main.tex (13782B)
1 \documentclass[a4paper]{article} 2 3 4 \usepackage[T1]{fontenc} 5 \usepackage[utf8]{inputenc} 6 \usepackage{mlmodern} 7 8 %\usepackage{ngerman} % Sprachanpassung Deutsch 9 10 \usepackage{graphicx} 11 \usepackage{geometry} 12 \geometry{a4paper, top=15mm} 13 14 \usepackage{subcaption} 15 \usepackage[shortlabels]{enumitem} 16 \usepackage{amssymb} 17 \usepackage{amsthm} 18 \usepackage{mathtools} 19 \usepackage{braket} 20 \usepackage{bbm} 21 \usepackage{graphicx} 22 \usepackage{float} 23 \usepackage{yhmath} 24 \usepackage{tikz} 25 \usetikzlibrary{patterns,decorations.pathmorphing,positioning} 26 \usetikzlibrary{calc,decorations.markings} 27 28 %\usepackage[backend=biber, sorting=none]{biblatex} 29 %\addbibresource{uni.bib} 30 31 \usepackage[framemethod=TikZ]{mdframed} 32 33 \tikzstyle{titlered} = 34 [draw=black, thick, fill=white,% 35 text=black, rectangle, 36 right, minimum height=.7cm] 37 38 39 \usepackage[colorlinks=true,naturalnames=true,plainpages=false,pdfpagelabels=true]{hyperref} 40 \usepackage[parfill]{parskip} 41 \usepackage{lipsum} 42 43 44 \usepackage{tcolorbox} 45 \tcbuselibrary{skins,breakable} 46 47 \pagestyle{myheadings} 48 49 \newcommand{\eps}{\varepsilon} 50 51 \markright{Popović\hfill Applied Analysis\hfill} 52 53 54 \title{University of Vienna\\ Faculty of Mathematics\\ 55 \vspace{1cm}Applied Analysis Problems 56 } 57 \author{Milutin Popovic} 58 59 \begin{document} 60 \maketitle 61 \tableofcontents 62 63 \section{Sheet 1} 64 65 \subsection{Fall from high} 66 We consider a free fall ($\dot{x}(t=0)=0$) of an object with mass $20\ 67 \text{kg}$ from a height $x(0) = h = 20\; \text{km}$, such that the 68 gravitational force depends on the height $x(t)$ in the following way 69 \begin{align}\label{eq: free fall} 70 \ddot{x}(t) = -g\frac{R^2}{(x(t) + R)^2}, 71 \end{align} 72 where $R$ is the radius of the earth $R \approx 6000\; \text{km}$ and $g 73 \approx 9.81\ \frac{m}{s^2}$ is the gravitational acceleration on the surface 74 of the earth. For this problem there are two possible non-dimensionalisations, 75 but first let us rewrite the variables in terms of non-dimensional variables 76 and some dimensional constants, a priori let 77 \begin{align} 78 t &= t_c \tau \;\;\; \text{and}\\ 79 x &= x_c \xi. 80 \end{align} 81 With the above ansatz we get the following second derivative in 82 time 83 \begin{align} 84 \frac{d^2}{dt^2} &= \frac{1}{t_c^2}\frac{d^2}{d\tau^2} \\ 85 \Rightarrow \frac{d^2x}{dt^2} &= \frac{x_c}{t_c^2} 86 \frac{d^2\xi}{d\tau^2}, 87 \end{align} 88 and thus the initial conditions can be rewritten as 89 \begin{align} 90 \xi(0) = \frac{h}{x_c},\\ 91 \dot{\xi} = 0. 92 \end{align} 93 Now we can rewrite the equation of the free fall in \ref{eq: free fall} in 94 terms of $\xi(\tau)$ as 95 \begin{align} 96 \frac{x_c}{gt_c^2} \ddot{\xi} = -\frac{1}{(\frac{x_c}{R}\xi +1)^2}. 