notes

uni notes
git clone git://popovic.xyz/notes.git
Log | Files | Refs

prb5.tex (3261B)


      1 \include{preamble.tex}
      2 
      3 \begin{document}
      4 \maketitle
      5 \tableofcontents
      6 
      7 \section{Sheet 5}
      8 \subsection{Fourier Transform}
      9 In this section we prove the linearity of the Fourier Transform $\mathcal{F}$ on
     10 $L^1(\mathbb{R}^d)$. For $f, g \in L^1(\mathbb{R}^d)$ and $\lambda, \mu \in
     11 \mathbb{R}$ the linearity condition for $\mathcal{F}$ is the following
     12 \begin{align}
     13     \mathcal{F}(\lambda f + \mu g) = \lambda \mathcal{F}(f) + \mu
     14     \mathcal{F}(g).
     15 \end{align}
     16 We start by using the Fourier transform definition for $x, \xi \in \mathbb{R}^d$
     17 \begin{align}
     18     \mathcal{F}(\lambda f + \mu g)(\xi) &= \int_{\mathbb{R}^d} (\lambda f(x)+
     19     \mu g(x)) e^{-2\pi i \langle x, \xi\rangle}\ dx =\\
     20     &= \int_{\mathbb{R}^d} \lambda f(x) e^{-2\pi i\langle x,\xi\rangle} + \mu
     21     g(x) e^{-2\pi i\langle x,\xi\rangle}\ dx =\\
     22     &= \int_{\mathbb{R}^d} \lambda f(x) e^{-2\pi i\langle x,\xi\rangle}\ dx+
     23     \int_{\mathbb{R}^d} \mu
     24     g(x) e^{-2\pi i\langle x,\xi\rangle}\ dx =\\
     25     &= \lambda \int_{\mathbb{R}^d} f(x) e^{-2\pi i\langle x,\xi\rangle}\ dx+
     26     \mu \int_{\mathbb{R}^d}
     27     g(x) e^{-2\pi i\langle x,\xi\rangle}\ dx =\\
     28     &= \lambda \mathcal{F}(f)(\xi) + \mu \mathcal{F}(g)(\xi)
     29 \end{align}
     30 \subsection{Identities of the Fourier transform}
     31 The following are three identities of the Fourier transform
     32 
     33 \begin{table}[h!]
     34 \centering
     35 \begin{tabular}{| l | c | c |}
     36 \hline
     37   & $g(x)$ & $\hat{g}(\xi)$ \\ \hline \hline
     38 (1) & $f(x-x_0)$ & $e^{-2\pi ix_0 \xi} \hat{f}(\xi)$ \\ \hline
     39 (2) & $e^{2\pi i \xi_0 x} f(x)$ & $f(\xi - \xi_0)$ \\ \hline
     40 (3) & $f(ax)$ & $\frac{1}{a} \hat{f}(\frac{\xi}{a})$\\ \hline
     41 \end{tabular}
     42     \caption{Identities of the Fourier transform for $a > 0,
     43     \xi_0, x \in \mathbb{R}$}
     44 \end{table}
     45 We start with (1)
     46 \begin{align}
     47     \widehat{f(x-x_0)}
     48     &= \int_\mathbb{R} f(x-x_0) e^{-2\pi i x \xi}\ dx=
     49     \;\;\;\;\;\; (y = x-x_0)\\
     50     &= \int_\mathbb{R} f(y) e^{-2\pi i (y+x_0) \xi}\
     51     dy=\\
     52     &= e^{-2\pi i x_0 \xi} \int_\mathbb{R}f(y)e^{-2\pi i y
     53     \xi}\ dy=\\
     54     &= e^{-2\pi i x_0 \xi} \hat{f}(\xi).
     55 \end{align}
     56 For (2) we have
     57 \begin{align}
     58     \widehat{e^{2\pi i x \xi_0} f(x)}
     59     &= \int_\mathbb{R} e^{2\pi i x \xi_0} f(x) e^{-2\pi i x \xi}\ dx =\\
     60     &= \int_\mathbb{R} f(x) e^{-2\pi i x (\xi -\xi_0)}\ dx=\\
     61     &= \hat{f}(\xi - \xi_0).
     62 \end{align}
     63 For (3) we have
     64 \begin{align}
     65     \widehat{f(ax)}
     66     &= \int_\mathbb{R} f(ax) e^{-2\pi i \xi x}\ dx = \qquad \text{sub:
     67         $(y=ax)$}\\
     68     &= \int_\mathbb{R} \frac{1}{a}f(y) e^{-2\pi i \frac{\xi}{a} y}\ dy=\\
     69     &= \frac{1}{a} \hat{f}\left(\frac{\xi}{a}\right).
     70 \end{align}
     71 \subsection{The Box-Function}
     72 Consider the following Box-Function
     73 \begin{align}
     74     \Pi(x) :=
     75     \begin{cases}
     76         1\;\;\;\;\;\; -\frac{3}{2} < x < \frac{1}{2}\\
     77         0\;\;\;\;\; \text{else}
     78     \end{cases}
     79 \end{align}
     80 The Fourier transform of this function is
     81 \begin{align}
     82     \widehat{\Pi(x)}
     83     &= \int_\mathbb{R} \Pi(x) e^{-2\pi i x\xi}\ dx=\\
     84     &= \int_{-\frac{3}{2}}^{\frac{1}{2}} e^{-2\pi i x \xi}\ dx
     85     =\frac{-1}{2\pi i \xi} e^{-2\pi i x\xi}
     86     \bigg|_{-\frac{3}{2}}^{\frac{1}{2}}=\\
     87     &= \frac{1}{2\pi i \xi} \left(e^{3\pi i \xi} - e^{-\pi i \xi}\right)=\\
     88     &= \frac{e^{\pi i \xi}\sin(2\pi\xi)}{\pi \xi}.
     89 \end{align}
     90 
     91 %\printbibliography
     92 \end{document}