notes

uni notes
git clone git://popovic.xyz/notes.git
Log | Files | Refs

main.tex (7789B)


      1 \documentclass[a4paper]{article}
      2 
      3 
      4 \usepackage[T1]{fontenc}
      5 \usepackage[utf8]{inputenc}
      6 \usepackage{mlmodern}
      7 
      8 %\usepackage{ngerman}	% Sprachanpassung Deutsch
      9 
     10 \usepackage{graphicx}
     11 \usepackage{geometry}
     12 \geometry{a4paper, top=15mm}
     13 
     14 \usepackage{subcaption}
     15 \usepackage[shortlabels]{enumitem}
     16 \usepackage{amssymb}
     17 \usepackage{amsthm}
     18 \usepackage{mathtools}
     19 \usepackage{braket}
     20 \usepackage{bbm}
     21 \usepackage{graphicx}
     22 \usepackage{float}
     23 \usepackage{yhmath}
     24 \usepackage{tikz}
     25 \usetikzlibrary{patterns,decorations.pathmorphing,positioning}
     26 \usetikzlibrary{calc,decorations.markings}
     27 
     28 %\usepackage[backend=biber, sorting=none]{biblatex}
     29 %\addbibresource{uni.bib}
     30 
     31 \usepackage[framemethod=TikZ]{mdframed}
     32 
     33 \tikzstyle{titlered} =
     34     [draw=black, thick, fill=white,%
     35         text=black, rectangle,
     36         right, minimum height=.7cm]
     37 
     38 
     39 \usepackage[colorlinks=true,naturalnames=true,plainpages=false,pdfpagelabels=true]{hyperref}
     40 \usepackage[parfill]{parskip}
     41 \usepackage{lipsum}
     42 
     43 \usepackage[OT2,T1]{fontenc}
     44 \DeclareSymbolFont{cyrletters}{OT2}{wncyr}{m}{n}
     45 \DeclareMathSymbol{\Sha}{\mathalpha}{cyrletters}{"58}
     46 
     47 \usepackage{tcolorbox}
     48 \tcbuselibrary{skins,breakable}
     49 
     50 \pagestyle{myheadings}
     51 
     52 \markright{Popović\hfill Applied Analysis\hfill}
     53 
     54 
     55 \title{University of Vienna\\ Faculty of Mathematics\\
     56 \vspace{1cm}Applied Analysis Problems
     57 }
     58 \author{Milutin Popovic}
     59 
     60 \begin{document}
     61 \maketitle
     62 \tableofcontents
     63 
     64 \section{Sheet 8}
     65 \subsection{Finite Discrete Fourier Transform (FDFT)}
     66 Consider the vector $\begin{pmatrix}a & b & c & d\end{pmatrix}^T \in
     67 \mathbb{C}^4$ with a FDFT $\begin{pmatrix}A & B & C & D\end{pmatrix}^T$. We
     68 can show that the vector
     69 \begin{align}
     70     \begin{pmatrix}a & 0 & b & 0 & c & 0 & d & 0\end{pmatrix}^T,
     71 \end{align}
     72 has the FDFT of
     73 \begin{align}
     74     \frac{1}{2}\begin{pmatrix}A & 0 & B & 0 & C & 0 & D & 0\end{pmatrix}^T.
     75 \end{align}
     76 For the $N=4$, $n\in\{0,\dots,3\}$ the coefficients $a, b, c, d$ are denoted in
     77 $f[n]$. The FDFT is
     78 \begin{align}
     79     \hat{f}[k] &= \frac{1}{4} * \sum_{n=0}^3 f[n] e^{-2\pi i \frac{n}{4}k} \\
     80                &=\frac{1}{4}\left(
     81                    a + be^{-\pi i \frac{k}{2}}
     82                    + ce^{-\pi i k}+ de^{-\frac{3\pi i k}{2}}
     83                \right) = \\
     84     (&=\begin{pmatrix}A & B & C & D\end{pmatrix}^T)
     85 \end{align}
     86 for $k \in \{0,\dots, 3\}$ accordingly. For the $N=8$, $\mathbb{C}^8$ case
     87  we have $f_2[n]$ for $n \in \{0,\dots 7\}$,
     88  \begin{align}
     89     \hat{f}_2[k] &= \frac{1}{8} * \sum_{n=0}^7 f_2[n] e^{-2\pi i \frac{n}{8}k} \\
     90                &=\frac{1}{2}\frac{1}{4}\left(
     91                    a + be^{-\pi i \frac{k}{2}}
     92                    + ce^{-\pi i k}+ de^{-\frac{3\pi i k}{2}}
     93                \right) = \\
     94     (&=\frac{1}{2}\begin{pmatrix}A & B & C & D & A & B & C & D\end{pmatrix}^T)
     95  \end{align}
     96 for $k \in \{0,\dots, 7\}$ accordingly. We may generalize now for
     97 $\mathbb{C}^{4N}$, and the sequence for $a, b, c, d, 0$ represented by the
