notes

uni notes
git clone git://popovic.xyz/notes.git
Log | Files | Refs

prb8.tex (6470B)


      1 \include{preamble.tex}
      2 
      3 \begin{document}
      4 \maketitle
      5 \tableofcontents
      6 
      7 \section{Sheet 8}
      8 \subsection{Finite Discrete Fourier Transform (FDFT)}
      9 Consider the vector $\begin{pmatrix}a & b & c & d\end{pmatrix}^T \in
     10 \mathbb{C}^4$ with a FDFT $\begin{pmatrix}A & B & C & D\end{pmatrix}^T$. We
     11 can show that the vector
     12 \begin{align}
     13     \begin{pmatrix}a & 0 & b & 0 & c & 0 & d & 0\end{pmatrix}^T,
     14 \end{align}
     15 has the FDFT of
     16 \begin{align}
     17     \frac{1}{2}\begin{pmatrix}A & 0 & B & 0 & C & 0 & D & 0\end{pmatrix}^T.
     18 \end{align}
     19 For the $N=4$, $n\in\{0,\dots,3\}$ the coefficients $a, b, c, d$ are denoted in
     20 $f[n]$. The FDFT is
     21 \begin{align}
     22     \hat{f}[k] &= \frac{1}{4} * \sum_{n=0}^3 f[n] e^{-2\pi i \frac{n}{4}k} \\
     23                &=\frac{1}{4}\left(
     24                    a + be^{-\pi i \frac{k}{2}}
     25                    + ce^{-\pi i k}+ de^{-\frac{3\pi i k}{2}}
     26                \right) = \\
     27     (&=\begin{pmatrix}A & B & C & D\end{pmatrix}^T)
     28 \end{align}
     29 for $k \in \{0,\dots, 3\}$ accordingly. For the $N=8$, $\mathbb{C}^8$ case
     30  we have $f_2[n]$ for $n \in \{0,\dots 7\}$,
     31  \begin{align}
     32     \hat{f}_2[k] &= \frac{1}{8} * \sum_{n=0}^7 f_2[n] e^{-2\pi i \frac{n}{8}k} \\
     33                &=\frac{1}{2}\frac{1}{4}\left(
     34                    a + be^{-\pi i \frac{k}{2}}
     35                    + ce^{-\pi i k}+ de^{-\frac{3\pi i k}{2}}
     36                \right) = \\
     37     (&=\frac{1}{2}\begin{pmatrix}A & B & C & D & A & B & C & D\end{pmatrix}^T)
     38  \end{align}
     39 for $k \in \{0,\dots, 7\}$ accordingly. We may generalize now for
     40 $\mathbb{C}^{4N}$, and the sequence for $a, b, c, d, 0$ represented by the
     41 function $g[n]$ for $n \in \{0,\dots, 4N-1\}$,
     42 \begin{align}
     43     g[n] =\begin{cases}
     44         f[n] \qquad n\in \{0, N, 2N, 3N\}\\
     45         0 \qquad \text{else}
     46         \end{cases}.
     47 \end{align}
     48 Now we can compute the FDFT for $k \in \{0,\dots, 4N-1\}$
     49 \begin{align}
     50     \hat{g}[k] &= \frac{1}{4N}\sum_{n=0}^{4N-1} g[n]e^{-2\pi i
     51     \frac{n}{4N}k}\\
     52          &=\frac{4}{N}\sum_{n=0}{3}f[n]e^{-2\pi i \frac{n}{4}k}\\
     53          &=\frac{1}{N}\left(\frac{1}{4}\sum_{n=0}^3 f[n] e^{-2\pi i
     54          \frac{n}{4}k} \right) \\
     55          &= \frac{1}{N} \underbrace{\begin{pmatrix}A & B & C & D & \dots &
     56              \dots & A & B & C & D\end{pmatrix}^T)}_{\text{$4N$ entries, $N$
     57          sequences}}.
     58 \end{align}
     59 \subsection{More FDFT}
     60 Consider the discrete complex exponential with frequency of $1Hz$ in
     61 $\mathbb{C}^8$, for $n \in \{0, \dots , 7\}$,
     62 \begin{align}
     63     \exp[n] = e^{2\pi i n/8}.
     64 \end{align}
     65 The FDFT for $k \in \{0, \dots, 7\}$ is
     66 \begin{align}
     67     \hat{\exp}[k] &= \frac{1}{8}\sum_{n=0}^7 e^{2\pi i \frac{n}{8}}e^{-2\pi i
     68     n \frac{k}{8}} \\
     69                   &= \frac{1}{8} \sum_{n=0}^7e^{-2\pi i (k-1)\frac{n}{8}}\\
     70                   &=
     71                   \begin{cases}
     72                       1\quad k=1\\
     73                       0 \qquad k\neq 1
     74                    \end{cases}.
     75 \end{align}
     76 \begin{figure}[H]
     77     \centering
     78     \includegraphics[width=0.49\textwidth]{./figures/fdft.png}
     79     \includegraphics[width=0.49\textwidth]{./figures/normal.png}
     80     \caption{Test in Julia}
     81 \end{figure}
     82 \subsection{Sampling Sinusoids}
     83 Consider the following continuous signal
