notes

uni notes
git clone git://popovic.xyz/notes.git
Log | Files | Refs

main.tex (6871B)


      1 \documentclass[a4paper]{article}
      2 
      3 
      4 \usepackage[T1]{fontenc}
      5 \usepackage[utf8]{inputenc}
      6 \usepackage{mlmodern}
      7 
      8 %\usepackage{ngerman}	% Sprachanpassung Deutsch
      9 
     10 \usepackage{graphicx}
     11 \usepackage{geometry}
     12 \geometry{a4paper, top=15mm}
     13 
     14 \usepackage{subcaption}
     15 \usepackage[shortlabels]{enumitem}
     16 \usepackage{amssymb}
     17 \usepackage{amsthm}
     18 \usepackage{mathtools}
     19 \usepackage{braket}
     20 \usepackage{bbm}
     21 \usepackage{graphicx}
     22 \usepackage{float}
     23 \usepackage{yhmath}
     24 \usepackage{tikz}
     25 \usetikzlibrary{patterns,decorations.pathmorphing,positioning}
     26 \usetikzlibrary{calc,decorations.markings}
     27 
     28 %\usepackage[backend=biber, sorting=none]{biblatex}
     29 %\addbibresource{uni.bib}
     30 
     31 \usepackage[framemethod=TikZ]{mdframed}
     32 
     33 \tikzstyle{titlered} =
     34     [draw=black, thick, fill=white,%
     35         text=black, rectangle,
     36         right, minimum height=.7cm]
     37 
     38 
     39 \usepackage[colorlinks=true,naturalnames=true,plainpages=false,pdfpagelabels=true]{hyperref}
     40 \usepackage[parfill]{parskip}
     41 \usepackage{lipsum}
     42 
     43 
     44 \usepackage{tcolorbox}
     45 \tcbuselibrary{skins,breakable}
     46 
     47 \pagestyle{myheadings}
     48 
     49 \markright{Popović\hfill Applied Analysis\hfill}
     50 
     51 
     52 \title{University of Vienna\\ Faculty of Mathematics\\
     53 \vspace{1cm}Applied Analysis Problems
     54 }
     55 \author{Milutin Popovic}
     56 
     57 \begin{document}
     58 \maketitle
     59 \tableofcontents
     60 
     61 \section{Sheet 4}
     62 
     63 \subsection{Fourier Series}
     64 The Fourier series of a $p$ periodic function $f$, integrable on
     65 $[-\frac{p}{2}, \frac{p}{2}]$ is
     66 \begin{align}
     67     f(x) = \frac{a_0}{2} + \sum_{n=1}^\infty \left(a_n \cos(\frac{2\pi n x}{p})
     68     b_n sin(\frac{2\pi n x}{p})\right).
     69 \end{align}
     70 The coefficients $a_n$ and $b_n$ are called the Fourier coefficients of $f$
     71 and are given by
     72 \begin{align}
     73     a_n &= \frac{2}{p} \int_{-\frac{p}{2}}^{\frac{p}{2}} f(x) \sin(\frac{2\pi
     74     n x}{p}) dx, \;\;\;\;\; n\geq 0 \\
     75     b_n &= \frac{2}{p} \int_{-\frac{p}{2}}^{\frac{p}{2}} f(x) \cos(\frac{2\pi
     76     n x}{p}) dx, \;\;\;\;\; n\geq 1
     77 \end{align}
     78 Let us compute the Fourier series of $f(t) = t$ for $t \in [-\frac{1}{2},
     79 \frac{1}{2}]$. The Fourier coefficients are
     80 \begin{align}
     81     a_n &= 2\int_{-\frac{1}{2}}^{\frac{1}{2}} t \cos(2\pi n t)\ dt = 0
     82     \;\;\;\;\; \text{(odd: g(-t) = -g(t))},\\
     83     \nonumber\\
     84     b_n &= 2\int_{-\frac{1}{2}}^{\frac{1}{2}} t \sin(2\pi n t)\ dt = \\
     85         &= 2 \left(-\frac{1}{2\pi n} \cos(2\pi n
     86         t)\bigg|_{-\frac{1}{2}}^{\frac{1}{2}}
     87         +\int_{\frac{1}{2}}^{\frac{1}{2}} \frac{1}{2 \pi n}\cos(2\pi n t)\ dt
     88             \right) =\\
     89         &= -\frac{1}{\pi n}\left( -\cos(\pi n) + \frac{1}{\pi n }\sin(\pi
     90             n)\right) =
     91         \frac{\sin(\pi n) - \pi n \cos(\pi n)}{(\pi n)^2}.
     92 \end{align}
     93 Thereby the Fourier series of $f(t) = t$ is
     94 \begin{align}
     95     f(t) = \sum_{n=1}^\infty \left(\frac{\sin(\pi n) - \pi n \cos(\pi n)}{(\pi
     96     n)^2}\right) \sin(2\pi n t) = t
     97 \end{align}
     98 \subsection{Truncation Error}
     99 The truncation error of the trigonometric polynomial $(Sf_N)$ of degree $N$ is
    100 \begin{align}
    101     \sum_{|k| > N} |\hat{f}(k)|^2 = \lVert f - S_N\rVert_2^2 =
    102     \int_{-\frac{1}{2}}^{\frac{1}{2}} |E_N(t)|^2 dt.
    103 \end{align}
    104 Computations for $N = 3$ and $N = 9$ were done in python with a integration error of
    105 around $10^{-15}$, resulting in the overall truncation errors of
    106 \begin{align}
    107     \sum_{|k| > 3} |\hat{f}(k)|^2 = 0.0053,\\
    108     \sum_{|k| > 9} |\hat{f}(k)|^2 = 0.0143.
