main.tex (6255B)
1 \documentclass[a4paper]{article} 2 3 4 \usepackage[T1]{fontenc} 5 \usepackage[utf8]{inputenc} 6 \usepackage{mlmodern} 7 8 %\usepackage{ngerman} % Sprachanpassung Deutsch 9 10 \usepackage{graphicx} 11 \usepackage{geometry} 12 \geometry{a4paper, top=15mm} 13 14 \usepackage{subcaption} 15 \usepackage[shortlabels]{enumitem} 16 \usepackage{amssymb} 17 \usepackage{amsthm} 18 \usepackage{mathtools} 19 \usepackage{braket} 20 \usepackage{bbm} 21 \usepackage{graphicx} 22 \usepackage{float} 23 \usepackage{yhmath} 24 \usepackage{tikz} 25 \usetikzlibrary{patterns,decorations.pathmorphing,positioning} 26 \usetikzlibrary{calc,decorations.markings} 27 28 %\usepackage[backend=biber, sorting=none]{biblatex} 29 %\addbibresource{uni.bib} 30 31 \usepackage[framemethod=TikZ]{mdframed} 32 33 \tikzstyle{titlered} = 34 [draw=black, thick, fill=white,% 35 text=black, rectangle, 36 right, minimum height=.7cm] 37 38 39 \usepackage[colorlinks=true,naturalnames=true,plainpages=false,pdfpagelabels=true]{hyperref} 40 \usepackage[parfill]{parskip} 41 \usepackage{lipsum} 42 43 \usepackage[OT2,T1]{fontenc} 44 \DeclareSymbolFont{cyrletters}{OT2}{wncyr}{m}{n} 45 \DeclareMathSymbol{\Sha}{\mathalpha}{cyrletters}{"58} 46 47 \usepackage{tcolorbox} 48 \tcbuselibrary{skins,breakable} 49 50 \pagestyle{myheadings} 51 52 \markright{Popović\hfill Applied Analysis\hfill} 53 54 55 \title{University of Vienna\\ Faculty of Mathematics\\ 56 \vspace{1cm}Applied Analysis Problems 57 } 58 \author{Milutin Popovic} 59 60 \begin{document} 61 \maketitle 62 \tableofcontents 63 64 \section{Sheet 7} 65 \subsection{Dirac Comb} 66 The Dirac train or Dirac comb on defined in the following way 67 \begin{align} 68 \Sha_m[n] = 69 \begin{cases} 70 1\;\;\;\;\;\; n = 0, \pm m, \pm 2m,\dots\\ 71 0\;\;\;\;\;\; \text{else} 72 \end{cases} 73 \end{align} 74 The dirac comb can be represented in a series of discrete dirac delta's 75 \begin{align} 76 \Sha_m[n] = \sum_{l=-N}^N \delta[n - lm], 77 \end{align} 78 where $\delta[s] = 1$ if $s = 0$ else $0$, for $s \in \mathbb{Z}$. 79 The discrete Fourier transform of the Dirac comb in $\mathbb{C}^N$ is 80 \begin{align} 81 \widehat{\Sha_m[n]} 82 &=\frac{1}{N}\sum_{n=0}^{N-1} \Sha_m[n] e^{-2\pi i \frac{k}{N}n}=\\ 83 &=\frac{1}{N}\sum_{n=0}^{N-1} 84 \left( 85 \sum_{l=-N}^N \delta(n-lm) 86 \right) 87 e^{-2\pi i \frac{k}{N}n}, 88 \end{align} 89 where the summation happens exactly $\frac{N}{m}$ times, then 90 \begin{align} 91 &\frac{1}{m}\sum_{l=-N}^N e^{-2\pi i \frac{k}{N}lm}=\\ 92 &= \frac{1}{m} \sum_{l=-N}^N \delta[k - l\cdot \frac{N}{m}]\qquad 93 \text{(Poisson's summation formula)} \\ 94 &= \frac{1}{m}\Sha_{\frac{N}{m}}[k] 95 \end{align} 96 \subsection{Schwartz Space} 97 The Schwartz space $\mathcal{S}(\mathbb{R}^d)$, for $d \in \mathbb{N}$ is 98 defined as 99 \begin{align} 100 &\mathcal{S} := 101 \bigg\{ 102 f\in\mathcal{C}^\infty(\mathbb{R}^d): 103 \forall\alpha,\beta\in\mathbb{N}^d\;\; \lVert f \rVert_{\alpha,\beta} 104 < \infty 105 \bigg\},\\ 106 &\lVert f \rVert_{\alpha, \beta} := 107 \sup_{x\in\mathbb{R}^d}\left|x^\alpha (D^\beta f) (x) \right|. 108 \end{align} 109 Our aim is to show that if $f\in\mathcal{S}(\mathbb{R})$ then $\hat{f} \in 110 \mathcal{S}(\mathbb{R})$. The condition is obviously 111 \begin{align} 112 &\lVert \hat{f} \rVert_{\alpha, \beta} = 113 \sup_{\xi\in\mathbb{R}}\left|\xi^\alpha (D^\beta \hat{f}) (\xi) 114 \right|<\infty, 115 \end{align} 116 for all $\alpha, \beta \in \mathbb{N}$. 