notes

uni notes
git clone git://popovic.xyz/notes.git
Log | Files | Refs

main.tex (10460B)


      1 \documentclass[a4paper]{article}
      2 
      3 
      4 \usepackage[T1]{fontenc}
      5 \usepackage[utf8]{inputenc}
      6 \usepackage{mlmodern}
      7 
      8 %\usepackage{ngerman}	% Sprachanpassung Deutsch
      9 
     10 \usepackage{graphicx}
     11 \usepackage{geometry}
     12 \geometry{a4paper, top=15mm}
     13 
     14 \usepackage{subcaption}
     15 \usepackage[shortlabels]{enumitem}
     16 \usepackage{amssymb}
     17 \usepackage{amsthm}
     18 \usepackage{mathtools}
     19 \usepackage{braket}
     20 \usepackage{bbm}
     21 \usepackage{graphicx}
     22 \usepackage{float}
     23 \usepackage{yhmath}
     24 \usepackage{tikz}
     25 \usetikzlibrary{patterns,decorations.pathmorphing,positioning}
     26 \usetikzlibrary{calc,decorations.markings}
     27 
     28 %\usepackage[backend=biber, sorting=none]{biblatex}
     29 %\addbibresource{uni.bib}
     30 
     31 \usepackage[framemethod=TikZ]{mdframed}
     32 
     33 \tikzstyle{titlered} =
     34     [draw=black, thick, fill=white,%
     35         text=black, rectangle,
     36         right, minimum height=.7cm]
     37 
     38 
     39 \usepackage[colorlinks=true,naturalnames=true,plainpages=false,pdfpagelabels=true]{hyperref}
     40 \usepackage[parfill]{parskip}
     41 \usepackage{lipsum}
     42 
     43 
     44 \usepackage{tcolorbox}
     45 \tcbuselibrary{skins,breakable}
     46 \newcommand{\eps}{\varepsilon}
     47 \pagestyle{myheadings}
     48 
     49 \markright{Popović\hfill Applied Analysis\hfill}
     50 
     51 
     52 
     53 \title{Applied Analysis Problems}
     54 \author{Milutin Popović}
     55 
     56 \begin{document}
     57 \maketitle
     58 \tableofcontents
     59 
     60 \section{Sheet 2}
     61 \subsection{Problem 4}
     62 We consider a quadratic equation with two ways to perturb it by $\eps$:
     63 \begin{align}
     64     x^2 + 2\eps x -1 = 0, \label{eq: (1)}\\
     65     \nonumber \\
     66     \eps x^2 + 2x - 1 = 0.\label{eq: (2)}
     67 \end{align}
     68 Equation \ref{eq: (2)} is singular, because the reduced problem ($\eps
     69 \rightarrow 0$) has only one solution at $x = \frac{1}{2}$. While the reduced
     70 problem in \ref{eq: (1)} has two solutions for $x = \pm 1$, which is the case
     71 for this non reduced equation. Let us thereby calculate the asymptotic
     72 expansion of the regular case up to $O(\eps^2)$, we take the ansatz for the
     73 asymptotic expansion
     74 \begin{align}\label{eq: p4 ansatz}
     75     x_\eps = x_0 + \eps x_1 + \eps^2 x_2 + O(\eps^3).
     76 \end{align}
     77 By substituting $x_\eps$ into \ref{eq: (1)} and factoring out the orders of
     78 $\eps$ we get
     79 \begin{align}
     80     \eps^0 (x_0^2 - 1) + \eps^1(2x_0 + 2x_0x_1) + \eps^2(x_1^2+2x_2x_0
     81     +2x_1) + O(\eps^3) = 0
     82 \end{align}
     83 By solving the equations in order of $\eps$, for the coefficients
     84 $x_0$, $x_1$ and $x_2$ we get
     85 \begin{align}
     86     x_0 = \pm 1, \;\;\;\; x_1 = -1, \;\;\;\; x_2 = \pm \frac{1}{2}.
     87 \end{align}
     88 By substituting into the equation \ref{eq: p4 ansatz} we get
     89 \begin{align}
     90     x_\eps = \pm 1 - \eps \pm \frac{1}{2} \eps + O(\eps^3).
