notes

uni notes
git clone git://popovic.xyz/notes.git
Log | Files | Refs

main.tex (7479B)


      1 \documentclass[a4paper]{article}
      2 
      3 
      4 \usepackage[T1]{fontenc}
      5 \usepackage[utf8]{inputenc}
      6 \usepackage{mlmodern}
      7 
      8 %\usepackage{ngerman}	% Sprachanpassung Deutsch
      9 
     10 \usepackage{graphicx}
     11 \usepackage{geometry}
     12 \geometry{a4paper, top=15mm}
     13 
     14 \usepackage{subcaption}
     15 \usepackage[shortlabels]{enumitem}
     16 \usepackage{amssymb}
     17 \usepackage{amsthm}
     18 \usepackage{mathtools}
     19 \usepackage{braket}
     20 \usepackage{bbm}
     21 \usepackage{graphicx}
     22 \usepackage{float}
     23 \usepackage{yhmath}
     24 \usepackage{tikz}
     25 \usetikzlibrary{patterns,decorations.pathmorphing,positioning}
     26 \usetikzlibrary{calc,decorations.markings}
     27 
     28 %\usepackage[backend=biber, sorting=none]{biblatex}
     29 %\addbibresource{uni.bib}
     30 
     31 \usepackage[framemethod=TikZ]{mdframed}
     32 
     33 \tikzstyle{titlered} =
     34     [draw=black, thick, fill=white,%
     35         text=black, rectangle,
     36         right, minimum height=.7cm]
     37 
     38 
     39 \usepackage[colorlinks=true,naturalnames=true,plainpages=false,pdfpagelabels=true]{hyperref}
     40 \usepackage[parfill]{parskip}
     41 \usepackage{lipsum}
     42 
     43 
     44 \usepackage{tcolorbox}
     45 \tcbuselibrary{skins,breakable}
     46 \newcommand{\eps}{\varepsilon}
     47 \pagestyle{myheadings}
     48 
     49 \markright{Popović\hfill Applied Analysis\hfill}
     50 
     51 
     52 
     53 \title{Applied Analysis Problems}
     54 \author{Milutin Popović}
     55 
     56 \begin{document}
     57 \maketitle
     58 \tableofcontents
     59 
     60 \section{Sheet 3}
     61 \subsection{Problem 8}
     62 Let us look at functions $f: \mathcal{D} \mapsto \mathbb{R}$ that show
     63 boundary layer behavior at the following manifolds.
     64 
     65 The \textbf{first} for $\mathcal{D} = \mathbb{R}^2$ and $S = \{0\}$ we have a
     66 function e.g.
