notes

uni notes
git clone git://popovic.xyz/notes.git
Log | Files | Refs

main.tex (6255B)


      1 \documentclass[a4paper]{article}
      2 
      3 
      4 \usepackage[T1]{fontenc}
      5 \usepackage[utf8]{inputenc}
      6 \usepackage{mlmodern}
      7 
      8 %\usepackage{ngerman}	% Sprachanpassung Deutsch
      9 
     10 \usepackage{graphicx}
     11 \usepackage{geometry}
     12 \geometry{a4paper, top=15mm}
     13 
     14 \usepackage{subcaption}
     15 \usepackage[shortlabels]{enumitem}
     16 \usepackage{amssymb}
     17 \usepackage{amsthm}
     18 \usepackage{mathtools}
     19 \usepackage{braket}
     20 \usepackage{bbm}
     21 \usepackage{graphicx}
     22 \usepackage{float}
     23 \usepackage{yhmath}
     24 \usepackage{tikz}
     25 \usetikzlibrary{patterns,decorations.pathmorphing,positioning}
     26 \usetikzlibrary{calc,decorations.markings}
     27 
     28 %\usepackage[backend=biber, sorting=none]{biblatex}
     29 %\addbibresource{uni.bib}
     30 
     31 \usepackage[framemethod=TikZ]{mdframed}
     32 
     33 \tikzstyle{titlered} =
     34     [draw=black, thick, fill=white,%
     35         text=black, rectangle,
     36         right, minimum height=.7cm]
     37 
     38 
     39 \usepackage[colorlinks=true,naturalnames=true,plainpages=false,pdfpagelabels=true]{hyperref}
     40 \usepackage[parfill]{parskip}
     41 \usepackage{lipsum}
     42 
     43 \usepackage[OT2,T1]{fontenc}
     44 \DeclareSymbolFont{cyrletters}{OT2}{wncyr}{m}{n}
     45 \DeclareMathSymbol{\Sha}{\mathalpha}{cyrletters}{"58}
     46 
     47 \usepackage{tcolorbox}
     48 \tcbuselibrary{skins,breakable}
     49 
     50 \pagestyle{myheadings}
     51 
     52 \markright{Popović\hfill Applied Analysis\hfill}
     53 
     54 
     55 \title{University of Vienna\\ Faculty of Mathematics\\
     56 \vspace{1cm}Applied Analysis Problems
     57 }
     58 \author{Milutin Popovic}
     59 
     60 \begin{document}
     61 \maketitle
     62 \tableofcontents
     63 
     64 \section{Sheet 7}
     65 \subsection{Dirac Comb}
     66 The Dirac train or Dirac comb on defined in the following way
     67 \begin{align}
     68     \Sha_m[n] =
     69     \begin{cases}
     70         1\;\;\;\;\;\; n = 0, \pm m, \pm 2m,\dots\\
     71         0\;\;\;\;\;\; \text{else}
     72     \end{cases}
     73 \end{align}
     74 The dirac comb can be represented in a series of discrete dirac delta's
     75 \begin{align}
     76     \Sha_m[n] = \sum_{l=-N}^N \delta[n - lm],
     77 \end{align}
     78 where $\delta[s] = 1$ if $s = 0$ else $0$, for $s \in \mathbb{Z}$.
     79 The discrete Fourier transform of the Dirac comb in $\mathbb{C}^N$ is
     80 \begin{align}
     81     \widehat{\Sha_m[n]}
     82     &=\frac{1}{N}\sum_{n=0}^{N-1} \Sha_m[n] e^{-2\pi i \frac{k}{N}n}=\\
     83     &=\frac{1}{N}\sum_{n=0}^{N-1}
     84         \left(
     85             \sum_{l=-N}^N \delta(n-lm)
     86             \right)
     87             e^{-2\pi i \frac{k}{N}n},
     88 \end{align}
     89 where the summation happens exactly $\frac{N}{m}$ times, then
     90 \begin{align}
     91     &\frac{1}{m}\sum_{l=-N}^N e^{-2\pi i \frac{k}{N}lm}=\\
     92     &= \frac{1}{m} \sum_{l=-N}^N \delta[k - l\cdot \frac{N}{m}]\qquad
     93     \text{(Poisson's summation formula)} \\
     94     &= \frac{1}{m}\Sha_{\frac{N}{m}}[k]
     95 \end{align}
     96 \subsection{Schwartz Space}
     97 The Schwartz space $\mathcal{S}(\mathbb{R}^d)$, for $d \in \mathbb{N}$ is
     98 defined as
     99 \begin{align}
    100     &\mathcal{S} :=
    101 \bigg\{
    102     f\in\mathcal{C}^\infty(\mathbb{R}^d):
    103     \forall\alpha,\beta\in\mathbb{N}^d\;\; \lVert f \rVert_{\alpha,\beta}
    104     < \infty
    105 \bigg\},\\
    106 &\lVert f \rVert_{\alpha, \beta} :=
    107 \sup_{x\in\mathbb{R}^d}\left|x^\alpha (D^\beta f) (x) \right|.
    108 \end{align}
    109 Our aim is to show that if $f\in\mathcal{S}(\mathbb{R})$ then $\hat{f} \in