     91 \end{align}
     92 For $\eps = 0.001$ we get
     93 \begin{align}
     94     &x_\eps = -1.0010005 + O(\eps^3),  &x_\eps = 0.9990005 + O(\eps^3),\\
     95     &x_\eps = -1.001 + O(\eps^2),      &x_\eps = 0.999 + O(\eps^2).
     96 \end{align}
     97 \subsection{Problem 5}
     98 Consider the following equations
     99 \begin{align}
    100     \label{eq: p5 1}\eps y' + y = x \;\;\;\;\;\; y(0) = 1\\
    101     \label{eq: p5 2}\eps y' + y = x \;\;\;\;\;\; y(0) = 0\\
    102     \nonumber\\
    103     \label{eq: p5 3}\eps y' + y = x \;\;\;\;\;\; y(0) = \eps\\
    104     \label{eq: p5 4}\eps^2 y' + y = x \;\;\;\;\;\; y(0) = \eps\\
    105     \nonumber\\
    106     \label{eq: p5 5}y' + \eps y = x \;\;\;\;\;\; y(0) = 1\\
    107     \label{eq: p5 6}y' + y = \eps x \;\;\;\;\;\; y(0) = 1
    108 \end{align}
    109 We will go through the equations and elaborate on if the perturbation is
    110 regular or singular, if regular we will compute the asymptotic expansion up
    111 to second order.
    112 Let us begin with equation \ref{eq: p5 1}. By the first look, the reduced
    113 problem does not agree with the boundary condition
    114 \begin{align}
    115     y_0 = x \;\;\;\;\; y_0(0) = 1,
    116 \end{align}
    117 is a contradiction in $y_0(0) = 0 \neq 1$, thereby equation \ref{eq: p5 1} is
    118 \textbf{singularly perturbed}.
    119 
    120 The reduced problem of equation \ref{eq: p5 2} on the other hand agrees with
    121 the boundary condition, since
    122 \begin{align}
    123     y_0 = x \;\;\;\;\; y_0(0) = 0.
    124 \end{align}
    125 But by doing the ansatz for the asymptotic expansion
    126 \begin{align}
    127     y_\eps(x) = y_0 + \eps y_1 + \eps^2 y_2 + O(\eps^3),
    128 \end{align}
    129 plugging in into \ref{eq: p5 2} and separating coefficients in terms of
    130 $\eps$, we get
    131 \begin{align}
    132     \eps^0 (y_0 -x) + \eps^1(y_0' + y_1) + \eps^2(y_1' + y_2) + O(\eps^3) = 0
    133 \end{align}
    134 The solutions to these equations are
    135 \begin{align}
    136     y_0 = x, \;\;\;\; y_1 = 1, \;\;\;\; y_2 = 0,
    137 \end{align}
    138 which is a contradiction to the boundary condition of $y_1(0) = 1 \neq 0$.
    139 Thereby we can conclude that equation \ref{eq: p5 2} is \textbf{singularly
    140 perturbed}.
    141 
    142 Next up is equation \ref{eq: p5 3}, where by the asymptotic expansion the
    143 first order coefficient of $\eps$, $y_2$, has the boundary condition $y_2(0)
    144 = 0$. But by applying the ansatz of the asymptotic expansion and plugging
    145 into the equation we get
    146 \begin{align}
    147     \eps^2(y_0 - x) + \eps^1 (y_0' + y_1) + \eps^2(y_1' + y_2) + O(\eps^3) =
    148     0.
    149 \end{align}
    150 Solving these equations we get
    151 \begin{align}
    152     y_0 = 0, \;\;\;\; y_1 = 1 \;\;\;\; y_2 = 0 ,
    153 \end{align}
    154 which is a contradiction $y_1(0) = 1 \neq 0 $, thus the equation \ref{eq: p5
    155 3} is \textbf{singularly perturbed}.
