notes

uni notes
git clone git://popovic.xyz/notes.git
Log | Files | Refs

main.tex (13782B)


      1 \documentclass[a4paper]{article}
      2 
      3 
      4 \usepackage[T1]{fontenc}
      5 \usepackage[utf8]{inputenc}
      6 \usepackage{mlmodern}
      7 
      8 %\usepackage{ngerman}	% Sprachanpassung Deutsch
      9 
     10 \usepackage{graphicx}
     11 \usepackage{geometry}
     12 \geometry{a4paper, top=15mm}
     13 
     14 \usepackage{subcaption}
     15 \usepackage[shortlabels]{enumitem}
     16 \usepackage{amssymb}
     17 \usepackage{amsthm}
     18 \usepackage{mathtools}
     19 \usepackage{braket}
     20 \usepackage{bbm}
     21 \usepackage{graphicx}
     22 \usepackage{float}
     23 \usepackage{yhmath}
     24 \usepackage{tikz}
     25 \usetikzlibrary{patterns,decorations.pathmorphing,positioning}
     26 \usetikzlibrary{calc,decorations.markings}
     27 
     28 %\usepackage[backend=biber, sorting=none]{biblatex}
     29 %\addbibresource{uni.bib}
     30 
     31 \usepackage[framemethod=TikZ]{mdframed}
     32 
     33 \tikzstyle{titlered} =
     34     [draw=black, thick, fill=white,%
     35         text=black, rectangle,
     36         right, minimum height=.7cm]
     37 
     38 
     39 \usepackage[colorlinks=true,naturalnames=true,plainpages=false,pdfpagelabels=true]{hyperref}
     40 \usepackage[parfill]{parskip}
     41 \usepackage{lipsum}
     42 
     43 
     44 \usepackage{tcolorbox}
     45 \tcbuselibrary{skins,breakable}
     46 
     47 \pagestyle{myheadings}
     48 
     49 \newcommand{\eps}{\varepsilon}
     50 
     51 \markright{Popović\hfill Applied Analysis\hfill}
     52 
     53 
     54 \title{University of Vienna\\ Faculty of Mathematics\\
     55 \vspace{1cm}Applied Analysis Problems
     56 }
     57 \author{Milutin Popovic}
     58 
     59 \begin{document}
     60 \maketitle
     61 \tableofcontents
     62 
     63 \section{Sheet 1}
     64 
     65 \subsection{Fall from high}
     66 We consider a free fall ($\dot{x}(t=0)=0$) of an object with mass $20\
     67 \text{kg}$ from a height $x(0) = h = 20\; \text{km}$, such that the
     68 gravitational force depends on the height $x(t)$ in the following way
     69 \begin{align}\label{eq: free fall}
     70     \ddot{x}(t) = -g\frac{R^2}{(x(t) + R)^2},
     71 \end{align}
     72 where $R$ is the radius of the earth $R \approx 6000\; \text{km}$ and $g
     73 \approx 9.81\ \frac{m}{s^2}$ is the gravitational acceleration on the surface
     74 of the earth. For this problem there are two possible non-dimensionalisations,
     75 but first let us rewrite the variables in terms of non-dimensional variables
     76 and some dimensional constants, a priori let
     77 \begin{align}
     78     t &= t_c \tau \;\;\; \text{and}\\
     79     x &= x_c \xi.
     80 \end{align}
     81 With the above ansatz we get the following second derivative in
     82 time
     83 \begin{align}
     84         \frac{d^2}{dt^2} &= \frac{1}{t_c^2}\frac{d^2}{d\tau^2} \\
     85         \Rightarrow \frac{d^2x}{dt^2} &= \frac{x_c}{t_c^2}
     86         \frac{d^2\xi}{d\tau^2},
     87 \end{align}
     88 and thus the initial conditions can be rewritten as
     89 \begin{align}
     90     \xi(0) = \frac{h}{x_c},\\
     91     \dot{\xi} = 0.
     92 \end{align}
     93 Now we can rewrite the equation of the free fall in \ref{eq: free fall} in
     94 terms of $\xi(\tau)$ as
     95 \begin{align}
     96    \frac{x_c}{gt_c^2} \ddot{\xi} = -\frac{1}{(\frac{x_c}{R}\xi +1)^2}.
