notes

uni notes
git clone git://popovic.xyz/notes.git
Log | Files | Refs

prb6.tex (5077B)


      1 \include{preamble.tex}
      2 
      3 \begin{document}
      4 \maketitle
      5 \tableofcontents
      6 
      7 \section{Sheet 6}
      8 \subsection{Fourier Transform of the convolution}
      9 Consider the function $f(x)$, which has a Fourier Transform $\hat{f}(\xi)$,
     10 now let us compute the Fourier transform of
     11 \begin{align}
     12     h(x) = f(3x-1) \sin(x) .
     13 \end{align}
     14 We know that the Fourier transform of the convolution is (we use somewhat of
     15 the inverse convolution theorem).
     16 \begin{align}
     17     \widehat{(f(3x-1)*g(x))} = \widehat{f(3x-1)} \cdot \hat{g}(\xi).
     18 \end{align}
     19 The Fourier transform of $f(3x-1)$ is simply done by substituting a new
     20 variable
     21 \begin{align}
     22     \widehat{f(3x-1)} = \frac{1}{3}e^{2\pi i\frac{\xi}{3}}\
     23     f\left(\frac{\xi}{3}\right).
     24 \end{align}
     25 The Fourier transform of $\sin(x)$ can be calculated when looking at the
     26 Fourier transform of the Dirac-delta function
     27 \begin{align}
     28     \widehat{\delta(ax-b)}
     29     &=\int_\mathbb{R} \delta(ax-b) e^{-2\pi i x \xi}\ dx
     30     \;\;\;\;\;\;\; (y = ax-b)\\
     31     &=\int_\mathbb{R} \delta(y) e^{-2\pi i (y+b)\frac{\xi}{a}}\frac{dy}{a}\\
     32     &=\frac{1}{a} e^{-2\pi i \xi \frac{b}{a}}.
     33 \end{align}
     34 We may plug in $\sin(x)$ in the definition of the Fourier transformation and
     35 observe where we can use the Dirac-delta to to the inverse Fourier transform
     36 \begin{align}
     37     \widehat{\sin(x)}
     38     &=\int_\mathbb{R} \sin(x)e^{-2\pi i x\xi}\ dx=\\
     39     &=\frac{1}{2i}\int_\mathbb{R} (e^{ix} - e^{-ix})e^{-2\pi i \xi x}\ dx\\
     40     &=\frac{1}{2i}\left(
     41         \int_\mathbb{R} e^{ix} e^{-2\pi i \xi x}\ dx+
     42         \int_\mathbb{R} e^{-ix} e^{-2\pi i \xi x}\ dx
     43         \right).
     44 \end{align}
     45 Here we may use the above formula for the Fourier transform of the Dirac
     46 delta. We choose $a=1$, $b= \pm \frac{1}{2\pi}$ and do some $y=-x$
     47 substitutions and thereby get the following result
     48 \begin{align}
     49     \widehat{\sin(x)} = \frac{1}{2i} \left(
     50         \delta(\xi - \frac{1}{2\pi})
     51         -\delta(\xi + \frac{1}{2\pi})
     52         \right)
     53 \end{align}
     54 The whole result is thereby
     55 \begin{align}
     56     \widehat{f(3x-1)} * \widehat{sin(x)}
     57     =& \frac{1}{6i} \bigg(
     58         e^{2\pi
     59         i(\frac{\xi}{3}-\frac{1}{6\pi})}\hat{f}\big(\frac{\xi}{3}-\frac{1}{6\pi}\big)-
     60         e^{2\pi
     61             i(\frac{\xi}{3}+\frac{1}{6\pi})}\hat{f}\big(\frac{\xi}{3}+\frac{1}{6\pi}\big)
     62         \bigg)
     63 \end{align}
     64 \subsection{More Fourier Transforms}
     65 Consider the function
     66 \begin{align}
     67     f(x) = e^{-|x|}
     68 \end{align}
     69 The Fourier transform of this function is
     70 \begin{align}
     71     \hat{f}(\xi)