    156 
    157 The next equation \ref{eq: p5 4} is also singularly perturbed, we
    158 can see this by plugging the asymptotic expansion into the equation
    159 \begin{align}
    160  \eps^0 ( y_0 - x) + \eps^1(y_1) + \eps^2(y_0' + y_2) = O(\eps^3),
    161 \end{align}
    162 solving for the coefficients we get
    163 \begin{align}
    164     y_0 = x, \;\;\;\; y_1 = 0, \;\;\;\;\; y_2 = -1,
    165 \end{align}
    166 which is contradiction by the boundary condition $y_2(0) = -1 \neq 0$,
    167 thereby \ref{eq: p5 4} is \textbf{singularly perturbed}.
    168 
    169 Equation \ref{eq: p5 5} on the first sight does not indicate for any
    170 contradictions, we may plug the ansatz of the asymptotic expansion into the
    171 equation and see what happens
    172 \begin{align}
    173     \eps^0(y_0 -x) + \eps^1(y_1' + y_0) + \eps^2(y_2' +y_1) + O(\eps^2) = 0,
    174 \end{align}
    175 with the initial conditions $y_0(0) = 1$, $y_1(0) = y_2(0) = 0$.
    176 \begin{align}
    177     y_0 = \frac{x^2}{2} + 1, \;\;\;\;
    178     y_1 = -\frac{x^3}{6} + x, \;\;\;\;
    179     y_2 = \frac{x^4}{24} + \frac{x^2}{2}.
    180 \end{align}
    181 Finally we get
    182 \begin{align}
    183     y_\eps(x) = (\frac{x^2}{2}+1) + \eps(-\frac{x^3}{6} -x)
    184     +\eps^2(\frac{x^4}{24} + \frac{x^2}{2}) + O(\eps^3).
    185 \end{align}
    186 Thereby we can conclude that \ref{eq: p5 5} is \textbf{regularly perturbed}.
    187 
    188 The last equation \ref{eq: p5 6} is also regular, let us do the asymptotic
    189 expansion of the equation and order the equation in orders of $\eps$.
    190 \begin{align}
    191     \eps^0(y_0' + y_0) + \eps^1(y_1' + y_1 -x) + \eps^2(y_2' + y_2)+
    192     O(\eps^3) = 0 .
    193 \end{align}
    194 by solving these differential equations with the boundary conditions $y_0(0)
    195 = 1$, $y_1(0) = y_2(0) = 0$ we get
    196 \begin{align}
    197     y_0 =  e^{-x} \;\;\;\; y_1 = (x-1) + e^{-x} \;\;\;\; y_2 = 0.
    198 \end{align}
    199 The equation we get
    200 \begin{align}
    201     y_\eps(x) = e^{-x} + \eps(x-1 +e^{-x}) + O(\eps^3).
    202 \end{align}
    203 Thereby we can conclude that the last equation \ref{eq: p5 6} is
    204 \textbf{regularly perturbed}.
    205 \subsection{Problem 6}
    206 In this section we will calculate the asymptotic expansion of a regularly
    207 perturbed equation in two ways, by doing the regular expansion ansatz and by
    208 substituting and expanding in terms of $\eps$. The ordinary differential
    209 equation we are dealing with is
    210 \begin{align}
    211     y' = -y + \eps y^2 \;\;\;\;\; y(0) = 1,
    212 \end{align}
    213 where $t > 0$ and $0 < \eps \ll 1$. The standard expansion ansatz is
    214 \begin{align}
    215 y_\eps(x) = y_0 + \eps y_1 + \eps^2 y_2 + O(\eps^3).
    216 \end{align}
    217 The ODE then expands to
    218 \begin{align}
    219     \eps^0(y_0' + y_0) + \eps(y_1' + y_1 - y_0^2) + \eps^2(y_2' + y_2 -
    220     2y_0y_1) + O(\eps^3) = 0.
    221 \end{align}
    222 Equations in order of $\eps$ and $\eps^2$ are non-homogeneous ODE's. The
    223 solution to these three coefficients with the boundary conditions $y_0(0) =
    224 1$, $y_1(0) =
    225 y_2(0) = 0$ we get
    226 \begin{align}
    227     y_0 = e^{-x}, \;\;\;\; y_1 = -e^{-2x} + e^{-x}, \;\;\;\; y_2 = e^{-3x} -
    228     2e^{-2x} + e^{-x}.