     97 \end{align}
     98 Thereby we have three dimensional constants constants $\Pi_1, \Pi_2, \Pi_3$,
     99 as follows
    100 \begin{align}
    101     \Pi_1 = \frac{x_c}{R}, \;\;\;\; \Pi_2 = \frac{h}{x_c}, \;\;\;\;
    102     \Pi_3 = \frac{x_c}{gt_c^2}.
    103 \end{align}
    104 
    105 The first scaling is done by reducing $\Pi_1$ and $\Pi_3$ to 1, by setting
    106 \begin{align}
    107         x_c = R, \;\;\;\; t_c = \sqrt{\frac{R}{g}},
    108 \end{align}
    109 reformulating the initial problem in equation \ref{eq: free fall} to
    110 \begin{align}
    111     &\ddot{\xi} = -\frac{1}{(\xi + 1)^2},\;\;\;\;
    112     \text{with} \nonumber\\
    113     &\xi(0) = \frac{h}{R}, \;\;\;\; \dot{\xi}(0) = 0.
    114 \end{align}
    115 Reducing the problem, meaning if $\frac{h}{R} \rightarrow 0$ makes the first
    116 initial condition $\xi(0) \rightarrow 0$. We can conclude that this scaling
    117 is bad since it changes the initial condition in the reduced problem.
    118 
    119 The second scaling option reduces $\Pi_2$ and $\Pi_3$ to 1, by setting
    120 \begin{align}
    121         x_c = h, \;\;\;\; t_c = \sqrt{\frac{h}{g}},
    122 \end{align}
    123 reformulating the initial problem in equation \ref{eq: free fall} to
    124 \begin{align}
    125     &\ddot{\xi} = -\frac{1}{(\frac{h}{R}\xi + 1)^2},\;\;\;\;
    126     \text{with} \nonumber\\
    127     &\xi(0) = 1, \;\;\;\; \dot{\xi}(0) = 0.
    128 \end{align}
    129 By letting $R \rightarrow \infty$ we get the following reduced problem
    130 \begin{align}\label{eq: free fall reduced}
    131     \ddot{\xi} = -1.
    132 \end{align}
    133 Integrating and solving for $\xi(\tau = T\sqrt{\frac{g}{h}}) = 0$ for when the
    134 object hits the ground we get a familiar solution
    135 \begin{align}
    136     T = \sqrt{\frac{2h}{g}}
    137 \end{align}
    138 Note that in the reduced problem the time until the object hits the ground is
    139 \textbf{(much) shorter} since the acceleration is at its maximum $\ddot{x}(t) =
    140 g$ for all $t$.  Yet in the original problem the acceleration (gravitation
    141 force) \textbf{increases} as the object comes \textbf{closer} to earth . For
    142 instance, if we let an object fall down from the height $h = R$ then its
    143 gravitational force (acceleration) at that height would be $\ddot{x}(0) =
    144 g/2$ and upon landing on earth the gravitational force $\ddot{x}(T) = g$,
    145 while in the reduced solution its gravitational force would be $\ddot{x}(t) =
    146 g$ for all $t$.
    147 
    148 Additionally we can calculate the velocity at impact we need to integrate the
    149 reduced problem \ref{eq: free fall reduced} once and put in the initial
    150 condition
    151 \begin{align}
    152     \dot{\xi}(\tau = \frac{T}{t_c}) &= -\tau = -\sqrt{2} \\
    153     \text{and} \;\;\; \dot{x} &= \frac{x_c}{t_c}\dot{\xi} =
    154     \sqrt{gh}\; \dot{\xi}\\
    155     \Rightarrow \dot{x}(T) &= -\sqrt{2gh},
    156 \end{align}
    157 The result is exactly the same as we would get from energy conservation
    158 \begin{align}
    159     \frac{m}{2}\dot{x}^2 = mgh \quad \Rightarrow \quad \dot{x} = \sqrt{2gh}.
    160 \end{align}
    161 The vertical throw allows for an additional scaling because the
    162 initial conditions are different, $x(0) = 0$ and $\dot{x}(0) = v$. Thus
    163 the solution too.