97 \end{align} 98 Thereby we have three dimensional constants constants $\Pi_1, \Pi_2, \Pi_3$, 99 as follows 100 \begin{align} 101 \Pi_1 = \frac{x_c}{R}, \;\;\;\; \Pi_2 = \frac{h}{x_c}, \;\;\;\; 102 \Pi_3 = \frac{x_c}{gt_c^2}. 103 \end{align} 104 105 The first scaling is done by reducing $\Pi_1$ and $\Pi_3$ to 1, by setting 106 \begin{align} 107 x_c = R, \;\;\;\; t_c = \sqrt{\frac{R}{g}}, 108 \end{align} 109 reformulating the initial problem in equation \ref{eq: free fall} to 110 \begin{align} 111 &\ddot{\xi} = -\frac{1}{(\xi + 1)^2},\;\;\;\; 112 \text{with} \nonumber\\ 113 &\xi(0) = \frac{h}{R}, \;\;\;\; \dot{\xi}(0) = 0. 114 \end{align} 115 Reducing the problem, meaning if $\frac{h}{R} \rightarrow 0$ makes the first 116 initial condition $\xi(0) \rightarrow 0$. We can conclude that this scaling 117 is bad since it changes the initial condition in the reduced problem. 118 119 The second scaling option reduces $\Pi_2$ and $\Pi_3$ to 1, by setting 120 \begin{align} 121 x_c = h, \;\;\;\; t_c = \sqrt{\frac{h}{g}}, 122 \end{align} 123 reformulating the initial problem in equation \ref{eq: free fall} to 124 \begin{align} 125 &\ddot{\xi} = -\frac{1}{(\frac{h}{R}\xi + 1)^2},\;\;\;\; 126 \text{with} \nonumber\\ 127 &\xi(0) = 1, \;\;\;\; \dot{\xi}(0) = 0. 128 \end{align} 129 By letting $R \rightarrow \infty$ we get the following reduced problem 130 \begin{align}\label{eq: free fall reduced} 131 \ddot{\xi} = -1. 132 \end{align} 133 Integrating and solving for $\xi(\tau = T\sqrt{\frac{g}{h}}) = 0$ for when the 134 object hits the ground we get a familiar solution 135 \begin{align} 136 T = \sqrt{\frac{2h}{g}} 137 \end{align} 138 Note that in the reduced problem the time until the object hits the ground is 139 \textbf{(much) shorter} since the acceleration is at its maximum $\ddot{x}(t) = 140 g$ for all $t$. Yet in the original problem the acceleration (gravitation 141 force) \textbf{increases} as the object comes \textbf{closer} to earth . For 142 instance, if we let an object fall down from the height $h = R$ then its 143 gravitational force (acceleration) at that height would be $\ddot{x}(0) = 144 g/2$ and upon landing on earth the gravitational force $\ddot{x}(T) = g$, 145 while in the reduced solution its gravitational force would be $\ddot{x}(t) = 146 g$ for all $t$. 147 148 Additionally we can calculate the velocity at impact we need to integrate the 149 reduced problem \ref{eq: free fall reduced} once and put in the initial 150 condition 151 \begin{align} 152 \dot{\xi}(\tau = \frac{T}{t_c}) &= -\tau = -\sqrt{2} \\ 153 \text{and} \;\;\; \dot{x} &= \frac{x_c}{t_c}\dot{\xi} = 154 \sqrt{gh}\; \dot{\xi}\\ 155 \Rightarrow \dot{x}(T) &= -\sqrt{2gh}, 156 \end{align} 157 The result is exactly the same as we would get from energy conservation 158 \begin{align} 159 \frac{m}{2}\dot{x}^2 = mgh \quad \Rightarrow \quad \dot{x} = \sqrt{2gh}. 