    229 \end{align}
    230 The expansion of $y$ is then
    231 \begin{align}
    232     y_\eps (x) = e^{-x} + \eps(-e^{-2x} + e^{-x}) + \eps^2(e^{-3x} - 2e^{-2x}
    233 + e^{-x}) + O(\eps^3).  \end{align}
    234 
    235 The second ansatz, considers the substitution $z = \frac{1}{y}$, by
    236 calculating the first derivative and substituting the original problem we
    237 get
    238 \begin{align}
    239     z' &= \frac{-y'}{y^2} = \frac{y-\eps y^2}{y^2} = \frac{1}{y} - \eps = z -
    240     \eps. \\
    241     z(0) &= \frac{1}{y(0)} = 1.
    242 \end{align}
    243 The solution is
    244 \begin{align}
    245     z(x) = \eps + (1-\eps) e^x.
    246 \end{align}
    247 By substituting this into $y = \frac{1}{z}$ and expanding we get
    248 \begin{align}
    249     y(x) &= \frac{1}{\eps+(1-\eps)e^x} = e^{-x} \frac{1}{1 - (1- e^{-x})\eps}
    250     \\
    251          &= e^{-x} \sum_{n\geq 0} \eps^n(1-e^{-x})^n.
    252 \end{align}
    253 which is the geometric series.
    254 \subsection{Problem 7}
    255 The last problem consists of a perturbation of a partial differential
    256 equation (heat equation).
    257 \begin{align}
    258     &\partial_t u(x, t) + \partial_x^2 u(x,t) - \eps u(x, t)^2 = 0
    259     &x\in (0, 1),\; t>0,\\
    260     &u(x, 0) = \tilde{u}_0(x)  &x\in(0, 1), \\
    261     &u(0, t) = u(1, t) = 0 & t>0.
    262 \end{align}
    263 The problem is regular because the reduced solution is the regular heat
    264 equation in the one special dimension on $x\in (0, 1)$, we know this is
    265 solvable. By doing the expansion ansatz we can derive the first equations
    266 for the first three terms, the ansatz is always the same
    267 \begin{align}
    268     u_\eps = u_0 + \eps u_1 + \eps^2 u_2 + O(\eps^3).
    269 \end{align}
    270 Plugging this into the perturbed problem problem and factoring out the terms
    271 in the order of $\eps$ we get
    272 \begin{align}
    273     &\eps^0 (\partial_t u_0 + \partial_x^2 u_0) + \\
    274     &\eps^1 (\partial_t u_1 + \partial_x^2 u_1 - u_0^2) +\\
    275     &\eps^2 (\partial_t u_2 + \partial_x^2 u_2 - 2u_1u_0)  + O(\eps^3) = 0.
    276 \end{align}
    277 
    278 We can solve the reduced problem with the initial condition $\tilde{u}_0 =
    279 \sin(\pi x)$ by separation of variables. Setting $u(x, t) = \psi(x) \phi(t)$
    280 and substituting into the equation we get two ordinary differential equation
    281 \begin{align}
    282     \underbrace{\frac{\psi_{xx}}{\psi}}_{=k}
    283     +\underbrace{\frac{\phi_t}{\phi}}_{=-k} =  0,
    284 \end{align}
    285 for some $k$. Solving these two by the exponential ansatz.
    286 \begin{align}
    287     \psi(x) &= A_1 e^{\sqrt{k} x} +A_2 e^{-\sqrt{k} x},\\
    288     \phi(t) &= A_3 e^{-kt}.
    289 \end{align}
    290 With the initial condition we get the conditions that
    291 \begin{align}
    292     A_1A_3 &= -A_2 A_3,\\
    293     k &= \pi^2
    294 \end{align}
    295 we choose $A_1 = A_3 = 1$ , $A_2 = -1$. We get the following solution to the
    296 PDE
    297 \begin{align}
    298     u(x, t) = \psi(x)\phi(t) = \sin(\pi x) e^{-\pi^2 t}.
    299 \end{align}
    300 
    301 %\printbibliography
    302 \end{document}