     84 \begin{align}
     85     f(t) = sin(20\pi t) + sin(40\pi t)
     86 \end{align}
     87 with frequencies $\omega = 2\pi \nu$, $\nu_1 = 10\ \text{Hz}$ and $\nu_2 = 20\
     88 \text{Hz}$. Sketching its Fourier transform would be something like this
     89 \begin{figure}[H]
     90     \centering
     91 \begin{tikzpicture}[
     92     axisline/.style={very thick, -stealth},
     93     xscale = 1.5,
     94     yscale = 1.5
     95     ]
     96     \draw[axisline] (-3,0)--(3,0) node[right]{$\nu$};
     97     \draw[axisline] (0,-1.5)--(0,1.5) node[above]{$\hat{f}$};
     98     \draw[->] (-1,0) -- (-1, -1) node[below] {$-\delta(\nu - 10)$};
     99     \draw[->] (-2,0) -- (-2, 1) node[above] {$\delta(\nu - 20)$};
    100     \draw[->] (1,0) -- (1, 1) node[above] {$\delta(\nu - 10)$};
    101     \draw[->] (2,0) -- (2, 1) node[above] {$\delta(\nu - 20)$};
    102 \end{tikzpicture}
    103 \end{figure}
    104 The Nyquist frequency for sampling would be
    105 \begin{align}
    106     \nu_{\text{Nyquist}} = 2\nu_\text{max} = 2\nu_2 = 40\ \text{Hz},
    107 \end{align}
    108 If we choose $50\ \text{Hz}$ for sampling we would get aliasing with the
    109 following frequencies
    110 \begin{align}
    111     n \cdot 50\ \text{Hz} - 20\ \text{Hz} = 30\ \text{Hz},80\ \text{Hz}, 130\
    112     \text{Hz}, \dots
    113 \end{align}
    114 \subsection{Short-Time Fourier Transform (STFT)}
    115 The Definition of the STFT is
    116 \begin{align}
    117     \text{STFT}\{f\} &= S_\varphi f(\tau, \omega) = \int_\mathbb{R} f(t)
    118     \overline{\text{M}_\omega \text{T}_\tau \varphi}dt \\
    119                  &=\int_\mathbb{R} f(t)
    120     \bar{\varphi}(t - \tau)e^{-2\pi i \omega t}\ dt \\
    121 \end{align}
    122 Then we have the following identity
    123 \begin{align}
    124     S_\varphi(\text{T}_u\text{M}_\eta f)(x,\omega)
    125     &= \int_\mathbb{R}
    126      \left(\text{T}_u \text{M}_\eta f(t)\right) \bar{\varphi}(t-x) e^{-2\pi i
    127          \omega t}\ dt\\
    128     &= \int_\mathbb{R} e^{2\pi i \eta(t-u)}f(t-u) e^{-2\pi i \omega
    129     t}\bar{\varphi}(t-x)\ dt \qquad \text{(sub: $s = t-u$)}\\
    130     &= \int_\mathbb{R} f(s)\bar{\varphi}(s-(x-u))e^{2\pi i \eta s}e^{-2\pi i
    131     \omega s} e^{-2\pi i \omega u}\ ds \\
    132     &=e^{-2\pi i \omega u}\int_\mathbb{R} f(s) \bar{\varphi}(s-(x-u))e^{-2\pi i
    133     (\omega - \eta)s}\ ds\\
    134     &=e^{-2\pi i \omega u}\int_\mathbb{R}
    135     f(s)\overline{ \text{M}_{(\omega-\eta)} \text{T}_{(x-u)}\varphi(s)}\ ds\\
    136     &=e^{-2\pi i \omega u} S_\varphi f\left(x-u,\ \omega -\eta\right).
    137 \end{align}
    138 The second identity we can show
    139 \begin{align}
    140     S_\varphi f(x, \omega)
    141     &= \langle f, \overline{\text{M}_\omega \text{T}_x \varphi}\rangle \\
    142     &= \langle\mathcal{F} f, \mathcal{F} \overline{\text{M}_\omega \text{T}_x \varphi}\rangle \\
    143     &= \int_\xi \hat{f}(\xi)\int_t \overline{\text{M}_\omega \text{T}_x
    144     \varphi}(t) e^{-2\pi i \xi t}\ dt\ d\xi \\
    145     &= \int_\xi \hat{f}(\xi)\int_t \hat{\bar{\varphi}}(t-x) e^{2\pi i \omega
    146     t} e^{-2\pi i \xi t}\ dt\ d\xi \\
    147     &= \int_\xi \hat{f}(\xi)\int_t \hat{\bar{\varphi}}(t-x)e^{-2\pi i (\xi
    148     -\omega)t}\ dt\ d\xi \qquad \text{sub $u=t-x$}\\
    149     &= \int_\xi \hat{f}(\xi)\int_t \hat{\bar{\varphi}}(u)e^{-2\pi i (\xi
    150     -\omega)u}e^{-2\pi i (\xi -\omega)x} \ dt\ d\xi\\
    151     &= \int_\xi \hat{f}(\xi)e^{-2\pi i (\xi -\omega)x}\int_t
    152     \hat{\varphi}(u)e^{-2\pi i (\xi -\omega)u} \ dt\ d\xi\\ &= e^{2\pi i
    153     \omega x}\int_\xi \hat{f}(\xi) \hat{\bar{\varphi}}(\xi - \omega) e^{-2\pi
    154     i \xi x}d\xi\\
    155     &= e^{2\pi i \omega x} S_{\hat{\varphi}} \hat{f}(\omega, -x).
    156 \end{align}
    157 % printbibliography
    158 \end{document}