160 \end{align} 161 The vertical throw allows for an additional scaling because the 162 initial conditions are different, $x(0) = 0$ and $\dot{x}(0) = v$. Thus 163 the solution too. 164 165 To summarize, the assumptions that used for modeling and simplifying the 166 equation are 167 \begin{itemize} 168 \item no relativistic influence, 169 \item closed system, no outside influence (gravitation of the sun, air 170 resistance), 171 \item spherical symmetry of the earth (thereby center of mass can be 172 set in the middle of earth). 173 \end{itemize} 174 By looking at our assumptions a question arises:\textbf{Is it a good 175 approximation to replace the attractive force of the earth by the attraction 176 of the whole mass concentrated at the center?}. 177 178 To answer this question more or less simply we look at the Poisson's equation 179 for gravity, 180 \begin{align} 181 \ddot{\vec{x}}(\vec{r}) = -\nabla \phi(\vec{r}) \\ 182 \Delta \phi = 4\pi G\varrho(\vec{r}). 183 \end{align} 184 for a gravitational potential $\phi$ and the mass density of earth 185 $\varrho$. We assume that \textbf{the earth can be approximated by a sphere} 186 and then we integrate both sides along the sphere (and use the Gaussian law 187 for integration) 188 \begin{align} 189 \int_{S} \nabla \ddot{\vec{x}}\ dS = 190 \int_{\partial S}\ddot{\vec{x}}\ d\vec{s} = -4\pi 191 G \int_S\varrho(\vec{r})\ ds = -4\pi GM. 192 \end{align} 193 Obviously $\ddot{\vec{x}}$ and $d\vec{s}$ point in the same direction. We 194 choose (rotate) the coordinate system such hat $\ddot{\vec{x}} = 195 \ddot{x}\ \mathbf{\hat{n}}$ and $d\vec{s} = \mathbf{\hat{n}}\ ds$, thereby 196 we get 197 \begin{align} 198 &\ddot{x}\int_{\partial S} ds = 4\pi r^2 \ddot{x},\\ 199 \Rightarrow &\ddot{x} = -\frac{GM}{r^2}. 200 \end{align} 201 The further derivation to get the exact equation of motion as in \ref{eq: 202 free fall}, we have to keep in mind that $r = x + R$, because by our 203 assumptions we are not in the sphere only outside or on the border $R$. 204 Lastly by reformulating the constants $gR^2 = GM$ gets us to our equation of 205 motion 206 \begin{align} 207 \ddot{x}(t) = -g\frac{R^2}{(x(t) + R)^2}. 208 \end{align} 209 210 \subsection{Scaling The Van der Pol equation} 211 The Van der Pol equation is a perturbation of the oscillation equation 212 \begin{align}\label{eq: vanderpol} 213 LC\frac{d^2I}{dt^2} + (-g_1C +3g_3CI^2)\frac{dI}{dt} = -I 214 \end{align} 215 with initial conditions 216 \begin{align}\label{eq: van initial} 217 I(0) = I_0,\;\;\;\; \dot{I}(0) = 0. 218 \end{align} 219 where $I(t)$ is the current at a time $t$, $C$ is the capacity, $L$ is the 220 inductivity and $g_1, g_3$ are some parameters. The units of all the 221 parameters are 222 \begin{align} 223 [LC] &= s^2\\ 224 [g_1C] &= s\\ 225 [g_3C] &= sA^{-2} 226 \end{align} 227 The oscillation equation is 228 \begin{align} 229 CL\ddot{I} + I = 0. 230 \end{align} 231 Solvable by the exponential ansatz of $I = Ae^{\lambda t}$, where $\lambda= 232 \pm i \sqrt{\frac{1}{LC}}$, thereby 233 \begin{align} 234 I(t) = A_1 e^{i\sqrt{\frac{1}{LC}}t} + A_2 e^{-i\sqrt{\frac{1}{LC}}t}. 