    110 \mathcal{S}(\mathbb{R})$. The condition is obviously
    111 \begin{align}
    112     &\lVert \hat{f} \rVert_{\alpha, \beta} =
    113     \sup_{\xi\in\mathbb{R}}\left|\xi^\alpha (D^\beta \hat{f}) (\xi)
    114     \right|<\infty,
    115 \end{align}
    116 for all $\alpha, \beta \in \mathbb{N}$.
    117 We can start with what we know about the Fourier transform
    118 \begin{align}
    119     \xi^\alpha \hat{f}(\xi) &= \mathcal{F}\left(\frac{1}{(2\pi
    120     i)^\alpha}(D^{\alpha}f)(x)\right)\\
    121             D^{\beta}\hat{f}(\xi) &= \mathcal{F}\left(
    122         (-2\pi i x)^\beta f(x)
    123     \right).
    124 \end{align}
    125 Combining the two relations above we get
    126 \begin{align}
    127     \xi^\alpha (D^\beta \hat{f})(\xi) =
    128     \mathcal{F}\left(\frac{(-2\pi i x)^\beta}{(2\pi
    129     i)^\alpha}x^\beta(D^{\alpha}f)(x)\right)=: \mathcal{F}(g(x))\\
    130 \end{align}
    131 If we call this function $g$, then $g\in\mathcal{S}(\mathbb{R})$ and
    132 $g\in L^1(\mathbb{R})$. Applying the Riemann-Lebesgue Lemma we get
    133 \begin{align}
    134     \hat{g}(\xi) = \int_\mathbb{R} g(x) e^{-2\pi i x \xi}\ dx \longrightarrow 0
    135     \;\;\;  \text{as $|\xi| \rightarrow \infty$ }
    136 \end{align}
    137 Thereby $\hat{g} \in \mathcal{S}(\mathbb{R})$ and thus $\hat{f} \in
    138 \mathcal{S}(\mathbb{R})$.
    139 \subsection{Tempered Distributions}
    140 Tempered distributions are the elements of
    141 \begin{align}
    142     \mathcal{S}'(\mathbb{R}^d) :=
    143     \bigg\{
    144         L: \mathcal{S}(\mathbb{R}^d) \rightarrow \mathbb{C} | \text{$L$ is
    145         linear and continuous}
    146     \bigg\}.
    147 \end{align}
    148 Consider $\xi$ as a tempered distribution, buy acting on $\varphi \in
    149 \mathcal{S}(\mathbb{R})$ we have
    150 \begin{align}
    151     \xi(\phi) = \int_\xi \xi \varphi(\xi)\ d\xi.
    152 \end{align}
    153 The Fourier transform of $\xi$ is
    154 \begin{align}
    155     \hat{\xi}(\varphi)
    156     &=\xi(\hat{\varphi})
    157     = \int_\mathbb{R} \xi \hat{\varphi}(\xi)\ d\xi\\
    158     &= \int_{\mathbb{R}^2}\xi \varphi(x) e^{2\pi i\xi x}\ dxd\xi\\
    159     &= \int_{\mathbb{R}^2}\varphi(x) \xi e^{2\pi i \xi x}\ dxd\xi\\
    160     &=\int_{\mathbb{R}^2}\varphi(x)\frac{i}{2\pi} \frac{\partial}{\partial x}
    161      e^{2\pi i \xi x}\ dxd\xi =\\
    162     &=\frac{i}{2\pi}\int_{\mathbb{R}^2}\varphi(x)\delta'(x)\ dx=\\
    163     &=\frac{i}{2\pi} \delta'(\varphi).
    164 \end{align}
    165 \subsection{Fourier transform of the Dirac Comb}
    166 The general case of the Dirac Comb as a distribution is
    167 \begin{align}
    168     \Sha_T = \sum_{n \in \mathbb{Z}} \delta_{nT}.
    169 \end{align}
    170 The Fourier transform of the $\Sha_T$ distribution for $\varphi \in
    171 \mathcal{S}(\mathbb{R})$ is
    172 \begin{align}
    173     \widehat{\Sha_T}(\varphi)
    174     &= \sum_{n\in\mathbb{Z}} \hat{\delta}_{nT}(\varphi)\\
    175     &= \sum_{n\in\mathbb{Z}} \delta_{n\omega_0}(\varphi)\\
    176     &=\Sha_{\omega_0}(\varphi).
    177 \end{align}
    178 The Fourier transform, transforms the period of the combs.
    179 \subsection{Shannon Sampling}
    180 The Fourier transform of $1_{[-\frac{a}{2}, \frac{a}{2}]}(x)$ is
    181 \begin{align}
    182     \mathcal{F}\left(1_{[-\frac{a}{2}, \frac{a}{2}]}\right)(\xi)
    183     &= \int_\mathbb{R} 1_{[-\frac{a}{2}, \frac{a}{2}]} e^{-2\pi i x \xi}\
    184     dx\\
    185     &= \int_{-\frac{a}{2}}^{\frac{a}{2}} e^{-2\pi i x\xi}\ dx\\
    186     &= \frac{-1}{2\pi i \xi} e^{-2\pi i x
    187         \xi}\bigg|_{-\frac{a}{2}}^{\frac{a}{2}}\\
    188     &= \frac{1}{\pi \xi} \frac{1}{2i}\left(
    189         e^{pi i a \xi} - e^{-\pi i a \xi}
    190     \right)\\
    191     &= \frac{\sin(\pi \xi a)}{\pi \xi}
    192 \end{align}
    193 
    194 %\printbibliography
    195 \end{document}