     67 \begin{align}
     68     f_{\eps}(x, y) = e^{-\frac{x}{\eps}} + y,
     69 \end{align}
     70 with the reduced equation
     71 \begin{align}
     72     \lim_{\eps \rightarrow 0} f_{\eps}(x, y) =
     73     \begin{cases}
     74         y \;\;\;\;\;\;\;\;\;\; x > 0\\
     75         1+y \;\;\;\; x = 0\\
     76     \end{cases}
     77 \end{align}
     78 
     79 The \textbf{second} example is $\mathcal{D} = \mathbb{R}^n$ and $S = \{|x| = 1\}$.
     80 \begin{align}
     81     f_\eps(x_1,\dots,x_n) = \tanh\left(\frac{|x| - 1}{\eps} \right),
     82 \end{align}
     83 with the reduced equation
     84 \begin{align}
     85     \lim_{\eps \rightarrow 0} f_{\eps}(x_1,\dots, x_n) =
     86     \begin{cases}
     87         -1 \;\;\;\; |x| < 0\\
     88         1  \;\;\;\;\;\;\; |x| > 0\\
     89     \end{cases}
     90 \end{align}
     91 
     92 The \textbf{third} example is $\mathcal{D} = \mathbb{R}^3$ and $S = \{x_1 =
     93 1\}$
     94 \begin{align}
     95     f_\eps(x_1, x_2, x_3) = \tanh\left(\frac{x_1 - 1}{\eps}\right)+x_2x_3
     96 \end{align}
     97 with the reduced equation
     98 \begin{align}
     99     \lim_{\eps \rightarrow 0} f_{\eps}(x_1,x_2,x_3) =
    100     \begin{cases}
    101         -1 + x_2x_3 \;\;\;\; x_1 < 0\\
    102         1 + x_2x_3 \;\;\;\;\;\;\; x_1 > 0\\
    103     \end{cases}
    104 \end{align}
    105 \subsection{Problem 9}
    106 Consider a linear BVP
    107 \begin{align}
    108     Lu := -\eps u'' + b(x)u' + c(x)u = f(x),\\
    109     u(0) = u(1) = 0,
    110 \end{align}
    111 for $0 < \eps \ll \eps_0$ and $b, c, f \in C([0,1])$ with the conditions
    112 \begin{align}
    113     c(x) \geq 0, \qquad b(x) \geq \beta > 0 \qquad x\in[0, 1]
    114 \end{align}
    115 We are to show that for all $x\in[0, 1)$ the reduced solution $u_0$ of the
    116 above BVP satisfies
    117 \begin{align}
    118     \lim_{\eps \rightarrow 0} u_\eps(x) = u_0(x)))),
    119 \end{align}
    120 where the reduced solution $u_0$ is the solution to the following
    121 differential equation
    122 \begin{align}
    123     b(x)u' + c(x)u = f(x), \quad u(0) = 0.
    124 \end{align}
    125 The hint was given: Set
    126 \begin{align}
    127     w_1(x) = e^{\beta x} \quad w_2(x) = e^{-\beta\frac{1-x}{\eps}},
    128 \end{align}
    129 such that $Lw_1 \geq \gamma > 0$ for some suitable $\gamma$ and $Lw_2 \geq
    130 0$. Then for
    131 \begin{align}
    132     v = \pm (u_\eps - u_0), \qquad w = A\eps w_1 + B\eps w_2,
    133 \end{align}
    134 for some suitable $A, B$. The following comparison principal is applicable:
    135 IF
    136 \begin{align}
    137     &Lv(x) \leq Lw(x) \quad \forall x \in (0, 1) \label{eq:cond1}\\
    138     &v(0) \leq w(0)  \label{eq:cond2}\\
    139     &v(1) \leq w(1) \label{eq:cond3}\\
    140 \end{align}
    141 then
    142 \begin{align}
    143     \Longrightarrow v(x) \leq w(x) \quad \forall x\in(0, 1)
    144 \end{align}
    145 which holds for $u, v \in C^2((0, 1)) \cap C([0, 1])$. Thus a boundary layer
    146 is possible only at $x=1$. On the other hand, for $b(x) \leq \beta < 0$ it
    147 follows that the boundary layer is possible only at $x=0$.
    148 
    149 We shall go through the chronological order of the conditions\ref{eq:cond1},
    150 \ref{eq:cond2}, \ref{eq:cond3} and check them. So for \ref{eq:cond1}
    151 we have that
    152 \begin{align}
    153     Lw(x) &= A\eps Lw_1(x) + B Lw_2(x) \\
    154           &\geq A\eps Lw_1(x) = A\eps e^{\beta x} \left(-\eps \beta^2 -
    155               b(x)\beta+c(x)\right)\\
    156           &\geq A\eps \beta e^{\beta x} \left(1-\eps\right)\\
    157           &\geq \eps A\beta^2 e^{\beta}(1-\eps) = \gamma > 0
    158 \end{align}
    159 And obviously
    160 \begin{align}
    161     Lv(x) \leq 0 ,
    162 \end{align}
    163 by that we have that
    164 \begin{align}
    165     Lv(x) \leq \gamma \leq  Lw(x).
    166 \end{align}
    167 For the condition \ref{eq:cond2} we have
    168 \begin{align}
    169     w(0) &= A\eps w_1(0) Bw_2(0) = Be^{-\frac{\beta}{\eps}},\\
    170     v(0) &= \pm\left(u_\eps(0) - u_0(0)\right) = 0.
    171 \end{align}
    172 By the simple choice $B \geq 0$ we satisfy the condition
    173 \begin{align}
    174     v(0) \leq w(0).
