = T\sqrt{\frac{g}{h}}) = 0$ for when the
     78 object hits the ground we get a familiar solution
     79 \begin{align}
     80     T = \sqrt{\frac{2h}{g}}
     81 \end{align}
     82 Note that in the reduced problem the time until the object hits the ground is
     83 \textbf{(much) shorter} since the acceleration is at its maximum $\ddot{x}(t) =
     84 g$ for all $t$.  Yet in the original problem the acceleration (gravitation
     85 force) \textbf{increases} as the object comes \textbf{closer} to earth . For
     86 instance, if we let an object fall down from the height $h = R$ then its
     87 gravitational force (acceleration) at that height would be $\ddot{x}(0) =
     88 g/2$ and upon landing on earth the gravitational force $\ddot{x}(T) = g$,
     89 while in the reduced solution its gravitational force would be $\ddot{x}(t) =
     90 g$ for all $t$.
     91 
     92 Additionally we can calculate the velocity at impact we need to integrate the
     93 reduced problem \ref{eq: free fall reduced} once and put in the initial
     94 condition
     95 \begin{align}
     96     \dot{\xi}(\tau = \frac{T}{t_c}) &= -\tau = -\sqrt{2} \\
     97     \text{and} \;\;\; \dot{x} &= \frac{x_c}{t_c}\dot{\xi} =
     98     \sqrt{gh}\; \dot{\xi}\\
     99     \Rightarrow \dot{x}(T) &= -\sqrt{2gh},
    100 \end{align}
    101 The result is exactly the same as we would get from energy conservation
    102 \begin{align}
    103     \frac{m}{2}\dot{x}^2 = mgh \quad \Rightarrow \quad \dot{x} = \sqrt{2gh}.
    104 \end{align}
    105 The vertical throw allows for an additional scaling because the
    106 initial conditions are different, $x(0) = 0$ and $\dot{x}(0) = v$. Thus
    107 the solution too.
    108 
    109 To summarize, the assumptions that used for modeling and simplifying the
    110 equation are
    111 \begin{itemize}
    112     \item no relativistic influence,
    113     \item closed system, no outside influence (gravitation of the sun, air
    114         resistance),
    115     \item spherical symmetry of the earth (thereby center of mass can be
    116         set in the middle of earth).
    117 \end{itemize}
    118 By looking at our assumptions a question arises:\textbf{Is it a good
    119 approximation to replace the attractive force of the earth by the attraction
    120 of the whole mass concentrated at the center?}.
    121 
    122 To answer this question more or less simply we look at the Poisson's equation
    123 for gravity,
    124 \begin{align}
    125     \ddot{\vec{x}}(\vec{r}) = -\nabla \phi(\vec{r}) \\
    126     \Delta \phi = 4\pi G\varrho(\vec{r}).
    127 \end{align}
    128 for a gravitational potential $\phi$ and the mass density of earth
    129 $\varrho$. We assume that \textbf{the earth can be approximated by a sphere}
    130 and then we integrate both sides along the sphere (and use the Gaussian law
    131 for integration)
    132 \begin{align}
    133     \int_{S} \nabla \ddot{\vec{x}}\ dS =
    134     \int_{\partial S}\ddot{\vec{x}}\ d\vec{s} = -4\pi
    135     G \int_S\varrho(\vec{r})\ ds = -4\pi GM.
    136 \end{align}
    137 Obviously $\ddot{\vec{x}}$ and $d\vec{s}$ point in the same direction. We
    138 choose (rotate) the coordinate system such hat $\ddot{\vec{x}} =
    139 \ddot{x}\ \mathbf{\hat{n}}$ and $d\vec{s} = \mathbf{\hat{n}}\ ds$, thereby
    140 we get
    141 \begin{align}
    142     &\ddot{x}\int_{\partial S} ds = 4\pi r^2 \ddot{x},\\
    143     \Rightarrow &\ddot{x} = -\frac{GM}{r^2}.
    144 \end{align}
    145 The further derivation to get the exact equation of motion as in \ref{eq:
    146 free fall}, we have to keep in mind that $r = x + R$, because by our
    147 assumptions we are not in the sphere only outside or on the border $R$.
    148 Lastly by reformulating the constants $gR^2 = GM$ gets us to our equation of
    149 motion
    150 \begin{align}
    151     \ddot{x}(t) = -g\frac{R^2}{(x(t) + R)^2}.
