notes

uni notes
git clone git://popovic.xyz/notes.git
Log | Files | Refs

main.tex (4464B)


      1 \documentclass[a4paper]{article}
      2 
      3 
      4 \usepackage[T1]{fontenc}
      5 \usepackage[utf8]{inputenc}
      6 \usepackage{mlmodern}
      7 
      8 %\usepackage{ngerman}	% Sprachanpassung Deutsch
      9 
     10 \usepackage{graphicx}
     11 \usepackage{geometry}
     12 \geometry{a4paper, top=15mm}
     13 
     14 \usepackage{subcaption}
     15 \usepackage[shortlabels]{enumitem}
     16 \usepackage{amssymb}
     17 \usepackage{amsthm}
     18 \usepackage{mathtools}
     19 \usepackage{braket}
     20 \usepackage{bbm}
     21 \usepackage{graphicx}
     22 \usepackage{float}
     23 \usepackage{yhmath}
     24 \usepackage{tikz}
     25 \usetikzlibrary{patterns,decorations.pathmorphing,positioning}
     26 \usetikzlibrary{calc,decorations.markings}
     27 
     28 %\usepackage[backend=biber, sorting=none]{biblatex}
     29 %\addbibresource{uni.bib}
     30 
     31 \usepackage[framemethod=TikZ]{mdframed}
     32 
     33 \tikzstyle{titlered} =
     34     [draw=black, thick, fill=white,%
     35         text=black, rectangle,
     36         right, minimum height=.7cm]
     37 
     38 
     39 \usepackage[colorlinks=true,naturalnames=true,plainpages=false,pdfpagelabels=true]{hyperref}
     40 \usepackage[parfill]{parskip}
     41 \usepackage{lipsum}
     42 
     43 
     44 \usepackage{tcolorbox}
     45 \tcbuselibrary{skins,breakable}
     46 
     47 \pagestyle{myheadings}
     48 
     49 \markright{Popović\hfill Applied Analysis\hfill}
     50 
     51 
     52 \title{University of Vienna\\ Faculty of Mathematics\\
     53 \vspace{1cm}Applied Analysis Problems
     54 }
     55 \author{Milutin Popovic}
     56 
     57 \begin{document}
     58 \maketitle
     59 \tableofcontents
     60 
     61 \section{Sheet 5}
     62 \subsection{Fourier Transform}
     63 In this section we prove the linearity of the Fourier Transform $\mathcal{F}$ on
     64 $L^1(\mathbb{R}^d)$. For $f, g \in L^1(\mathbb{R}^d)$ and $\lambda, \mu \in
     65 \mathbb{R}$ the linearity condition for $\mathcal{F}$ is the following
     66 \begin{align}
     67     \mathcal{F}(\lambda f + \mu g) = \lambda \mathcal{F}(f) + \mu
     68     \mathcal{F}(g).
     69 \end{align}
     70 We start by using the Fourier transform definition for $x, \xi \in \mathbb{R}^d$
     71 \begin{align}
     72     \mathcal{F}(\lambda f + \mu g)(\xi) &= \int_{\mathbb{R}^d} (\lambda f(x)+
     73     \mu g(x)) e^{-2\pi i \langle x, \xi\rangle}\ dx =\\
     74     &= \int_{\mathbb{R}^d} \lambda f(x) e^{-2\pi i\langle x,\xi\rangle} + \mu
     75     g(x) e^{-2\pi i\langle x,\xi\rangle}\ dx =\\
     76     &= \int_{\mathbb{R}^d} \lambda f(x) e^{-2\pi i\langle x,\xi\rangle}\ dx+
     77     \int_{\mathbb{R}^d} \mu
     78     g(x) e^{-2\pi i\langle x,\xi\rangle}\ dx =\\