     72     &=\int_\mathbb{R} e^{-|x| e^{-2\pi i x \xi}}\ dx\\
     73     &= \int_{-\infty}^0 e^x e^{-2\pi i x \xi}\ dx
     74     + \int_0^\infty e^{-x} e^{-2\pi i x \xi}\ dx=\\
     75     &= \frac{1}{1-2\pi i \xi} e^{(1-2\pi i \xi) x}\bigg|_{-\infty}^0+
     76         \frac{-1}{1+2\pi i \xi} e^{-(1+2\pi i \xi) x}\bigg|_{-\infty}^0 = \\
     77     &= \frac{1}{1-2\pi i \xi} + \frac{1}{1 + 2\pi i \xi} =\\
     78     &= \frac{2}{1+(2\pi \xi)^2}.
     79 \end{align}
     80 Let us use this result to solve the following integral
     81 \begin{align}
     82     \int_\mathbb{R} \frac{\cos(a\xi)}{(2\pi \xi)^2 + 1}\ d\xi =
     83     \frac{1}{2}\int_\mathbb{R} \hat{f}(\xi) \text{Re}(e^{ia\xi})\ dx,\\
     84 \end{align}
     85 where we used the fact that $\text{Re}(e^{ia\xi}) = \cos(a\xi)$ and
     86 $\hat{f}(\xi) = \frac{2}{1+(2\pi \xi)^2}$, thereby
     87 \begin{align}
     88     \frac{1}{2}\int_\mathbb{R} \hat{f}(\xi) \text{Re}(e^{ia\xi})\ dx
     89     &= \frac{1}{2}\text{Re}\left(
     90         \int_\mathbb{R}\hat{f}(\xi)e^{ia\xi}\ d\xi
     91     \right)=\\
     92     &= \frac{1}{2}\text{Re}\left(
     93         \int_\mathbb{R} \hat{f}(\xi) e^{2\pi i \frac{a}{2\pi}\xi}\ d\xi
     94     \right)=\\
     95     &= \frac{1}{2}\text{Re}\left(f(\frac{a}{2\pi})\right)=\\
     96     &= \frac{1}{2} e^{-\frac{|a|}{2\pi}}.
     97 \end{align}
     98 \subsection{Finite discrete Fourier transform}
     99 Consider $s\in \mathbb{C}^N$ with entries
    100 \begin{align}
    101     s[n] = \sin\left(2\pi\xi_0\frac{n}{N}\right),
    102 \end{align}
    103 for same $0 < \xi_0 < N$. The finite discrete Fourier transform of $s$ is
    104 \begin{align}
    105     \hat{s}[k] &= \frac{1}{N} \sum_{n=0}^{N-1} \sin\left(2\pi\xi_0\frac{n}{N}\right)
    106             e^{-2\pi i \frac{k}{N} n}  =\\
    107         &=\frac{1}{2iN}\left(
    108             \sum_{n=0}^{N-1}e^{2\pi i \frac{n}{N}(\xi_0 -k)} - e^{-2\pi i
    109             \frac{n}{N}(\xi_0 +k)}
    110             \right).
    111 \end{align}
    112 If we consider $\xi_0 \in \mathbb{Z}$, we have
    113 \begin{align}
    114     \hat{s}[k] =
    115     \begin{cases}
    116         \frac{1}{2i}\;\;\;\;\;\; \xi_0 = k\\
    117         -\frac{1}{2i}\;\;\;\;\;\; \xi_0 = -k\\
    118         0   \;\;\;\;\;\; \text{else}
    119     \end{cases}
    120 \end{align}
    121 \subsection{Discrete Matrix Notation}
    122 The convolution of two vectors $f, g \in \mathbb{C}^N$, can be expressed by a
    123 circulate matrix applied to f
    124 \begin{align}
    125     (f * g) [n] = \sum_{k=0}^{N-1} f[k] g[n-k].
    126 \end{align}
    127 Consider $g=s$, then the matrix takes the following values
    128 \begin{align}
    129     s[n-k] = s_{nk} = \sin\left(2\pi \xi_0 \frac{n-k}{N}\right).
    130 \end{align}
    131 The convolution with an impulse input $f=\delta_{0k}$, a vector that is $1$
    132 for $k=0$ and else 0 reads
    133 \begin{align}
    134     \sum_k s_{nk}f_k &= \sum_k s_{nk} \delta_{0k} =\\
    135             &= \sin\left(2\pi \xi_0 \frac{n}{N}\right).
    136 \end{align}
    137 
    138 %\printbibliography
    139 \end{document}