notes

uni notes
git clone git://popovic.xyz/notes.git
Log | Files | Refs

main.tex (6280B)


      1 \documentclass[a4paper]{article}
      2 
      3 
      4 \usepackage[T1]{fontenc}
      5 \usepackage[utf8]{inputenc}
      6 \usepackage{mlmodern}
      7 
      8 %\usepackage{ngerman}	% Sprachanpassung Deutsch
      9 
     10 \usepackage{graphicx}
     11 \usepackage{geometry}
     12 \geometry{a4paper, top=15mm}
     13 
     14 \usepackage{subcaption}
     15 \usepackage[shortlabels]{enumitem}
     16 \usepackage{amssymb}
     17 \usepackage{amsthm}
     18 \usepackage{mathtools}
     19 \usepackage{braket}
     20 \usepackage{bbm}
     21 \usepackage{graphicx}
     22 \usepackage{float}
     23 \usepackage{yhmath}
     24 \usepackage{tikz}
     25 \usetikzlibrary{patterns,decorations.pathmorphing,positioning}
     26 \usetikzlibrary{calc,decorations.markings}
     27 
     28 %\usepackage[backend=biber, sorting=none]{biblatex}
     29 %\addbibresource{uni.bib}
     30 
     31 \usepackage[framemethod=TikZ]{mdframed}
     32 
     33 \tikzstyle{titlered} =
     34     [draw=black, thick, fill=white,%
     35         text=black, rectangle,
     36         right, minimum height=.7cm]
     37 
     38 
     39 \usepackage[colorlinks=true,naturalnames=true,plainpages=false,pdfpagelabels=true]{hyperref}
     40 \usepackage[parfill]{parskip}
     41 \usepackage{lipsum}
     42 
     43 
     44 \usepackage{tcolorbox}
     45 \tcbuselibrary{skins,breakable}
     46 
     47 \pagestyle{myheadings}
     48 
     49 \markright{Popović\hfill Applied Analysis\hfill}
     50 
     51 
     52 \title{University of Vienna\\ Faculty of Mathematics\\
     53 \vspace{1cm}Applied Analysis Problems
     54 }
     55 \author{Milutin Popovic}
     56 
     57 \begin{document}
     58 \maketitle
     59 \tableofcontents
     60 
     61 \section{Sheet 6}
     62 \subsection{Fourier Transform of the convolution}
     63 Consider the function $f(x)$, which has a Fourier Transform $\hat{f}(\xi)$,
     64 now let us compute the Fourier transform of
     65 \begin{align}
     66     h(x) = f(3x-1) \sin(x) .
     67 \end{align}
     68 We know that the Fourier transform of the convolution is (we use somewhat of
     69 the inverse convolution theorem).
     70 \begin{align}
     71     \widehat{(f(3x-1)*g(x))} = \widehat{f(3x-1)} \cdot \hat{g}(\xi).
     72 \end{align}
     73 The Fourier transform of $f(3x-1)$ is simply done by substituting a new
     74 variable
     75 \begin{align}
     76     \widehat{f(3x-1)} = \frac{1}{3}e^{2\pi i\frac{\xi}{3}}\
     77     f\left(\frac{\xi}{3}\right).
     78 \end{align}
     79 The Fourier transform of $\sin(x)$ can be calculated when looking at the
     80 Fourier transform of the Dirac-delta function
     81 \begin{align}
     82     \widehat{\delta(ax-b)}
     83     &=\int_\mathbb{R} \delta(ax-b) e^{-2\pi i x \xi}\ dx
     84     \;\;\;\;\;\;\; (y = ax-b)\\
     85     &=\int_\mathbb{R} \delta(y) e^{-2\pi i (y+b)\frac{\xi}{a}}\frac{dy}{a}\\
     86     &=\frac{1}{a} e^{-2\pi i \xi \frac{b}{a}}.
     87 \end{align}
     88 We may plug in $\sin(x)$ in the definition of the Fourier transformation and
     89 observe where we can use the Dirac-delta to to the inverse Fourier transform
     90 \begin{align}
     91     \widehat{\sin(x)}
     92     &=\int_\mathbb{R} \sin(x)e^{-2\pi i x\xi}\ dx=\\
     93     &=\frac{1}{2i}\int_\mathbb{R} (e^{ix} - e^{-ix})e^{-2\pi i \xi x}\ dx\\
     94     &=\frac{1}{2i}\left(
     95         \int_\mathbb{R} e^{ix} e^{-2\pi i \xi x}\ dx+
     96         \int_\mathbb{R} e^{-ix} e^{-2\pi i \xi x}\ dx
     97         \right).
     98 \end{align}
     99 Here we may use the above formula for the Fourier transform of the Dirac
    100 delta. We choose $a=1$, $b= \pm \frac{1}{2\pi}$ and do some $y=-x$
    101 substitutions and thereby get the following result
    102 \begin{align}
    103     \widehat{\sin(x)} = \frac{1}{2i} \left(
