prb1.tex (12547B)
1 \include{preamble.tex} 2 3 \begin{document} 4 \maketitle 5 \tableofcontents 6 7 \section{Sheet 1} 8 9 \subsection{Fall from high} 10 We consider a free fall ($\dot{x}(t=0)=0$) of an object with mass $20\ 11 \text{kg}$ from a height $x(0) = h = 20\; \text{km}$, such that the 12 gravitational force depends on the height $x(t)$ in the following way 13 \begin{align}\label{eq: free fall} 14 \ddot{x}(t) = -g\frac{R^2}{(x(t) + R)^2}, 15 \end{align} 16 where $R$ is the radius of the earth $R \approx 6000\; \text{km}$ and $g 17 \approx 9.81\ \frac{m}{s^2}$ is the gravitational acceleration on the surface 18 of the earth. For this problem there are two possible non-dimensionalisations, 19 but first let us rewrite the variables in terms of non-dimensional variables 20 and some dimensional constants, a priori let 21 \begin{align} 22 t &= t_c \tau \;\;\; \text{and}\\ 23 x &= x_c \xi. 24 \end{align} 25 With the above ansatz we get the following second derivative in 26 time 27 \begin{align} 28 \frac{d^2}{dt^2} &= \frac{1}{t_c^2}\frac{d^2}{d\tau^2} \\ 29 \Rightarrow \frac{d^2x}{dt^2} &= \frac{x_c}{t_c^2} 30 \frac{d^2\xi}{d\tau^2}, 31 \end{align} 32 and thus the initial conditions can be rewritten as 33 \begin{align} 34 \xi(0) = \frac{h}{x_c},\\ 35 \dot{\xi} = 0. 36 \end{align} 37 Now we can rewrite the equation of the free fall in \ref{eq: free fall} in 38 terms of $\xi(\tau)$ as 39 \begin{align} 40 \frac{x_c}{gt_c^2} \ddot{\xi} = -\frac{1}{(\frac{x_c}{R}\xi +1)^2}. 41 \end{align} 42 Thereby we have three dimensional constants constants $\Pi_1, \Pi_2, \Pi_3$, 43 as follows 44 \begin{align} 45 \Pi_1 = \frac{x_c}{R}, \;\;\;\; \Pi_2 = \frac{h}{x_c}, \;\;\;\; 46 \Pi_3 = \frac{x_c}{gt_c^2}. 47 \end{align} 48 49 The first scaling is done by reducing $\Pi_1$ and $\Pi_3$ to 1, by setting 50 \begin{align} 51 x_c = R, \;\;\;\; t_c = \sqrt{\frac{R}{g}}, 52 \end{align} 53 reformulating the initial problem in equation \ref{eq: free fall} to 54 \begin{align} 55 &\ddot{\xi} = -\frac{1}{(\xi + 1)^2},\;\;\;\; 56 \text{with} \nonumber\\ 57 &\xi(0) = \frac{h}{R}, \;\;\;\; \dot{\xi}(0) = 0. 58 \end{align} 59 Reducing the problem, meaning if $\frac{h}{R} \rightarrow 0$ makes the first 60 initial condition $\xi(0) \rightarrow 0$. We can conclude that this scaling 61 is bad since it changes the initial condition in the reduced problem. 62 63 The second scaling option reduces $\Pi_2$ and $\Pi_3$ to 1, by setting 64 \begin{align} 65 x_c = h, \;\;\;\; t_c = \sqrt{\frac{h}{g}}, 66 \end{align} 67 reformulating the initial problem in equation \ref{eq: free fall} to 68 \begin{align} 69 &\ddot{\xi} = -\frac{1}{(\frac{h}{R}\xi + 1)^2},\;\;\;\; 70 \text{with} \nonumber\\ 71 &\xi(0) = 1, \;\;\;\; \dot{\xi}(0) = 0. 72 \end{align} 73 By letting $R \rightarrow \infty$ we get the following reduced problem 74 \begin{align}\label{eq: free fall reduced} 75 \ddot{\xi} = -1. 76 \end{align} 77 Integrating and solving for $\xi(\tau = T\sqrt{\frac{g}{h}}) = 0$ for when the 78 object hits the ground we get a familiar solution 79 \begin{align} 80 T = \sqrt{\frac{2h}{g}} 81 \end{align} 82 Note that in the reduced problem the time until the object hits the ground is 83 \textbf{(much) shorter} since the acceleration is at its maximum $\ddot{x}(t) = 84 g$ for all $t$. Yet in the original problem the acceleration (gravitation 85 force) \textbf{increases} as the object comes \textbf{closer} to earth . For 86 instance, if we let an object fall down from the height $h = R$ then its 87 gravitational force (acceleration) at that height would be $\ddot{x}(0) = 88 g/2$ and upon landing on earth the gravitational force $\ddot{x}(T) = g$, 89 while in the reduced solution its gravitational force would be $\ddot{x}(t) = 90 g$ for all $t$. 