notes

uni notes
git clone git://popovic.xyz/notes.git
Log | Files | Refs

prb2.tex (9286B)


      1 \include{preamble.tex}
      2 
      3 \begin{document}
      4 \maketitle
      5 \tableofcontents
      6 
      7 \section{Sheet 2}
      8 \subsection{Problem 4}
      9 We consider a quadratic equation with two ways to perturb it by $\eps$:
     10 \begin{align}
     11     x^2 + 2\eps x -1 = 0, \label{eq: (1)}\\
     12     \nonumber \\
     13     \eps x^2 + 2x - 1 = 0.\label{eq: (2)}
     14 \end{align}
     15 Equation \ref{eq: (2)} is singular, because the reduced problem ($\eps
     16 \rightarrow 0$) has only one solution at $x = \frac{1}{2}$. While the reduced
     17 problem in \ref{eq: (1)} has two solutions for $x = \pm 1$, which is the case
     18 for this non reduced equation. Let us thereby calculate the asymptotic
     19 expansion of the regular case up to $O(\eps^2)$, we take the ansatz for the
     20 asymptotic expansion
     21 \begin{align}\label{eq: p4 ansatz}
     22     x_\eps = x_0 + \eps x_1 + \eps^2 x_2 + O(\eps^3).
     23 \end{align}
     24 By substituting $x_\eps$ into \ref{eq: (1)} and factoring out the orders of
     25 $\eps$ we get
     26 \begin{align}
     27     \eps^0 (x_0^2 - 1) + \eps^1(2x_0 + 2x_0x_1) + \eps^2(x_1^2+2x_2x_0
     28     +2x_1) + O(\eps^3) = 0
     29 \end{align}
     30 By solving the equations in order of $\eps$, for the coefficients
     31 $x_0$, $x_1$ and $x_2$ we get
     32 \begin{align}
     33     x_0 = \pm 1, \;\;\;\; x_1 = -1, \;\;\;\; x_2 = \pm \frac{1}{2}.
     34 \end{align}
     35 By substituting into the equation \ref{eq: p4 ansatz} we get
     36 \begin{align}
     37     x_\eps = \pm 1 - \eps \pm \frac{1}{2} \eps + O(\eps^3).
     38 \end{align}
     39 For $\eps = 0.001$ we get
     40 \begin{align}
     41     &x_\eps = -1.0010005 + O(\eps^3),  &x_\eps = 0.9990005 + O(\eps^3),\\
     42     &x_\eps = -1.001 + O(\eps^2),      &x_\eps = 0.999 + O(\eps^2).
     43 \end{align}
     44 \subsection{Problem 5}
     45 Consider the following equations
     46 \begin{align}
     47     \label{eq: p5 1}\eps y' + y = x \;\;\;\;\;\; y(0) = 1\\
     48     \label{eq: p5 2}\eps y' + y = x \;\;\;\;\;\; y(0) = 0\\
     49     \nonumber\\
     50     \label{eq: p5 3}\eps y' + y = x \;\;\;\;\;\; y(0) = \eps\\
     51     \label{eq: p5 4}\eps^2 y' + y = x \;\;\;\;\;\; y(0) = \eps\\
     52     \nonumber\\
     53     \label{eq: p5 5}y' + \eps y = x \;\;\;\;\;\; y(0) = 1\\
     54     \label{eq: p5 6}y' + y = \eps x \;\;\;\;\;\; y(0) = 1
     55 \end{align}
     56 We will go through the equations and elaborate on if the perturbation is
     57 regular or singular, if regular we will compute the asymptotic expansion up
     58 to second order.
     59 Let us begin with equation \ref{eq: p5 1}. By the first look, the reduced
     60 problem does not agree with the boundary condition
     61 \begin{align}
     62     y_0 = x \;\;\;\;\; y_0(0) = 1,
     63 \end{align}
     64 is a contradiction in $y_0(0) = 0 \neq 1$, thereby equation \ref{eq: p5 1} is
     65 \textbf{singularly perturbed}.
     66 
     67 The reduced problem of equation \ref{eq: p5 2} on the other hand agrees with
     68 the boundary condition, since
     69 \begin{align}
     70     y_0 = x \;\;\;\;\; y_0(0) = 0.
     71 \end{align}
     72 But by doing the ansatz for the asymptotic expansion
     73 \begin{align}
     74     y_\eps(x) = y_0 + \eps y_1 + \eps^2 y_2 + O(\eps^3),
     75 \end{align}
     76 plugging in into \ref{eq: p5 2} and separating coefficients in terms of
     77 $\eps$, we get
     78 \begin{align}
     79     \eps^0 (y_0 -x) + \eps^1(y_0' + y_1) + \eps^2(y_1' + y_2) + O(\eps^3) = 0
     80 \end{align}
     81 The solutions to these equations are
     82 \begin{align}
     83     y_0 = x, \;\;\;\; y_1 = 1, \;\;\;\; y_2 = 0,
     84 \end{align}
     85 which is a contradiction to the boundary condition of $y_1(0) = 1 \neq 0$.