    164 
    165 To summarize, the assumptions that used for modeling and simplifying the
    166 equation are
    167 \begin{itemize}
    168     \item no relativistic influence,
    169     \item closed system, no outside influence (gravitation of the sun, air
    170         resistance),
    171     \item spherical symmetry of the earth (thereby center of mass can be
    172         set in the middle of earth).
    173 \end{itemize}
    174 By looking at our assumptions a question arises:\textbf{Is it a good
    175 approximation to replace the attractive force of the earth by the attraction
    176 of the whole mass concentrated at the center?}.
    177 
    178 To answer this question more or less simply we look at the Poisson's equation
    179 for gravity,
    180 \begin{align}
    181     \ddot{\vec{x}}(\vec{r}) = -\nabla \phi(\vec{r}) \\
    182     \Delta \phi = 4\pi G\varrho(\vec{r}).
    183 \end{align}
    184 for a gravitational potential $\phi$ and the mass density of earth
    185 $\varrho$. We assume that \textbf{the earth can be approximated by a sphere}
    186 and then we integrate both sides along the sphere (and use the Gaussian law
    187 for integration)
    188 \begin{align}
    189     \int_{S} \nabla \ddot{\vec{x}}\ dS =
    190     \int_{\partial S}\ddot{\vec{x}}\ d\vec{s} = -4\pi
    191     G \int_S\varrho(\vec{r})\ ds = -4\pi GM.
    192 \end{align}
    193 Obviously $\ddot{\vec{x}}$ and $d\vec{s}$ point in the same direction. We
    194 choose (rotate) the coordinate system such hat $\ddot{\vec{x}} =
    195 \ddot{x}\ \mathbf{\hat{n}}$ and $d\vec{s} = \mathbf{\hat{n}}\ ds$, thereby
    196 we get
    197 \begin{align}
    198     &\ddot{x}\int_{\partial S} ds = 4\pi r^2 \ddot{x},\\
    199     \Rightarrow &\ddot{x} = -\frac{GM}{r^2}.
    200 \end{align}
    201 The further derivation to get the exact equation of motion as in \ref{eq:
    202 free fall}, we have to keep in mind that $r = x + R$, because by our
    203 assumptions we are not in the sphere only outside or on the border $R$.
    204 Lastly by reformulating the constants $gR^2 = GM$ gets us to our equation of
    205 motion
    206 \begin{align}
    207     \ddot{x}(t) = -g\frac{R^2}{(x(t) + R)^2}.