91 92 Additionally we can calculate the velocity at impact we need to integrate the 93 reduced problem \ref{eq: free fall reduced} once and put in the initial 94 condition 95 \begin{align} 96 \dot{\xi}(\tau = \frac{T}{t_c}) &= -\tau = -\sqrt{2} \\ 97 \text{and} \;\;\; \dot{x} &= \frac{x_c}{t_c}\dot{\xi} = 98 \sqrt{gh}\; \dot{\xi}\\ 99 \Rightarrow \dot{x}(T) &= -\sqrt{2gh}, 100 \end{align} 101 The result is exactly the same as we would get from energy conservation 102 \begin{align} 103 \frac{m}{2}\dot{x}^2 = mgh \quad \Rightarrow \quad \dot{x} = \sqrt{2gh}. 104 \end{align} 105 The vertical throw allows for an additional scaling because the 106 initial conditions are different, $x(0) = 0$ and $\dot{x}(0) = v$. Thus 107 the solution too. 108 109 To summarize, the assumptions that used for modeling and simplifying the 110 equation are 111 \begin{itemize} 112 \item no relativistic influence, 113 \item closed system, no outside influence (gravitation of the sun, air 114 resistance), 115 \item spherical symmetry of the earth (thereby center of mass can be 116 set in the middle of earth). 117 \end{itemize} 118 By looking at our assumptions a question arises:\textbf{Is it a good 119 approximation to replace the attractive force of the earth by the attraction 120 of the whole mass concentrated at the center?}. 121 122 To answer this question more or less simply we look at the Poisson's equation 123 for gravity, 124 \begin{align} 125 \ddot{\vec{x}}(\vec{r}) = -\nabla \phi(\vec{r}) \\ 126 \Delta \phi = 4\pi G\varrho(\vec{r}). 127 \end{align} 128 for a gravitational potential $\phi$ and the mass density of earth 129 $\varrho$. We assume that \textbf{the earth can be approximated by a sphere} 130 and then we integrate both sides along the sphere (and use the Gaussian law 131 for integration) 132 \begin{align} 133 \int_{S} \nabla \ddot{\vec{x}}\ dS = 134 \int_{\partial S}\ddot{\vec{x}}\ d\vec{s} = -4\pi 135 G \int_S\varrho(\vec{r})\ ds = -4\pi GM. 136 \end{align} 137 Obviously $\ddot{\vec{x}}$ and $d\vec{s}$ point in the same direction. We 138 choose (rotate) the coordinate system such hat $\ddot{\vec{x}} = 139 \ddot{x}\ \mathbf{\hat{n}}$ and $d\vec{s} = \mathbf{\hat{n}}\ ds$, thereby 140 we get 141 \begin{align} 142 &\ddot{x}\int_{\partial S} ds = 4\pi r^2 \ddot{x},\\ 143 \Rightarrow &\ddot{x} = -\frac{GM}{r^2}. 144 \end{align} 145 The further derivation to get the exact equation of motion as in \ref{eq: 146 free fall}, we have to keep in mind that $r = x + R$, because by our 147 assumptions we are not in the sphere only outside or on the border $R$. 148 Lastly by reformulating the constants $gR^2 = GM$ gets us to our equation of 149 motion 150 \begin{align} 151 \ddot{x}(t) = -g\frac{R^2}{(x(t) + R)^2}. 152 \end{align} 153 154 \subsection{Scaling The Van der Pol equation} 155 The Van der Pol equation is a perturbation of the oscillation equation 156 \begin{align}\label{eq: vanderpol} 157 LC\frac{d^2I}{dt^2} + (-g_1C +3g_3CI^2)\frac{dI}{dt} = -I 158 \end{align} 159 with initial conditions 160 \begin{align}\label{eq: van initial} 161 I(0) = I_0,\;\;\;\; \dot{I}(0) = 0. 