     86 Thereby we can conclude that equation \ref{eq: p5 2} is \textbf{singularly
     87 perturbed}.
     88 
     89 Next up is equation \ref{eq: p5 3}, where by the asymptotic expansion the
     90 first order coefficient of $\eps$, $y_2$, has the boundary condition $y_2(0)
     91 = 0$. But by applying the ansatz of the asymptotic expansion and plugging
     92 into the equation we get
     93 \begin{align}
     94     \eps^2(y_0 - x) + \eps^1 (y_0' + y_1) + \eps^2(y_1' + y_2) + O(\eps^3) =
     95     0.
     96 \end{align}
     97 Solving these equations we get
     98 \begin{align}
     99     y_0 = 0, \;\;\;\; y_1 = 1 \;\;\;\; y_2 = 0 ,
    100 \end{align}
    101 which is a contradiction $y_1(0) = 1 \neq 0 $, thus the equation \ref{eq: p5
    102 3} is \textbf{singularly perturbed}.
    103 
    104 The next equation \ref{eq: p5 4} is also singularly perturbed, we
    105 can see this by plugging the asymptotic expansion into the equation
    106 \begin{align}
    107  \eps^0 ( y_0 - x) + \eps^1(y_1) + \eps^2(y_0' + y_2) = O(\eps^3),
    108 \end{align}
    109 solving for the coefficients we get
    110 \begin{align}
    111     y_0 = x, \;\;\;\; y_1 = 0, \;\;\;\;\; y_2 = -1,
    112 \end{align}
    113 which is contradiction by the boundary condition $y_2(0) = -1 \neq 0$,
    114 thereby \ref{eq: p5 4} is \textbf{singularly perturbed}.
    115 
    116 Equation \ref{eq: p5 5} on the first sight does not indicate for any
    117 contradictions, we may plug the ansatz of the asymptotic expansion into the
    118 equation and see what happens
    119 \begin{align}
    120     \eps^0(y_0 -x) + \eps^1(y_1' + y_0) + \eps^2(y_2' +y_1) + O(\eps^2) = 0,
    121 \end{align}
    122 with the initial conditions $y_0(0) = 1$, $y_1(0) = y_2(0) = 0$.
    123 \begin{align}
    124     y_0 = \frac{x^2}{2} + 1, \;\;\;\;
    125     y_1 = -\frac{x^3}{6} + x, \;\;\;\;
    126     y_2 = \frac{x^4}{24} + \frac{x^2}{2}.
    127 \end{align}
    128 Finally we get
    129 \begin{align}
    130     y_\eps(x) = (\frac{x^2}{2}+1) + \eps(-\frac{x^3}{6} -x)
    131     +\eps^2(\frac{x^4}{24} + \frac{x^2}{2}) + O(\eps^3).
    132 \end{align}
    133 Thereby we can conclude that \ref{eq: p5 5} is \textbf{regularly perturbed}.
    134 
    135 The last equation \ref{eq: p5 6} is also regular, let us do the asymptotic
    136 expansion of the equation and order the equation in orders of $\eps$.
    137 \begin{align}
    138     \eps^0(y_0' + y_0) + \eps^1(y_1' + y_1 -x) + \eps^2(y_2' + y_2)+
    139     O(\eps^3) = 0 .
    140 \end{align}
    141 by solving these differential equations with the boundary conditions $y_0(0)
    142 = 1$, $y_1(0) = y_2(0) = 0$ we get
    143 \begin{align}
    144     y_0 =  e^{-x} \;\;\;\; y_1 = (x-1) + e^{-x} \;\;\;\; y_2 = 0.
    145 \end{align}
    146 The equation we get
    147 \begin{align}
    148     y_\eps(x) = e^{-x} + \eps(x-1 +e^{-x}) + O(\eps^3).
    149 \end{align}
    150 Thereby we can conclude that the last equation \ref{eq: p5 6} is
    151 \textbf{regularly perturbed}.
    152 \subsection{Problem 6}
    153 In this section we will calculate the asymptotic expansion of a regularly
    154 perturbed equation in two ways, by doing the regular expansion ansatz and by
    155 substituting and expanding in terms of $\eps$. The ordinary differential
    156 equation we are dealing with is
    157 \begin{align}
    158     y' = -y + \eps y^2 \;\;\;\;\; y(0) = 1,
    159 \end{align}
    160 where $t > 0$ and $0 < \eps \ll 1$. The standard expansion ansatz is
    161 \begin{align}
    162 y_\eps(x) = y_0 + \eps y_1 + \eps^2 y_2 + O(\eps^3).