    208 \end{align}
    209 
    210 \subsection{Scaling The Van der Pol equation}
    211 The Van der Pol equation is a perturbation of the oscillation equation
    212 \begin{align}\label{eq: vanderpol}
    213     LC\frac{d^2I}{dt^2} + (-g_1C +3g_3CI^2)\frac{dI}{dt} = -I
    214 \end{align}
    215 with initial conditions
    216 \begin{align}\label{eq: van initial}
    217     I(0) = I_0,\;\;\;\; \dot{I}(0) = 0.
    218 \end{align}
    219 where $I(t)$ is the current at a time $t$, $C$ is the capacity, $L$ is the
    220 inductivity and $g_1, g_3$ are some parameters. The units of all the
    221 parameters are
    222 \begin{align}
    223     [LC] &= s^2\\
    224     [g_1C] &= s\\
    225     [g_3C] &= sA^{-2}
    226 \end{align}
    227 The oscillation equation is
    228 \begin{align}
    229     CL\ddot{I} + I = 0.
    230 \end{align}
    231 Solvable by the exponential ansatz of $I = Ae^{\lambda t}$, where $\lambda=
    232 \pm i \sqrt{\frac{1}{LC}}$, thereby
    233 \begin{align}
    234     I(t) = A_1 e^{i\sqrt{\frac{1}{LC}}t} + A_2 e^{-i\sqrt{\frac{1}{LC}}t}.
    235 \end{align}
    236 With the initial conditions in equation \ref{eq: van initial} we get $A_1 =
    237 A_2$ and thus the solution to the oscillation equation is
    238 \begin{align}
    239     I(t) = I_0\cos(\frac{t}{\sqrt{LC}})
    240 \end{align}
    241 Now that we know the reduced problem and the solution to it, we may work with
    242 the Van-Der-Pol equation \ref{eq: vanderpol}, by determining all possible
    243 non-dimensionalisations. Let us begin by setting
    244 \begin{align}
    245     I(t) = I_c\psi,\\
    246     t = t_c \tau,
    247 \end{align}
    248 where $I_c$ and $t_c$ have the dimension of $I(t)$ and $t$ accordingly and
    249 $\psi(\tau)$ and $\tau$ are dimensionless
    250 The \textbf{first} and second derivative in time is
    251 \begin{align}
    252     \frac{d}{dt} &= \frac{1}{t_c}\frac{d}{d\tau}\\
    253     \frac{d^2}{dt^2} &= \frac{1}{t_c^2}\frac{d^2}{d\tau^2}.
    254 \end{align}
    255 We can rewrite the Van-Der-Pol equation in terms of $\psi$ and $\tau$
    256 \begin{align}
    257     &\frac{LC}{t_c^2}\ddot{\psi} - \left(\frac{3g_3I_c^2}{g_1}\psi^2 -
    258     1\right)\frac{g_1C}{t_c}\dot{\psi}= -\psi\\
    259     &\psi(0) = \frac{I_0}{I_c} \;\;\;\; \dot{\psi}(0) = 0
    260 \end{align}
    261 There are a total of four constants that we can eliminate
    262 \begin{align}
    263     \Pi_1 &= \frac{I_0}{I_c}, \qquad
    264     \Pi_2 = \frac{LC}{t_c^2},\nonumber\\
    265     \Pi_3 &= \frac{3g_3I_c^2}{g_1}, \qquad
    266     \Pi_4 = \frac{g_1C}{t_c}.
    267 \end{align}
    268 The \textbf{first} scaling is
    269 \begin{align}
    270     I_c = \sqrt{\frac{g_1}{3g_3}},\;\;\; t_c=\sqrt{LC}.
    271 \end{align}
    272 Thereby we get the following problem
    273 \begin{align}
    274     \ddot{\psi} + (\psi^2 - 1)\eps \dot{\psi} = -\psi, \qquad \psi(0) =
    275     \sqrt{\frac{3g_3}{g_1}}I_0,
    276 \end{align}
    277 where $\eps = g_1\sqrt{\frac{C}{L}}$.
    278 
    279 The \textbf{second} scaling is
    280 \begin{align}
    281     I_c = \sqrt{\frac{g_1}{3g_3}},\;\;\; t_c=g_1C.
    282 \end{align}
    283 Thereby we get the following
    284 \begin{align}
    285     \eps \psi'' +(\psi^2 +1)\psi' = -\psi, \qquad \psi(0) =
    286     \sqrt{\frac{3g_3}{g_1}}I_0,
    287 \end{align}
    288 where $\eps = \frac{L}{g_1^2C}$. We could also consider scaling $I_c = I_0$
    289 with $t_c = \sqrt{LC}$ or $t_c = g_1C$ but they wouldn't develop significant
    290 model hierarchies like the above two scaling.
    291 \subsection{Scale the Schrödinger Equation}
    292 The well known Schrödinger equation that describes quantum physics of the one
    293 particle system is
    294 \begin{align}
    295     &i\hbar \partial_t\psi = -\frac{\hbar^2}{2m}\Delta \psi + V\psi \nonumber\\
    296     &\psi(t=0) =\psi_0
    297 \end{align}
    298 where $\hbar$ is the reduced Plank constant, $\psi=\psi(x, t)$ the wave function,
    299 $m$ the mass and $V = V(x)$ the potential in which the wave function is. The
    300 dimensions are
    301 \begin{align}
    302     [\hbar] = js, \;\;\;\; [V] = j,  \;\;\;\; [\psi]= m^{-d/2}
    303 \end{align}
    304 where $d$ is the spacial dimension. The standard scaling ansatz is
    305 \begin{align}
    306     &\psi = \psi_c \phi \\
    307     &t = t_c \tau \;\;\;\; x = x_c \xi,
    308 \end{align}
    309 by that we get the following derivatives in time and in space
    310 \begin{align}
    311     \partial_{x_i} &=\frac{1}{x_{(i)c}} \partial_{\psi_i} \\
    312     \partial^2_{x_i} &=\frac{1}{x_{(i)c}^2} \partial_{\psi_i}^2\\
    313     \partial_{t} &=\frac{1}{t_c} \partial_{\psi_i} \\
    314 \end{align}
    315 for $i = 1, 2, 3$, or depending on the dimension we are dealing with.