    104         \delta(\xi - \frac{1}{2\pi})
    105         -\delta(\xi + \frac{1}{2\pi})
    106         \right)
    107 \end{align}
    108 The whole result is thereby
    109 \begin{align}
    110     \widehat{f(3x-1)} * \widehat{sin(x)}
    111     =& \frac{1}{6i} \bigg(
    112         e^{2\pi
    113         i(\frac{\xi}{3}-\frac{1}{6\pi})}\hat{f}\big(\frac{\xi}{3}-\frac{1}{6\pi}\big)-
    114         e^{2\pi
    115             i(\frac{\xi}{3}+\frac{1}{6\pi})}\hat{f}\big(\frac{\xi}{3}+\frac{1}{6\pi}\big)
    116         \bigg)
    117 \end{align}
    118 \subsection{More Fourier Transforms}
    119 Consider the function
    120 \begin{align}
    121     f(x) = e^{-|x|}
    122 \end{align}
    123 The Fourier transform of this function is
    124 \begin{align}
    125     \hat{f}(\xi)
    126     &=\int_\mathbb{R} e^{-|x| e^{-2\pi i x \xi}}\ dx\\
    127     &= \int_{-\infty}^0 e^x e^{-2\pi i x \xi}\ dx
    128     + \int_0^\infty e^{-x} e^{-2\pi i x \xi}\ dx=\\
    129     &= \frac{1}{1-2\pi i \xi} e^{(1-2\pi i \xi) x}\bigg|_{-\infty}^0+
    130         \frac{-1}{1+2\pi i \xi} e^{-(1+2\pi i \xi) x}\bigg|_{-\infty}^0 = \\
    131     &= \frac{1}{1-2\pi i \xi} + \frac{1}{1 + 2\pi i \xi} =\\
    132     &= \frac{2}{1+(2\pi \xi)^2}.
    133 \end{align}
    134 Let us use this result to solve the following integral
    135 \begin{align}
    136     \int_\mathbb{R} \frac{\cos(a\xi)}{(2\pi \xi)^2 + 1}\ d\xi =
    137     \frac{1}{2}\int_\mathbb{R} \hat{f}(\xi) \text{Re}(e^{ia\xi})\ dx,\\
    138 \end{align}
    139 where we used the fact that $\text{Re}(e^{ia\xi}) = \cos(a\xi)$ and
    140 $\hat{f}(\xi) = \frac{2}{1+(2\pi \xi)^2}$, thereby
    141 \begin{align}
    142     \frac{1}{2}\int_\mathbb{R} \hat{f}(\xi) \text{Re}(e^{ia\xi})\ dx
    143     &= \frac{1}{2}\text{Re}\left(
    144         \int_\mathbb{R}\hat{f}(\xi)e^{ia\xi}\ d\xi
    145     \right)=\\
    146     &= \frac{1}{2}\text{Re}\left(
    147         \int_\mathbb{R} \hat{f}(\xi) e^{2\pi i \frac{a}{2\pi}\xi}\ d\xi
    148     \right)=\\
    149     &= \frac{1}{2}\text{Re}\left(f(\frac{a}{2\pi})\right)=\\
    150     &= \frac{1}{2} e^{-\frac{|a|}{2\pi}}.
    151 \end{align}
    152 \subsection{Finite discrete Fourier transform}
    153 Consider $s\in \mathbb{C}^N$ with entries
    154 \begin{align}
    155     s[n] = \sin\left(2\pi\xi_0\frac{n}{N}\right),
    156 \end{align}
    157 for same $0 < \xi_0 < N$. The finite discrete Fourier transform of $s$ is
    158 \begin{align}
    159     \hat{s}[k] &= \frac{1}{N} \sum_{n=0}^{N-1} \sin\left(2\pi\xi_0\frac{n}{N}\right)
    160             e^{-2\pi i \frac{k}{N} n}  =\\
    161         &=\frac{1}{2iN}\left(
    162             \sum_{n=0}^{N-1}e^{2\pi i \frac{n}{N}(\xi_0 -k)} - e^{-2\pi i
    163             \frac{n}{N}(\xi_0 +k)}
    164             \right).
    165 \end{align}
    166 If we consider $\xi_0 \in \mathbb{Z}$, we have
    167 \begin{align}
    168     \hat{s}[k] =
    169     \begin{cases}
    170         \frac{1}{2i}\;\;\;\;\;\; \xi_0 = k\\
    171         -\frac{1}{2i}\;\;\;\;\;\; \xi_0 = -k\\
    172         0   \;\;\;\;\;\; \text{else}
    173     \end{cases}
    174 \end{align}
    175 \subsection{Discrete Matrix Notation}
    176 The convolution of two vectors $f, g \in \mathbb{C}^N$, can be expressed by a
    177 circulate matrix applied to f
    178 \begin{align}
    179     (f * g) [n] = \sum_{k=0}^{N-1} f[k] g[n-k].
    180 \end{align}
    181 Consider $g=s$, then the matrix takes the following values
    182 \begin{align}
    183     s[n-k] = s_{nk} = \sin\left(2\pi \xi_0 \frac{n-k}{N}\right).
    184 \end{align}
    185 The convolution with an impulse input $f=\delta_{0k}$, a vector that is $1$
    186 for $k=0$ and else 0 reads
    187 \begin{align}
    188     \sum_k s_{nk}f_k &= \sum_k s_{nk} \delta_{0k} =\\
    189             &= \sin\left(2\pi \xi_0 \frac{n}{N}\right).
    190 \end{align}
    191 
    192 %\printbibliography
    193 \end{document}