main.tex (6871B)
1 \documentclass[a4paper]{article} 2 3 4 \usepackage[T1]{fontenc} 5 \usepackage[utf8]{inputenc} 6 \usepackage{mlmodern} 7 8 %\usepackage{ngerman} % Sprachanpassung Deutsch 9 10 \usepackage{graphicx} 11 \usepackage{geometry} 12 \geometry{a4paper, top=15mm} 13 14 \usepackage{subcaption} 15 \usepackage[shortlabels]{enumitem} 16 \usepackage{amssymb} 17 \usepackage{amsthm} 18 \usepackage{mathtools} 19 \usepackage{braket} 20 \usepackage{bbm} 21 \usepackage{graphicx} 22 \usepackage{float} 23 \usepackage{yhmath} 24 \usepackage{tikz} 25 \usetikzlibrary{patterns,decorations.pathmorphing,positioning} 26 \usetikzlibrary{calc,decorations.markings} 27 28 %\usepackage[backend=biber, sorting=none]{biblatex} 29 %\addbibresource{uni.bib} 30 31 \usepackage[framemethod=TikZ]{mdframed} 32 33 \tikzstyle{titlered} = 34 [draw=black, thick, fill=white,% 35 text=black, rectangle, 36 right, minimum height=.7cm] 37 38 39 \usepackage[colorlinks=true,naturalnames=true,plainpages=false,pdfpagelabels=true]{hyperref} 40 \usepackage[parfill]{parskip} 41 \usepackage{lipsum} 42 43 44 \usepackage{tcolorbox} 45 \tcbuselibrary{skins,breakable} 46 47 \pagestyle{myheadings} 48 49 \markright{Popović\hfill Applied Analysis\hfill} 50 51 52 \title{University of Vienna\\ Faculty of Mathematics\\ 53 \vspace{1cm}Applied Analysis Problems 54 } 55 \author{Milutin Popovic} 56 57 \begin{document} 58 \maketitle 59 \tableofcontents 60 61 \section{Sheet 4} 62 63 \subsection{Fourier Series} 64 The Fourier series of a $p$ periodic function $f$, integrable on 65 $[-\frac{p}{2}, \frac{p}{2}]$ is 66 \begin{align} 67 f(x) = \frac{a_0}{2} + \sum_{n=1}^\infty \left(a_n \cos(\frac{2\pi n x}{p}) 68 b_n sin(\frac{2\pi n x}{p})\right). 69 \end{align} 70 The coefficients $a_n$ and $b_n$ are called the Fourier coefficients of $f$ 71 and are given by 72 \begin{align} 73 a_n &= \frac{2}{p} \int_{-\frac{p}{2}}^{\frac{p}{2}} f(x) \sin(\frac{2\pi 74 n x}{p}) dx, \;\;\;\;\; n\geq 0 \\ 75 b_n &= \frac{2}{p} \int_{-\frac{p}{2}}^{\frac{p}{2}} f(x) \cos(\frac{2\pi 76 n x}{p}) dx, \;\;\;\;\; n\geq 1 77 \end{align} 78 Let us compute the Fourier series of $f(t) = t$ for $t \in [-\frac{1}{2}, 79 \frac{1}{2}]$. The Fourier coefficients are 80 \begin{align} 81 a_n &= 2\int_{-\frac{1}{2}}^{\frac{1}{2}} t \cos(2\pi n t)\ dt = 0 82 \;\;\;\;\; \text{(odd: g(-t) = -g(t))},\\ 83 \nonumber\\ 84 b_n &= 2\int_{-\frac{1}{2}}^{\frac{1}{2}} t \sin(2\pi n t)\ dt = \\ 85 &= 2 \left(-\frac{1}{2\pi n} \cos(2\pi n 86 t)\bigg|_{-\frac{1}{2}}^{\frac{1}{2}} 87 +\int_{\frac{1}{2}}^{\frac{1}{2}} \frac{1}{2 \pi n}\cos(2\pi n t)\ dt 88 \right) =\\ 89 &= -\frac{1}{\pi n}\left( -\cos(\pi n) + \frac{1}{\pi n }\sin(\pi 90 n)\right) = 91 \frac{\sin(\pi n) - \pi n \cos(\pi n)}{(\pi n)^2}. 92 \end{align} 93 Thereby the Fourier series of $f(t) = t$ is 94 \begin{align} 95 f(t) = \sum_{n=1}^\infty \left(\frac{\sin(\pi n) - \pi n \cos(\pi n)}{(\pi 96 n)^2}\right) \sin(2\pi n t) = t 97 \end{align} 98 \subsection{Truncation Error} 99 The truncation error of the trigonometric polynomial $(Sf_N)$ of degree $N$ is 100 \begin{align} 101 \sum_{|k| > N} |\hat{f}(k)|^2 = \lVert f - S_N\rVert_2^2 = 102 \int_{-\frac{1}{2}}^{\frac{1}{2}} |E_N(t)|^2 dt. 103 \end{align} 104 Computations for $N = 3$ and $N = 9$ were done in python with a integration error of 105 around $10^{-15}$, resulting in the overall truncation errors of 106 \begin{align} 107 \sum_{|k| > 3} |\hat{f}(k)|^2 = 0.0053,\\ 108 \sum_{|k| > 9} |\hat{f}(k)|^2 = 0.0143. 