    152 \end{align}
    153 
    154 \subsection{Scaling The Van der Pol equation}
    155 The Van der Pol equation is a perturbation of the oscillation equation
    156 \begin{align}\label{eq: vanderpol}
    157     LC\frac{d^2I}{dt^2} + (-g_1C +3g_3CI^2)\frac{dI}{dt} = -I
    158 \end{align}
    159 with initial conditions
    160 \begin{align}\label{eq: van initial}
    161     I(0) = I_0,\;\;\;\; \dot{I}(0) = 0.
    162 \end{align}
    163 where $I(t)$ is the current at a time $t$, $C$ is the capacity, $L$ is the
    164 inductivity and $g_1, g_3$ are some parameters. The units of all the
    165 parameters are
    166 \begin{align}
    167     [LC] &= s^2\\
    168     [g_1C] &= s\\
    169     [g_3C] &= sA^{-2}
    170 \end{align}
    171 The oscillation equation is
    172 \begin{align}
    173     CL\ddot{I} + I = 0.
    174 \end{align}
    175 Solvable by the exponential ansatz of $I = Ae^{\lambda t}$, where $\lambda=
    176 \pm i \sqrt{\frac{1}{LC}}$, thereby
    177 \begin{align}
    178     I(t) = A_1 e^{i\sqrt{\frac{1}{LC}}t} + A_2 e^{-i\sqrt{\frac{1}{LC}}t}.
    179 \end{align}
    180 With the initial conditions in equation \ref{eq: van initial} we get $A_1 =
    181 A_2$ and thus the solution to the oscillation equation is
    182 \begin{align}
    183     I(t) = I_0\cos(\frac{t}{\sqrt{LC}})
    184 \end{align}
    185 Now that we know the reduced problem and the solution to it, we may work with
    186 the Van-Der-Pol equation \ref{eq: vanderpol}, by determining all possible
    187 non-dimensionalisations. Let us begin by setting
    188 \begin{align}
    189     I(t) = I_c\psi,\\
    190     t = t_c \tau,
    191 \end{align}
    192 where $I_c$ and $t_c$ have the dimension of $I(t)$ and $t$ accordingly and
    193 $\psi(\tau)$ and $\tau$ are dimensionless
    194 The \textbf{first} and second derivative in time is
    195 \begin{align}
    196     \frac{d}{dt} &= \frac{1}{t_c}\frac{d}{d\tau}\\
    197     \frac{d^2}{dt^2} &= \frac{1}{t_c^2}\frac{d^2}{d\tau^2}.
    198 \end{align}
    199 We can rewrite the Van-Der-Pol equation in terms of $\psi$ and $\tau$
    200 \begin{align}
    201     &\frac{LC}{t_c^2}\ddot{\psi} - \left(\frac{3g_3I_c^2}{g_1}\psi^2 -
    202     1\right)\frac{g_1C}{t_c}\dot{\psi}= -\psi\\
    203     &\psi(0) = \frac{I_0}{I_c} \;\;\;\; \dot{\psi}(0) = 0
    204 \end{align}
    205 There are a total of four constants that we can eliminate
    206 \begin{align}
    207     \Pi_1 &= \frac{I_0}{I_c}, \qquad
    208     \Pi_2 = \frac{LC}{t_c^2},\nonumber\\
    209     \Pi_3 &= \frac{3g_3I_c^2}{g_1}, \qquad
    210     \Pi_4 = \frac{g_1C}{t_c}.
    211 \end{align}
    212 The \textbf{first} scaling is
    213 \begin{align}
    214     I_c = \sqrt{\frac{g_1}{3g_3}},\;\;\; t_c=\sqrt{LC}.
    215 \end{align}
    216 Thereby we get the following problem
    217 \begin{align}
    218     \ddot{\psi} + (\psi^2 - 1)\eps \dot{\psi} = -\psi, \qquad \psi(0) =
    219     \sqrt{\frac{3g_3}{g_1}}I_0,
    220 \end{align}
    221 where $\eps = g_1\sqrt{\frac{C}{L}}$.
    222 
    223 The \textbf{second} scaling is
    224 \begin{align}
    225     I_c = \sqrt{\frac{g_1}{3g_3}},\;\;\; t_c=g_1C.
    226 \end{align}
    227 Thereby we get the following
    228 \begin{align}
    229     \eps \psi'' +(\psi^2 +1)\psi' = -\psi, \qquad \psi(0) =
    230     \sqrt{\frac{3g_3}{g_1}}I_0,
    231 \end{align}
    232 where $\eps = \frac{L}{g_1^2C}$. We could also consider scaling $I_c = I_0$
    233 with $t_c = \sqrt{LC}$ or $t_c = g_1C$ but they wouldn't develop significant
    234 model hierarchies like the above two scaling.