    175 \end{align}
    176 Now for the last condition \ref{eq:cond3} we have
    177 \begin{align}
    178     w(1) &= A\eps e^\beta + B \geq A\eps e^\beta,\\
    179     v(1) &= \mp u_0(1) = 0.
    180 \end{align}
    181 And choose $A = \frac{\pm u(1)}{\eps} e^{-\beta}$, which satisfies the last
    182 condition
    183 \begin{align}
    184     v(1) \leq w(1).
    185 \end{align}
    186 Thereby we have
    187 \begin{align}
    188     &v(x) &\leq w(x)\\
    189     &\Rightarrow \lim_{\eps \rightarrow 0} v(x) &\leq \lim_{\eps \rightarrow
    190     0} w(x) = 0\\
    191     &\Rightarrow \lim_{\eps \rightarrow 0} v(x) = 0
    192 \end{align}
    193 uniformly on $(0, 1)$.
    194 \subsection{Problem 10}
    195 Consider the following BVP
    196 \begin{align}
    197     -\eps u'' + (1 + x)u' + u = 2, \qquad u(0) = u(1) - 0,
    198 \end{align}
    199 for $0 < \eps \ll 1$. \textbf{Where can this problem have a boundary layer?}
    200 To answer this question we need to look at the reduced problem
    201 \begin{align}
    202     -(1+x)u' + u = 2.
    203 \end{align}
    204 The solution to the equation is
    205 \begin{align}
    206     \bar{u}(x) = 2 + A(x+1).
    207 \end{align}
    208 According to the boundary conditions it is unclear what the value of the
    209 constant is, according to $\bar{u}(0)=0$ we get $A = -2$ or according to
    210 $\bar{u}(1)=0$ we get $A = -1$. Ultimately this means that there exists a
    211 boundary layer near $x=1$ or $x=0$. We choose $x=0$ and according to this the
    212 local variable $\xi = x\eps^{-\alpha}$ ($x = \xi \eps^{-\alpha}$). The
    213 derivatives of $u$ are calculated using the chain rule
    214 \begin{align}
    215     \frac{du}{dx}&= \frac{du}{d\xi}\frac{d\xi}{dx} = \eps^{-\alpha} \dot{u}\\
    216     \frac{d^2u}{dx^2}&= \eps^{-\alpha} \frac{d^2u}{d\xi^2}\frac{d\xi}{dx} =
    217     \eps^{-2\alpha} \ddot{u}.
    218 \end{align}
    219 The BVP transforms as follows
    220 \begin{align}
    221     -\eps^{1-\alpha}\ddot{u} - \dot{u} + \eps(u - \xi\dot{u} - 2) =
    222     \begin{cases}
    223         -\ddot{u} - \dot{u} = 0 \;\;\;\;\; \alpha=1\\
    224         -\dot{u} = 0 \;\;\;\;\;\;\;\; 0<\alpha<1
    225     \end{cases}
    226 \end{align}
    227 Choosing $\alpha = 1$ for a reasonable solution
    228 \begin{align}
    229     \hat{u}(\xi) = Be^{-\xi},
    230 \end{align}
    231 which converges in the local limit (!). Thereby we have a asymptotic
    232 representation up to the degree of $\eps$
    233 \begin{align}
    234     u_\eps(x) &= \bar{u}(x) + \hat{u}(\psi) + O(\eps)\\
    235               &= 2 + A(1+x) + B e^{-\frac{x}{\eps}}  + O(\eps)
    236 \end{align}
    237 And by the boundary conditions
    238 \begin{align}
    239     u_\eps(0) = 2+A+B=0, \qquad u_\eps(1) = 2+2A+B=0,
    240 \end{align}
    241 we get that the constants are
    242 \begin{align}
    243     A = -4, \qquad B = 2.
    244 \end{align}
    245 The asymptotic representation is thereby
    246 \begin{align}
    247     u_\eps(x) = 2 - 4(1+x) + 2 e^{-\frac{x}{\eps}}  + O(\eps)
    248 \end{align}
    249 %\printbibliography
    250 \end{document}