162 \end{align} 163 where $I(t)$ is the current at a time $t$, $C$ is the capacity, $L$ is the 164 inductivity and $g_1, g_3$ are some parameters. The units of all the 165 parameters are 166 \begin{align} 167 [LC] &= s^2\\ 168 [g_1C] &= s\\ 169 [g_3C] &= sA^{-2} 170 \end{align} 171 The oscillation equation is 172 \begin{align} 173 CL\ddot{I} + I = 0. 174 \end{align} 175 Solvable by the exponential ansatz of $I = Ae^{\lambda t}$, where $\lambda= 176 \pm i \sqrt{\frac{1}{LC}}$, thereby 177 \begin{align} 178 I(t) = A_1 e^{i\sqrt{\frac{1}{LC}}t} + A_2 e^{-i\sqrt{\frac{1}{LC}}t}. 179 \end{align} 180 With the initial conditions in equation \ref{eq: van initial} we get $A_1 = 181 A_2$ and thus the solution to the oscillation equation is 182 \begin{align} 183 I(t) = I_0\cos(\frac{t}{\sqrt{LC}}) 184 \end{align} 185 Now that we know the reduced problem and the solution to it, we may work with 186 the Van-Der-Pol equation \ref{eq: vanderpol}, by determining all possible 187 non-dimensionalisations. Let us begin by setting 188 \begin{align} 189 I(t) = I_c\psi,\\ 190 t = t_c \tau, 191 \end{align} 192 where $I_c$ and $t_c$ have the dimension of $I(t)$ and $t$ accordingly and 193 $\psi(\tau)$ and $\tau$ are dimensionless 194 The \textbf{first} and second derivative in time is 195 \begin{align} 196 \frac{d}{dt} &= \frac{1}{t_c}\frac{d}{d\tau}\\ 197 \frac{d^2}{dt^2} &= \frac{1}{t_c^2}\frac{d^2}{d\tau^2}. 198 \end{align} 199 We can rewrite the Van-Der-Pol equation in terms of $\psi$ and $\tau$ 200 \begin{align} 201 &\frac{LC}{t_c^2}\ddot{\psi} - \left(\frac{3g_3I_c^2}{g_1}\psi^2 - 202 1\right)\frac{g_1C}{t_c}\dot{\psi}= -\psi\\ 203 &\psi(0) = \frac{I_0}{I_c} \;\;\;\; \dot{\psi}(0) = 0 204 \end{align} 205 There are a total of four constants that we can eliminate 206 \begin{align} 207 \Pi_1 &= \frac{I_0}{I_c}, \qquad 208 \Pi_2 = \frac{LC}{t_c^2},\nonumber\\ 209 \Pi_3 &= \frac{3g_3I_c^2}{g_1}, \qquad 210 \Pi_4 = \frac{g_1C}{t_c}. 211 \end{align} 212 The \textbf{first} scaling is 213 \begin{align} 214 I_c = \sqrt{\frac{g_1}{3g_3}},\;\;\; t_c=\sqrt{LC}. 215 \end{align} 216 Thereby we get the following problem 217 \begin{align} 218 \ddot{\psi} + (\psi^2 - 1)\eps \dot{\psi} = -\psi, \qquad \psi(0) = 219 \sqrt{\frac{3g_3}{g_1}}I_0, 220 \end{align} 221 where $\eps = g_1\sqrt{\frac{C}{L}}$. 222 223 The \textbf{second} scaling is 224 \begin{align} 225 I_c = \sqrt{\frac{g_1}{3g_3}},\;\;\; t_c=g_1C. 226 \end{align} 227 Thereby we get the following 228 \begin{align} 229 \eps \psi'' +(\psi^2 +1)\psi' = -\psi, \qquad \psi(0) = 230 \sqrt{\frac{3g_3}{g_1}}I_0, 231 \end{align} 232 where $\eps = \frac{L}{g_1^2C}$. We could also consider scaling $I_c = I_0$ 233 with $t_c = \sqrt{LC}$ or $t_c = g_1C$ but they wouldn't develop significant 234 model hierarchies like the above two scaling. 