    163 \end{align}
    164 The ODE then expands to
    165 \begin{align}
    166     \eps^0(y_0' + y_0) + \eps(y_1' + y_1 - y_0^2) + \eps^2(y_2' + y_2 -
    167     2y_0y_1) + O(\eps^3) = 0.
    168 \end{align}
    169 Equations in order of $\eps$ and $\eps^2$ are non-homogeneous ODE's. The
    170 solution to these three coefficients with the boundary conditions $y_0(0) =
    171 1$, $y_1(0) =
    172 y_2(0) = 0$ we get
    173 \begin{align}
    174     y_0 = e^{-x}, \;\;\;\; y_1 = -e^{-2x} + e^{-x}, \;\;\;\; y_2 = e^{-3x} -
    175     2e^{-2x} + e^{-x}.
    176 \end{align}
    177 The expansion of $y$ is then
    178 \begin{align}
    179     y_\eps (x) = e^{-x} + \eps(-e^{-2x} + e^{-x}) + \eps^2(e^{-3x} - 2e^{-2x}
    180 + e^{-x}) + O(\eps^3).  \end{align}
    181 
    182 The second ansatz, considers the substitution $z = \frac{1}{y}$, by
    183 calculating the first derivative and substituting the original problem we
    184 get
    185 \begin{align}
    186     z' &= \frac{-y'}{y^2} = \frac{y-\eps y^2}{y^2} = \frac{1}{y} - \eps = z -
    187     \eps. \\
    188     z(0) &= \frac{1}{y(0)} = 1.
    189 \end{align}
    190 The solution is
    191 \begin{align}
    192     z(x) = \eps + (1-\eps) e^x.
    193 \end{align}
    194 By substituting this into $y = \frac{1}{z}$ and expanding we get
    195 \begin{align}
    196     y(x) &= \frac{1}{\eps+(1-\eps)e^x} = e^{-x} \frac{1}{1 - (1- e^{-x})\eps}
    197     \\
    198          &= e^{-x} \sum_{n\geq 0} \eps^n(1-e^{-x})^n.
    199 \end{align}
    200 which is the geometric series.
    201 \subsection{Problem 7}
    202 The last problem consists of a perturbation of a partial differential
    203 equation (heat equation).
    204 \begin{align}
    205     &\partial_t u(x, t) + \partial_x^2 u(x,t) - \eps u(x, t)^2 = 0
    206     &x\in (0, 1),\; t>0,\\
    207     &u(x, 0) = \tilde{u}_0(x)  &x\in(0, 1), \\
    208     &u(0, t) = u(1, t) = 0 & t>0.
    209 \end{align}
    210 The problem is regular because the reduced solution is the regular heat
    211 equation in the one special dimension on $x\in (0, 1)$, we know this is
    212 solvable. By doing the expansion ansatz we can derive the first equations
    213 for the first three terms, the ansatz is always the same
    214 \begin{align}
    215     u_\eps = u_0 + \eps u_1 + \eps^2 u_2 + O(\eps^3).
    216 \end{align}
    217 Plugging this into the perturbed problem problem and factoring out the terms
    218 in the order of $\eps$ we get
    219 \begin{align}
    220     &\eps^0 (\partial_t u_0 + \partial_x^2 u_0) + \\
    221     &\eps^1 (\partial_t u_1 + \partial_x^2 u_1 - u_0^2) +\\
    222     &\eps^2 (\partial_t u_2 + \partial_x^2 u_2 - 2u_1u_0)  + O(\eps^3) = 0.
    223 \end{align}
    224 
    225 We can solve the reduced problem with the initial condition $\tilde{u}_0 =
    226 \sin(\pi x)$ by separation of variables. Setting $u(x, t) = \psi(x) \phi(t)$
    227 and substituting into the equation we get two ordinary differential equation
    228 \begin{align}
    229     \underbrace{\frac{\psi_{xx}}{\psi}}_{=k}
    230     +\underbrace{\frac{\phi_t}{\phi}}_{=-k} =  0,
    231 \end{align}
    232 for some $k$. Solving these two by the exponential ansatz.
    233 \begin{align}
    234     \psi(x) &= A_1 e^{\sqrt{k} x} +A_2 e^{-\sqrt{k} x},\\
    235     \phi(t) &= A_3 e^{-kt}.
    236 \end{align}
    237 With the initial condition we get the conditions that
    238 \begin{align}
    239     A_1A_3 &= -A_2 A_3,\\
    240     k &= \pi^2
    241 \end{align}
    242 we choose $A_1 = A_3 = 1$ , $A_2 = -1$. We get the following solution to the
    243 PDE
    244 \begin{align}
    245     u(x, t) = \psi(x)\phi(t) = \sin(\pi x) e^{-\pi^2 t}.
    246 \end{align}
    247 
    248 %\printbibliography
    249 \end{document}