109 \end{align} 110 To achieve $\lVert E_N\rVert^2_2 < 0.1 \lVert f \rVert^2_2$, the number of 111 coefficients needed are about $61$. This was done using a while loop and 112 evaluating $\lVert E_N\rVert^2_2$ for $N$ until the above condition is met. 113 114 \subsection{Orthonormal Bases} 115 Here we will go through the most important properties of orthonormal bases. 116 So let $\{b_n\}_{n\in \mathbb{N}}$ be an ONB of a vector space $\mathcal{H}$, 117 then for every $x\in \mathcal{H}$ we may write 118 \begin{align} 119 x = \sum_{b_n} \langle b_n, x\rangle b_n, 120 \end{align} 121 and 122 \begin{align} 123 \lVert x \rVert^2 = \sum_{b_n} |\langle b_n, x\rangle|^2. 124 \end{align} 125 For any $x, y \in \mathcal{H}$ we can write the scalar product as 126 \begin{align} 127 \langle x, y\rangle = \sum_{b_n} \langle b_n, x\rangle \langle b_n, 128 y\rangle, 129 \end{align} 130 Furthermore there exists a linear projection $\Phi\ : \mathcal{H} 131 \rightarrow l^2(\{b_n\}_n)$ such that 132 \begin{align} 133 \langle \Phi(x), \Phi(y)\rangle = \langle x, y \rangle\;\;\; \forall x, y 134 \in \mathcal{H}. 135 \end{align} 136 137 An example of an orthonormal basis, which spans $L^2([-\frac{p}{2}, 138 \frac{p}{2}])$ is $\mathcal{T}_p = \{e_n := \frac{e^{2\pi i 139 \frac{n}{p}x}}{\sqrt{p}}\}_{n\in\mathbb{Z}}$. The $e_n$'s are orthonormal in 140 $L^2$ which can be easily seen by using the scalar product of $L^2$, so for 141 $n, m \in \mathbb{Z}$ 142 \begin{align} 143 \langle e_n, e_m\rangle_{L^2([-\frac{p}{2}, \frac{p}{2})} &= 144 \frac{1}{p}\int_{[-\frac{p}{2}, \frac{p}{2}]}e_n \cdot e_m^* \ dx=\\ 145 &=\frac{1}{p}\int_{[-\frac{p}{2}, \frac{p}{2}]} e^{2\pi i \frac{(n-m)}{p} x} \ dx=\\ 146 &=\frac{\sin(\pi (n-m))}{\pi(n-m)} = 147 \begin{cases} 148 0 \;\;\;\; n\neq m\\ 149 1 \;\;\;\; n=m 150 \end{cases} 151 \end{align} 152 \subsection{Dirichlet Kernel} 153 The function 154 \begin{align} 155 D_t(x) := \sum_{\lVert k \rVert_\infty \leq t} e_k(x), \;\;\;\;\; x\in 156 \mathbb{R}^d 157 \end{align} 158 is called the Dirichlet Kernel. For $0 < t \in \mathbb{N}$ we have 159 \begin{align} 160 (S_tf)(x) = \int_{I^d} f(y) D_t(x-y) dy, 161 \end{align} 162 where $S_t$ represents the orthogonal projection onto the trigonometric 163 polynomials $\Pi_t$ of degree $t$, by 164 \begin{align} 165 &S_t:\ L^1(\mathbb{T}^d) \rightarrow \Pi_t \\ 166 &f \mapsto \sum_{\lVert k \rVert \leq t} \langle f, 167 e_k\rangle_{L^2(\mathbb{T}^d)} e_k \;\;\;\;\; k \in \mathbb{Z}^d 168 \end{align} 169 And furthermore the Dirichlet Kernel satisfies 170 \begin{align} 171 D_t(x) = \prod_{i=1}^d \frac{e_{t+1}(x_i) - e_{-t}(x_i)}{e_1(x_i) - 1} 172 \end{align} 173 To show the convolution property, we start off by applying the orthogonal 174 projection into the trigonometric polynomials $S_t$ onto a function $f \in 175 L(\mathbb{T}^d)$ 176 \begin{align} 177 (S_tf) &= \sum_{\lvert k\rVert_\infty \leq t} \int_{I^d} f(y) e^{-2\pi i 178 \langle k, y\rangle}\ dy\ e^{2\pi i\langle k, x\rangle} =\\ 179 &= \int_{I^d}f(y) \sum_{\lvert k\rVert_\infty \leq t} e^{2\pi i \langle 180 k, (x- y)\rangle}\ dy =\\ 181 &= (f * D_t) (x) = \int_{I^d} f(y) D_t(x - y)\ dy. 182 \end{align} 183 To show the reformulation of the Dirichlet kernel, we need to simply 184 calculate it directly 185 \begin{align} 186 \sum_{\lVert k \rVert_\infty \leq t} e^{2\pi i \langle k , x\rangle} &= 187 \prod_{j=1}^d \sum_{k_j = -t}^t e^{2\pi i k_j x_j} =\\ 188 &= \prod_{j=1}^d e^{-2\pi i t x_j} \sum_{k_j = 0}^{2t} e^{2\pi i k_j 189 x_j}=;\;\;\;\; \text{(trigonometric series)}\\ 190 &= \prod_{j=1}^d e^{-2\pi i t x_j} \frac{e^{2\pi i (2t + 1)x_j} - 191 1}{e^{2\pi i x_j} - 1} =\\ 192 &= \prod_{j = 1} \frac{e_{t+1}(x_j) - e_{-t}(x_j)}{e_1(x_j) - 1}. 193 \end{align} 194 %\printbibliography 195 \end{document}