     79     &= \lambda \int_{\mathbb{R}^d} f(x) e^{-2\pi i\langle x,\xi\rangle}\ dx+
     80     \mu \int_{\mathbb{R}^d}
     81     g(x) e^{-2\pi i\langle x,\xi\rangle}\ dx =\\
     82     &= \lambda \mathcal{F}(f)(\xi) + \mu \mathcal{F}(g)(\xi)
     83 \end{align}
     84 \subsection{Identities of the Fourier transform}
     85 The following are three identities of the Fourier transform
     86 
     87 \begin{table}[h!]
     88 \centering
     89 \begin{tabular}{| l | c | c |}
     90 \hline
     91   & $g(x)$ & $\hat{g}(\xi)$ \\ \hline \hline
     92 (1) & $f(x-x_0)$ & $e^{-2\pi ix_0 \xi} \hat{f}(\xi)$ \\ \hline
     93 (2) & $e^{2\pi i \xi_0 x} f(x)$ & $f(\xi - \xi_0)$ \\ \hline
     94 (3) & $f(ax)$ & $\frac{1}{a} \hat{f}(\frac{\xi}{a})$\\ \hline
     95 \end{tabular}
     96     \caption{Identities of the Fourier transform for $a > 0,
     97     \xi_0, x \in \mathbb{R}$}
     98 \end{table}
     99 We start with (1)
    100 \begin{align}
    101     \widehat{f(x-x_0)}
    102     &= \int_\mathbb{R} f(x-x_0) e^{-2\pi i x \xi}\ dx=
    103     \;\;\;\;\;\; (y = x-x_0)\\
    104     &= \int_\mathbb{R} f(y) e^{-2\pi i (y+x_0) \xi}\
    105     dy=\\
    106     &= e^{-2\pi i x_0 \xi} \int_\mathbb{R}f(y)e^{-2\pi i y
    107     \xi}\ dy=\\
    108     &= e^{-2\pi i x_0 \xi} \hat{f}(\xi).
    109 \end{align}
    110 For (2) we have
    111 \begin{align}
    112     \widehat{e^{2\pi i x \xi_0} f(x)}
    113     &= \int_\mathbb{R} e^{2\pi i x \xi_0} f(x) e^{-2\pi i x \xi}\ dx =\\
    114     &= \int_\mathbb{R} f(x) e^{-2\pi i x (\xi -\xi_0)}\ dx=\\
    115     &= \hat{f}(\xi - \xi_0).
    116 \end{align}
    117 For (3) we have
    118 \begin{align}
    119     \widehat{f(ax)}
    120     &= \int_\mathbb{R} f(ax) e^{-2\pi i \xi x}\ dx = \qquad \text{sub:
    121         $(y=ax)$}\\
    122     &= \int_\mathbb{R} \frac{1}{a}f(y) e^{-2\pi i \frac{\xi}{a} y}\ dy=\\
    123     &= \frac{1}{a} \hat{f}\left(\frac{\xi}{a}\right).
    124 \end{align}
    125 \subsection{The Box-Function}
    126 Consider the following Box-Function
    127 \begin{align}
    128     \Pi(x) :=
    129     \begin{cases}
    130         1\;\;\;\;\;\; -\frac{3}{2} < x < \frac{1}{2}\\
    131         0\;\;\;\;\; \text{else}
    132     \end{cases}
    133 \end{align}
    134 The Fourier transform of this function is
    135 \begin{align}
    136     \widehat{\Pi(x)}
    137     &= \int_\mathbb{R} \Pi(x) e^{-2\pi i x\xi}\ dx=\\
    138     &= \int_{-\frac{3}{2}}^{\frac{1}{2}} e^{-2\pi i x \xi}\ dx
    139     =\frac{-1}{2\pi i \xi} e^{-2\pi i x\xi}
    140     \bigg|_{-\frac{3}{2}}^{\frac{1}{2}}=\\
    141     &= \frac{1}{2\pi i \xi} \left(e^{3\pi i \xi} - e^{-\pi i \xi}\right)=\\
    142     &= \frac{e^{\pi i \xi}\sin(2\pi\xi)}{\pi \xi}.
    143 \end{align}
    144 
    145 %\printbibliography
    146 \end{document}