235 \end{align} 236 With the initial conditions in equation \ref{eq: van initial} we get $A_1 = 237 A_2$ and thus the solution to the oscillation equation is 238 \begin{align} 239 I(t) = I_0\cos(\frac{t}{\sqrt{LC}}) 240 \end{align} 241 Now that we know the reduced problem and the solution to it, we may work with 242 the Van-Der-Pol equation \ref{eq: vanderpol}, by determining all possible 243 non-dimensionalisations. Let us begin by setting 244 \begin{align} 245 I(t) = I_c\psi,\\ 246 t = t_c \tau, 247 \end{align} 248 where $I_c$ and $t_c$ have the dimension of $I(t)$ and $t$ accordingly and 249 $\psi(\tau)$ and $\tau$ are dimensionless 250 The \textbf{first} and second derivative in time is 251 \begin{align} 252 \frac{d}{dt} &= \frac{1}{t_c}\frac{d}{d\tau}\\ 253 \frac{d^2}{dt^2} &= \frac{1}{t_c^2}\frac{d^2}{d\tau^2}. 254 \end{align} 255 We can rewrite the Van-Der-Pol equation in terms of $\psi$ and $\tau$ 256 \begin{align} 257 &\frac{LC}{t_c^2}\ddot{\psi} - \left(\frac{3g_3I_c^2}{g_1}\psi^2 - 258 1\right)\frac{g_1C}{t_c}\dot{\psi}= -\psi\\ 259 &\psi(0) = \frac{I_0}{I_c} \;\;\;\; \dot{\psi}(0) = 0 260 \end{align} 261 There are a total of four constants that we can eliminate 262 \begin{align} 263 \Pi_1 &= \frac{I_0}{I_c}, \qquad 264 \Pi_2 = \frac{LC}{t_c^2},\nonumber\\ 265 \Pi_3 &= \frac{3g_3I_c^2}{g_1}, \qquad 266 \Pi_4 = \frac{g_1C}{t_c}. 267 \end{align} 268 The \textbf{first} scaling is 269 \begin{align} 270 I_c = \sqrt{\frac{g_1}{3g_3}},\;\;\; t_c=\sqrt{LC}. 271 \end{align} 272 Thereby we get the following problem 273 \begin{align} 274 \ddot{\psi} + (\psi^2 - 1)\eps \dot{\psi} = -\psi, \qquad \psi(0) = 275 \sqrt{\frac{3g_3}{g_1}}I_0, 276 \end{align} 277 where $\eps = g_1\sqrt{\frac{C}{L}}$. 278 279 The \textbf{second} scaling is 280 \begin{align} 281 I_c = \sqrt{\frac{g_1}{3g_3}},\;\;\; t_c=g_1C. 282 \end{align} 283 Thereby we get the following 284 \begin{align} 285 \eps \psi'' +(\psi^2 +1)\psi' = -\psi, \qquad \psi(0) = 286 \sqrt{\frac{3g_3}{g_1}}I_0, 287 \end{align} 288 where $\eps = \frac{L}{g_1^2C}$. We could also consider scaling $I_c = I_0$ 289 with $t_c = \sqrt{LC}$ or $t_c = g_1C$ but they wouldn't develop significant 290 model hierarchies like the above two scaling. 291 \subsection{Scale the Schrödinger Equation} 292 The well known Schrödinger equation that describes quantum physics of the one 293 particle system is 294 \begin{align} 295 &i\hbar \partial_t\psi = -\frac{\hbar^2}{2m}\Delta \psi + V\psi \nonumber\\ 296 &\psi(t=0) =\psi_0 297 \end{align} 298 where $\hbar$ is the reduced Plank constant, $\psi=\psi(x, t)$ the wave function, 299 $m$ the mass and $V = V(x)$ the potential in which the wave function is. The 300 dimensions are 301 \begin{align} 302 [\hbar] = js, \;\;\;\; [V] = j, \;\;\;\; [\psi]= m^{-d/2} 303 \end{align} 304 where $d$ is the spacial dimension. The standard scaling ansatz is 305 \begin{align} 306 &\psi = \psi_c \phi \\ 307 &t = t_c \tau \;\;\;\; x = x_c \xi, 308 \end{align} 309 by that