    235 \subsection{Scale the Schrödinger Equation}
    236 The well known Schrödinger equation that describes quantum physics of the one
    237 particle system is
    238 \begin{align}
    239     &i\hbar \partial_t\psi = -\frac{\hbar^2}{2m}\Delta \psi + V\psi \nonumber\\
    240     &\psi(t=0) =\psi_0
    241 \end{align}
    242 where $\hbar$ is the reduced Plank constant, $\psi=\psi(x, t)$ the wave function,
    243 $m$ the mass and $V = V(x)$ the potential in which the wave function is. The
    244 dimensions are
    245 \begin{align}
    246     [\hbar] = js, \;\;\;\; [V] = j,  \;\;\;\; [\psi]= m^{-d/2}
    247 \end{align}
    248 where $d$ is the spacial dimension. The standard scaling ansatz is
    249 \begin{align}
    250     &\psi = \psi_c \phi \\
    251     &t = t_c \tau \;\;\;\; x = x_c \xi,
    252 \end{align}
    253 by that we get the following derivatives in time and in space
    254 \begin{align}
    255     \partial_{x_i} &=\frac{1}{x_{(i)c}} \partial_{\psi_i} \\
    256     \partial^2_{x_i} &=\frac{1}{x_{(i)c}^2} \partial_{\psi_i}^2\\
    257     \partial_{t} &=\frac{1}{t_c} \partial_{\psi_i} \\
    258 \end{align}
    259 for $i = 1, 2, 3$, or depending on the dimension we are dealing with.
    260 
    261 Let us consider $x\in \mathbb{R}^3$ and $V = 0$ to scale the equation. First
    262 we now have
    263 \begin{align}
    264     i \partial_t\psi = -\frac{\hbar}{2m}\Delta \psi
    265 \end{align}
    266 with the initial condition $\phi(0) = \frac{\psi_0}{\psi_c}$. With our scaling the equation turns out to be
    267 \begin{align}
    268     \frac{i\hbar t_c}{2m}\frac{1}{||\vec{x}_c||^2}\Delta_{\vec{\xi}}\ \phi =
    269     \partial_\tau\ \phi.
    270 \end{align}
    271 The constants we get are
    272 \begin{align}
    273     \Pi_1 = \frac{t_c\hbar}{2m}\frac{1}{||\vec{x}_c||^2}, \;\;\;\; \Pi_2 =
    274     \frac{\psi_0}{\psi_c}.
    275 \end{align}
    276 
    277 The simple choice of
    278 \begin{align}
    279     \frac{1}{||\vec{x}_c||^2} = 1, \;\;\;\; \psi_c = \psi_0, \;\;\;\; t_c =
    280     \frac{2m}{\hbar}||\vec{x}_c||^2,
    281 \end{align}
    282 simplifies the Schrodinger equation without the potential to
    283 \begin{align}
    284     i\Delta_{\vec{\xi}}\ \phi = \partial_\tau \phi,
    285 \end{align}
    286 with the initial condition $\phi(\tau=0) = 1$.
    287 .
    288 
    289 Now consider $V = 0$, $x\in[0, L]$ and $t \in [0, T]$, the Schrodinger
    290 equation is the same only with one spacial dimension as above, we can set
    291 \begin{align}
    292     \psi_c = \psi_0, \;\;\;\; x_c =L, \;\;\;\; t_c = \frac{2mL^2}{\hbar}.
    293 \end{align}
    294 Thus we get
    295 \begin{align}
    296     i\partial_{\xi}^2 \phi = \partial_\tau \phi,
    297 \end{align}
    298 with the initial condition $\phi(\tau=0) = 1$, where $\xi \in [0, 1]$ and
    299 $\tau \in [0, \frac{\hbar T}{2mL^2}]$.
    300 .
    301 
    302 In the last example let us consider the quantum harmonic oscillator
    303 represented by the potential $V(x) = m\omega^2 x^2$ for $x\in \mathbb{R}$,
    304 where $\omega$ is the frequency. The equation is the following
    305 \begin{align}
    306     i \hbar \partial_t \psi = -\frac{\hbar^2}{2m}\partial^2_x \psi
    307     +m\omega^2x^2 \psi.
    308 \end{align}
    309 By inserting the standard scaling ansatz we get
    310 \begin{align}
    311     i\partial_\tau \phi = -\frac{t_c\hbar}{2mx_c^2}\partial_\xi^2 \phi
    312     +\frac{t_cm\omega^2x_c^2}{\hbar} \xi^2 \phi,
    313 \end{align}
    314 The dimensional constants are
    315 \begin{align}
    316     \Pi_1 = \frac{t_0\hbar}{mx_c^2},\;\;\;\;\Pi_2 =
    317     \frac{m\omega^2x_c^2t_c}{\hbar},\;\;\;\; \Pi_3 = \frac{\psi_0}{\psi_c}.
    318 \end{align}
    319 The choice of scaling is
    320 \begin{align}
    321     \psi_c = \psi_0, \;\;\;\; t_c = \frac{1}{\omega}, \;\;\;\; x_c =
    322     \sqrt{\frac{\hbar}{m\omega}}.
    323 \end{align}
    324 Thereby getting the following problem
    325 \begin{align}
    326     i\partial_\tau \phi = -\frac{1}{2} \partial_\xi^2 \phi +\xi^2 \phi
    327 \end{align}
    328 with $\phi(\tau = 0) = 1$.
    329 
    330 %\printbibliography
    331 \end{document}