    316 
    317 Let us consider $x\in \mathbb{R}^3$ and $V = 0$ to scale the equation. First
    318 we now have
    319 \begin{align}
    320     i \partial_t\psi = -\frac{\hbar}{2m}\Delta \psi
    321 \end{align}
    322 with the initial condition $\phi(0) = \frac{\psi_0}{\psi_c}$. With our scaling the equation turns out to be
    323 \begin{align}
    324     \frac{i\hbar t_c}{2m}\frac{1}{||\vec{x}_c||^2}\Delta_{\vec{\xi}}\ \phi =
    325     \partial_\tau\ \phi.
    326 \end{align}
    327 The constants we get are
    328 \begin{align}
    329     \Pi_1 = \frac{t_c\hbar}{2m}\frac{1}{||\vec{x}_c||^2}, \;\;\;\; \Pi_2 =
    330     \frac{\psi_0}{\psi_c}.
    331 \end{align}
    332 
    333 The simple choice of
    334 \begin{align}
    335     \frac{1}{||\vec{x}_c||^2} = 1, \;\;\;\; \psi_c = \psi_0, \;\;\;\; t_c =
    336     \frac{2m}{\hbar}||\vec{x}_c||^2,
    337 \end{align}
    338 simplifies the Schrodinger equation without the potential to
    339 \begin{align}
    340     i\Delta_{\vec{\xi}}\ \phi = \partial_\tau \phi,
    341 \end{align}
    342 with the initial condition $\phi(\tau=0) = 1$.
    343 .
    344 
    345 Now consider $V = 0$, $x\in[0, L]$ and $t \in [0, T]$, the Schrodinger
    346 equation is the same only with one spacial dimension as above, we can set
    347 \begin{align}
    348     \psi_c = \psi_0, \;\;\;\; x_c =L, \;\;\;\; t_c = \frac{2mL^2}{\hbar}.
    349 \end{align}
    350 Thus we get
    351 \begin{align}
    352     i\partial_{\xi}^2 \phi = \partial_\tau \phi,
    353 \end{align}
    354 with the initial condition $\phi(\tau=0) = 1$, where $\xi \in [0, 1]$ and
    355 $\tau \in [0, \frac{\hbar T}{2mL^2}]$.
    356 .
    357 
    358 In the last example let us consider the quantum harmonic oscillator
    359 represented by the potential $V(x) = m\omega^2 x^2$ for $x\in \mathbb{R}$,
    360 where $\omega$ is the frequency. The equation is the following
    361 \begin{align}
    362     i \hbar \partial_t \psi = -\frac{\hbar^2}{2m}\partial^2_x \psi
    363     +m\omega^2x^2 \psi.
    364 \end{align}
    365 By inserting the standard scaling ansatz we get
    366 \begin{align}
    367     i\partial_\tau \phi = -\frac{t_c\hbar}{2mx_c^2}\partial_\xi^2 \phi
    368     +\frac{t_cm\omega^2x_c^2}{\hbar} \xi^2 \phi,
    369 \end{align}
    370 The dimensional constants are
    371 \begin{align}
    372     \Pi_1 = \frac{t_0\hbar}{mx_c^2},\;\;\;\;\Pi_2 =
    373     \frac{m\omega^2x_c^2t_c}{\hbar},\;\;\;\; \Pi_3 = \frac{\psi_0}{\psi_c}.
    374 \end{align}
    375 The choice of scaling is
    376 \begin{align}
    377     \psi_c = \psi_0, \;\;\;\; t_c = \frac{1}{\omega}, \;\;\;\; x_c =
    378     \sqrt{\frac{\hbar}{m\omega}}.
    379 \end{align}
    380 Thereby getting the following problem
    381 \begin{align}
    382     i\partial_\tau \phi = -\frac{1}{2} \partial_\xi^2 \phi +\xi^2 \phi
    383 \end{align}
    384 with $\phi(\tau = 0) = 1$.
    385 
    386 %\printbibliography
    387 \end{document}