235 \subsection{Scale the Schrödinger Equation} 236 The well known Schrödinger equation that describes quantum physics of the one 237 particle system is 238 \begin{align} 239 &i\hbar \partial_t\psi = -\frac{\hbar^2}{2m}\Delta \psi + V\psi \nonumber\\ 240 &\psi(t=0) =\psi_0 241 \end{align} 242 where $\hbar$ is the reduced Plank constant, $\psi=\psi(x, t)$ the wave function, 243 $m$ the mass and $V = V(x)$ the potential in which the wave function is. The 244 dimensions are 245 \begin{align} 246 [\hbar] = js, \;\;\;\; [V] = j, \;\;\;\; [\psi]= m^{-d/2} 247 \end{align} 248 where $d$ is the spacial dimension. The standard scaling ansatz is 249 \begin{align} 250 &\psi = \psi_c \phi \\ 251 &t = t_c \tau \;\;\;\; x = x_c \xi, 252 \end{align} 253 by that we get the following derivatives in time and in space 254 \begin{align} 255 \partial_{x_i} &=\frac{1}{x_{(i)c}} \partial_{\psi_i} \\ 256 \partial^2_{x_i} &=\frac{1}{x_{(i)c}^2} \partial_{\psi_i}^2\\ 257 \partial_{t} &=\frac{1}{t_c} \partial_{\psi_i} \\ 258 \end{align} 259 for $i = 1, 2, 3$, or depending on the dimension we are dealing with. 260 261 Let us consider $x\in \mathbb{R}^3$ and $V = 0$ to scale the equation. First 262 we now have 263 \begin{align} 264 i \partial_t\psi = -\frac{\hbar}{2m}\Delta \psi 265 \end{align} 266 with the initial condition $\phi(0) = \frac{\psi_0}{\psi_c}$. With our scaling the equation turns out to be 267 \begin{align} 268 \frac{i\hbar t_c}{2m}\frac{1}{||\vec{x}_c||^2}\Delta_{\vec{\xi}}\ \phi = 269 \partial_\tau\ \phi. 270 \end{align} 271 The constants we get are 272 \begin{align} 273 \Pi_1 = \frac{t_c\hbar}{2m}\frac{1}{||\vec{x}_c||^2}, \;\;\;\; \Pi_2 = 274 \frac{\psi_0}{\psi_c}. 275 \end{align} 276 277 The simple choice of 278 \begin{align} 279 \frac{1}{||\vec{x}_c||^2} = 1, \;\;\;\; \psi_c = \psi_0, \;\;\;\; t_c = 280 \frac{2m}{\hbar}||\vec{x}_c||^2, 281 \end{align} 282 simplifies the Schrodinger equation without the potential to 283 \begin{align} 284 i\Delta_{\vec{\xi}}\ \phi = \partial_\tau \phi, 285 \end{align} 286 with the initial condition $\phi(\tau=0) = 1$. 287 . 288 289 Now consider $V = 0$, $x\in[0, L]$ and $t \in [0, T]$, the Schrodinger 290 equation is the same only with one spacial dimension as above, we can set 291 \begin{align} 292 \psi_c = \psi_0, \;\;\;\; x_c =L, \;\;\;\; t_c = \frac{2mL^2}{\hbar}. 293 \end{align} 294 Thus we get 295 \begin{align} 296 i\partial_{\xi}^2 \phi = \partial_\tau \phi, 297 \end{align} 298 with the initial condition $\phi(\tau=0) = 1$, where $\xi \in [0, 1]$ and 299 $\tau \in [0, \frac{\hbar T}{2mL^2}]$. 300 . 301 302 In the last example let us consider the quantum harmonic oscillator 303 represented by the potential $V(x) = m\omega^2 x^2$ for $x\in \mathbb{R}$, 304 where $\omega$ is the frequency. The equation is the following 305 \begin{align} 306 i \hbar \partial_t \psi = -\frac{\hbar^2}{2m}\partial^2_x \psi 307 +m\omega^2x^2 \psi. 308 \end{align} 309 By inserting the standard scaling ansatz we get 310 \begin{align} 311 i\partial_\tau \phi = -\frac{t_c\hbar}{2mx_c^2}\partial_\xi^2 \phi 312 +\frac{t_cm\omega^2x_c^2}{\hbar} \xi^2 \phi, 313 \end{align} 314 The dimensional constants are 315 \begin{align} 316 \Pi_1 = \frac{t_0\hbar}{mx_c^2},\;\;\;\;\Pi_2 = 317 \frac{m\omega^2x_c^2t_c}{\hbar},\;\;\;\; \Pi_3 = \frac{\psi_0}{\psi_c}. 318 \end{align} 319 The choice of scaling is 320 \begin{align} 321 \psi_c = \psi_0, \;\;\;\; t_c = \frac{1}{\omega}, \;\;\;\; x_c = 322 \sqrt{\frac{\hbar}{m\omega}}. 323 \end{align} 324 Thereby getting the following problem 325 \begin{align} 326 i\partial_\tau \phi = -\frac{1}{2} \partial_\xi^2 \phi +\xi^2 \phi 327 \end{align} 328 with $\phi(\tau = 0) = 1$. 329 330 %\printbibliography 331 \end{document}