117 We can start with what we know about the Fourier transform 118 \begin{align} 119 \xi^\alpha \hat{f}(\xi) &= \mathcal{F}\left(\frac{1}{(2\pi 120 i)^\alpha}(D^{\alpha}f)(x)\right)\\ 121 D^{\beta}\hat{f}(\xi) &= \mathcal{F}\left( 122 (-2\pi i x)^\beta f(x) 123 \right). 124 \end{align} 125 Combining the two relations above we get 126 \begin{align} 127 \xi^\alpha (D^\beta \hat{f})(\xi) = 128 \mathcal{F}\left(\frac{(-2\pi i x)^\beta}{(2\pi 129 i)^\alpha}x^\beta(D^{\alpha}f)(x)\right)=: \mathcal{F}(g(x))\\ 130 \end{align} 131 If we call this function $g$, then $g\in\mathcal{S}(\mathbb{R})$ and 132 $g\in L^1(\mathbb{R})$. Applying the Riemann-Lebesgue Lemma we get 133 \begin{align} 134 \hat{g}(\xi) = \int_\mathbb{R} g(x) e^{-2\pi i x \xi}\ dx \longrightarrow 0 135 \;\;\; \text{as $|\xi| \rightarrow \infty$ } 136 \end{align} 137 Thereby $\hat{g} \in \mathcal{S}(\mathbb{R})$ and thus $\hat{f} \in 138 \mathcal{S}(\mathbb{R})$. 139 \subsection{Tempered Distributions} 140 Tempered distributions are the elements of 141 \begin{align} 142 \mathcal{S}'(\mathbb{R}^d) := 143 \bigg\{ 144 L: \mathcal{S}(\mathbb{R}^d) \rightarrow \mathbb{C} | \text{$L$ is 145 linear and continuous} 146 \bigg\}. 147 \end{align} 148 Consider $\xi$ as a tempered distribution, buy acting on $\varphi \in 149 \mathcal{S}(\mathbb{R})$ we have 150 \begin{align} 151 \xi(\phi) = \int_\xi \xi \varphi(\xi)\ d\xi. 152 \end{align} 153 The Fourier transform of $\xi$ is 154 \begin{align} 155 \hat{\xi}(\varphi) 156 &=\xi(\hat{\varphi}) 157 = \int_\mathbb{R} \xi \hat{\varphi}(\xi)\ d\xi\\ 158 &= \int_{\mathbb{R}^2}\xi \varphi(x) e^{2\pi i\xi x}\ dxd\xi\\ 159 &= \int_{\mathbb{R}^2}\varphi(x) \xi e^{2\pi i \xi x}\ dxd\xi\\ 160 &=\int_{\mathbb{R}^2}\varphi(x)\frac{i}{2\pi} \frac{\partial}{\partial x} 161 e^{2\pi i \xi x}\ dxd\xi =\\ 162 &=\frac{i}{2\pi}\int_{\mathbb{R}^2}\varphi(x)\delta'(x)\ dx=\\ 163 &=\frac{i}{2\pi} \delta'(\varphi). 164 \end{align} 165 \subsection{Fourier transform of the Dirac Comb} 166 The general case of the Dirac Comb as a distribution is 167 \begin{align} 168 \Sha_T = \sum_{n \in \mathbb{Z}} \delta_{nT}. 169 \end{align} 170 The Fourier transform of the $\Sha_T$ distribution for $\varphi \in 171 \mathcal{S}(\mathbb{R})$ is 172 \begin{align} 173 \widehat{\Sha_T}(\varphi) 174 &= \sum_{n\in\mathbb{Z}} \hat{\delta}_{nT}(\varphi)\\ 175 &= \sum_{n\in\mathbb{Z}} \delta_{n\omega_0}(\varphi)\\ 176 &=\Sha_{\omega_0}(\varphi). 177 \end{align} 178 The Fourier transform, transforms the period of the combs. 179 \subsection{Shannon Sampling} 180 The Fourier transform of $1_{[-\frac{a}{2}, \frac{a}{2}]}(x)$ is 181 \begin{align} 182 \mathcal{F}\left(1_{[-\frac{a}{2}, \frac{a}{2}]}\right)(\xi) 183 &= \int_\mathbb{R} 1_{[-\frac{a}{2}, \frac{a}{2}]} e^{-2\pi i x \xi}\ 184 dx\\ 185 &= \int_{-\frac{a}{2}}^{\frac{a}{2}} e^{-2\pi i x\xi}\ dx\\ 186 &= \frac{-1}{2\pi i \xi} e^{-2\pi i x 187 \xi}\bigg|_{-\frac{a}{2}}^{\frac{a}{2}}\\ 188 &= \frac{1}{\pi \xi} \frac{1}{2i}\left( 189 e^{pi i a \xi} - e^{-\pi i a \xi} 190 \right)\\ 191 &= \frac{\sin(\pi \xi a)}{\pi \xi} 192 \end{align} 193 194 %\printbibliography 195 \end{document}