we get the following derivatives in time and in space 310 \begin{align} 311 \partial_{x_i} &=\frac{1}{x_{(i)c}} \partial_{\psi_i} \\ 312 \partial^2_{x_i} &=\frac{1}{x_{(i)c}^2} \partial_{\psi_i}^2\\ 313 \partial_{t} &=\frac{1}{t_c} \partial_{\psi_i} \\ 314 \end{align} 315 for $i = 1, 2, 3$, or depending on the dimension we are dealing with. 316 317 Let us consider $x\in \mathbb{R}^3$ and $V = 0$ to scale the equation. First 318 we now have 319 \begin{align} 320 i \partial_t\psi = -\frac{\hbar}{2m}\Delta \psi 321 \end{align} 322 with the initial condition $\phi(0) = \frac{\psi_0}{\psi_c}$. With our scaling the equation turns out to be 323 \begin{align} 324 \frac{i\hbar t_c}{2m}\frac{1}{||\vec{x}_c||^2}\Delta_{\vec{\xi}}\ \phi = 325 \partial_\tau\ \phi. 326 \end{align} 327 The constants we get are 328 \begin{align} 329 \Pi_1 = \frac{t_c\hbar}{2m}\frac{1}{||\vec{x}_c||^2}, \;\;\;\; \Pi_2 = 330 \frac{\psi_0}{\psi_c}. 331 \end{align} 332 333 The simple choice of 334 \begin{align} 335 \frac{1}{||\vec{x}_c||^2} = 1, \;\;\;\; \psi_c = \psi_0, \;\;\;\; t_c = 336 \frac{2m}{\hbar}||\vec{x}_c||^2, 337 \end{align} 338 simplifies the Schrodinger equation without the potential to 339 \begin{align} 340 i\Delta_{\vec{\xi}}\ \phi = \partial_\tau \phi, 341 \end{align} 342 with the initial condition $\phi(\tau=0) = 1$. 343 . 344 345 Now consider $V = 0$, $x\in[0, L]$ and $t \in [0, T]$, the Schrodinger 346 equation is the same only with one spacial dimension as above, we can set 347 \begin{align} 348 \psi_c = \psi_0, \;\;\;\; x_c =L, \;\;\;\; t_c = \frac{2mL^2}{\hbar}. 349 \end{align} 350 Thus we get 351 \begin{align} 352 i\partial_{\xi}^2 \phi = \partial_\tau \phi, 353 \end{align} 354 with the initial condition $\phi(\tau=0) = 1$, where $\xi \in [0, 1]$ and 355 $\tau \in [0, \frac{\hbar T}{2mL^2}]$. 356 . 357 358 In the last example let us consider the quantum harmonic oscillator 359 represented by the potential $V(x) = m\omega^2 x^2$ for $x\in \mathbb{R}$, 360 where $\omega$ is the frequency. The equation is the following 361 \begin{align} 362 i \hbar \partial_t \psi = -\frac{\hbar^2}{2m}\partial^2_x \psi 363 +m\omega^2x^2 \psi. 364 \end{align} 365 By inserting the standard scaling ansatz we get 366 \begin{align} 367 i\partial_\tau \phi = -\frac{t_c\hbar}{2mx_c^2}\partial_\xi^2 \phi 368 +\frac{t_cm\omega^2x_c^2}{\hbar} \xi^2 \phi, 369 \end{align} 370 The dimensional constants are 371 \begin{align} 372 \Pi_1 = \frac{t_0\hbar}{mx_c^2},\;\;\;\;\Pi_2 = 373 \frac{m\omega^2x_c^2t_c}{\hbar},\;\;\;\; \Pi_3 = \frac{\psi_0}{\psi_c}. 374 \end{align} 375 The choice of scaling is 376 \begin{align} 377 \psi_c = \psi_0, \;\;\;\; t_c = \frac{1}{\omega}, \;\;\;\; x_c = 378 \sqrt{\frac{\hbar}{m\omega}}. 379 \end{align} 380 Thereby getting the following problem 381 \begin{align} 382 i\partial_\tau \phi = -\frac{1}{2} \partial_\xi^2 \phi +\xi^2 \phi 383 \end{align} 384 with $\phi(\tau = 0) = 1$. 385 386 %\printbibliography 387 \end{document}