    109 \end{align}
    110 To achieve $\lVert E_N\rVert^2_2 < 0.1 \lVert f \rVert^2_2$, the number of
    111 coefficients needed are about $61$. This was done using a while loop and
    112 evaluating $\lVert E_N\rVert^2_2$ for $N$ until the above condition is met.
    113 
    114 \subsection{Orthonormal Bases}
    115 Here we will go through the most important properties of orthonormal bases.
    116 So let $\{b_n\}_{n\in \mathbb{N}}$ be an ONB of a vector space $\mathcal{H}$,
    117 then for every $x\in \mathcal{H}$ we may write
    118 \begin{align}
    119     x = \sum_{b_n} \langle b_n, x\rangle b_n,
    120 \end{align}
    121 and
    122 \begin{align}
    123     \lVert x \rVert^2 = \sum_{b_n} |\langle b_n, x\rangle|^2.
    124 \end{align}
    125 For any $x, y \in \mathcal{H}$ we can write the scalar product as
    126 \begin{align}
    127     \langle x, y\rangle = \sum_{b_n} \langle b_n, x\rangle \langle b_n,
    128     y\rangle,
    129 \end{align}
    130 Furthermore there exists a linear projection $\Phi\ : \mathcal{H}
    131 \rightarrow l^2(\{b_n\}_n)$ such that
    132 \begin{align}
    133     \langle \Phi(x), \Phi(y)\rangle = \langle x, y \rangle\;\;\; \forall x, y
    134     \in \mathcal{H}.
    135 \end{align}
    136 
    137 An example of an orthonormal basis, which spans $L^2([-\frac{p}{2},
    138 \frac{p}{2}])$ is $\mathcal{T}_p = \{e_n := \frac{e^{2\pi i
    139 \frac{n}{p}x}}{\sqrt{p}}\}_{n\in\mathbb{Z}}$. The $e_n$'s are orthonormal in
    140 $L^2$ which can be easily seen by using the scalar product of $L^2$, so for
    141 $n, m \in \mathbb{Z}$
    142 \begin{align}
    143     \langle e_n, e_m\rangle_{L^2([-\frac{p}{2}, \frac{p}{2})} &=
    144     \frac{1}{p}\int_{[-\frac{p}{2}, \frac{p}{2}]}e_n \cdot e_m^* \ dx=\\
    145     &=\frac{1}{p}\int_{[-\frac{p}{2}, \frac{p}{2}]} e^{2\pi i \frac{(n-m)}{p} x} \ dx=\\
    146     &=\frac{\sin(\pi (n-m))}{\pi(n-m)} =
    147     \begin{cases}
    148         0  \;\;\;\; n\neq m\\
    149         1 \;\;\;\;  n=m
    150     \end{cases}
    151 \end{align}
    152 \subsection{Dirichlet Kernel}
    153 The function
    154 \begin{align}
    155     D_t(x) := \sum_{\lVert k \rVert_\infty \leq t} e_k(x), \;\;\;\;\; x\in
    156     \mathbb{R}^d
    157 \end{align}
    158 is called the Dirichlet Kernel. For $0 < t \in \mathbb{N}$ we have
    159 \begin{align}
    160     (S_tf)(x) = \int_{I^d} f(y) D_t(x-y) dy,
    161 \end{align}
    162 where $S_t$ represents the orthogonal projection onto the trigonometric
    163 polynomials $\Pi_t$ of degree $t$, by
    164 \begin{align}
    165     &S_t:\ L^1(\mathbb{T}^d) \rightarrow \Pi_t \\
    166     &f \mapsto \sum_{\lVert k \rVert \leq t} \langle f,
    167     e_k\rangle_{L^2(\mathbb{T}^d)} e_k \;\;\;\;\; k \in \mathbb{Z}^d
    168 \end{align}
    169 And furthermore the Dirichlet Kernel satisfies
    170 \begin{align}
    171     D_t(x) = \prod_{i=1}^d \frac{e_{t+1}(x_i) - e_{-t}(x_i)}{e_1(x_i) - 1}
    172 \end{align}
    173 To show the convolution property, we start off by applying the orthogonal
    174 projection into the trigonometric polynomials $S_t$ onto a function $f \in
    175 L(\mathbb{T}^d)$
    176 \begin{align}
    177     (S_tf) &= \sum_{\lvert k\rVert_\infty \leq t} \int_{I^d} f(y) e^{-2\pi i
    178     \langle k, y\rangle}\ dy\ e^{2\pi i\langle k, x\rangle} =\\
    179     &= \int_{I^d}f(y) \sum_{\lvert k\rVert_\infty \leq t} e^{2\pi i \langle
    180     k, (x- y)\rangle}\ dy =\\
    181     &= (f * D_t) (x) = \int_{I^d} f(y) D_t(x - y)\ dy.
    182 \end{align}
    183 To show the reformulation of the Dirichlet kernel, we need to simply
    184 calculate it directly
    185 \begin{align}
    186     \sum_{\lVert k \rVert_\infty \leq t} e^{2\pi i \langle k , x\rangle} &=
    187     \prod_{j=1}^d \sum_{k_j = -t}^t e^{2\pi i k_j x_j} =\\
    188     &= \prod_{j=1}^d e^{-2\pi i t x_j} \sum_{k_j = 0}^{2t} e^{2\pi i k_j
    189         x_j}=;\;\;\;\; \text{(trigonometric series)}\\
    190     &= \prod_{j=1}^d e^{-2\pi i t x_j} \frac{e^{2\pi i (2t + 1)x_j} -
    191     1}{e^{2\pi i x_j} - 1} =\\
    192     &= \prod_{j = 1} \frac{e_{t+1}(x_j) - e_{-t}(x_j)}{e_1(x_j) - 1}.
    193 \end{align}
    194 %\printbibliography
    195 \end{document}