     98 function $g[n]$ for $n \in \{0,\dots, 4N-1\}$,
     99 \begin{align}
    100     g[n] =\begin{cases}
    101         f[n] \qquad n\in \{0, N, 2N, 3N\}\\
    102         0 \qquad \text{else}
    103         \end{cases}.
    104 \end{align}
    105 Now we can compute the FDFT for $k \in \{0,\dots, 4N-1\}$
    106 \begin{align}
    107     \hat{g}[k] &= \frac{1}{4N}\sum_{n=0}^{4N-1} g[n]e^{-2\pi i
    108     \frac{n}{4N}k}\\
    109          &=\frac{4}{N}\sum_{n=0}{3}f[n]e^{-2\pi i \frac{n}{4}k}\\
    110          &=\frac{1}{N}\left(\frac{1}{4}\sum_{n=0}^3 f[n] e^{-2\pi i
    111          \frac{n}{4}k} \right) \\
    112          &= \frac{1}{N} \underbrace{\begin{pmatrix}A & B & C & D & \dots &
    113              \dots & A & B & C & D\end{pmatrix}^T)}_{\text{$4N$ entries, $N$
    114          sequences}}.
    115 \end{align}
    116 \subsection{More FDFT}
    117 Consider the discrete complex exponential with frequency of $1Hz$ in
    118 $\mathbb{C}^8$, for $n \in \{0, \dots , 7\}$,
    119 \begin{align}
    120     \exp[n] = e^{2\pi i n/8}.
    121 \end{align}
    122 The FDFT for $k \in \{0, \dots, 7\}$ is
    123 \begin{align}
    124     \hat{\exp}[k] &= \frac{1}{8}\sum_{n=0}^7 e^{2\pi i \frac{n}{8}}e^{-2\pi i
    125     n \frac{k}{8}} \\
    126                   &= \frac{1}{8} \sum_{n=0}^7e^{-2\pi i (k-1)\frac{n}{8}}\\
    127                   &=
    128                   \begin{cases}
    129                       1\quad k=1\\
    130                       0 \qquad k\neq 1
    131                    \end{cases}.
    132 \end{align}
    133 \begin{figure}[H]
    134     \centering
    135     \includegraphics[width=0.49\textwidth]{./fdft.png}
    136     \includegraphics[width=0.49\textwidth]{./normal.png}
    137     \caption{Test in Julia}
    138 \end{figure}
    139 \subsection{Sampling Sinusoids}
    140 Consider the following continuous signal
    141 \begin{align}
    142     f(t) = sin(20\pi t) + sin(40\pi t)
    143 \end{align}
    144 with frequencies $\omega = 2\pi \nu$, $\nu_1 = 10\ \text{Hz}$ and $\nu_2 = 20\
    145 \text{Hz}$. Sketching its Fourier transform would be something like this
    146 \begin{figure}[H]
    147     \centering
    148 \begin{tikzpicture}[
    149     axisline/.style={very thick, -stealth},
    150     xscale = 1.5,
    151     yscale = 1.5
    152     ]
    153     \draw[axisline] (-3,0)--(3,0) node[right]{$\nu$};
    154     \draw[axisline] (0,-1.5)--(0,1.5) node[above]{$\hat{f}$};
    155     \draw[->] (-1,0) -- (-1, -1) node[below] {$-\delta(\nu - 10)$};
    156     \draw[->] (-2,0) -- (-2, 1) node[above] {$\delta(\nu - 20)$};
    157     \draw[->] (1,0) -- (1, 1) node[above] {$\delta(\nu - 10)$};
    158     \draw[->] (2,0) -- (2, 1) node[above] {$\delta(\nu - 20)$};
    159 \end{tikzpicture}
    160 \end{figure}
    161 The Nyquist frequency for sampling would be
    162 \begin{align}
    163     \nu_{\text{Nyquist}} = 2\nu_\text{max} = 2\nu_2 = 40\ \text{Hz},
    164 \end{align}
    165 If we choose $50\ \text{Hz}$ for sampling we would get aliasing with the
    166 following frequencies
    167 \begin{align}
    168     n \cdot 50\ \text{Hz} - 20\ \text{Hz} = 30\ \text{Hz},80\ \text{Hz}, 130\
    169     \text{Hz}, \dots
    170 \end{align}
    171 \subsection{Short-Time Fourier Transform (STFT)}
    172 The Definition of the STFT is
    173 \begin{align}
    174     \text{STFT}\{f\} &= S_\varphi f(\tau, \omega) = \int_\mathbb{R} f(t)
    175     \overline{\text{M}_\omega \text{T}_\tau \varphi}dt \\
    176                  &=\int_\mathbb{R} f(t)
    177     \bar{\varphi}(t - \tau)e^{-2\pi i \omega t}\ dt \\
    178 \end{align}
    179 Then we have the following identity
    180 \begin{align}
    181     S_\varphi(\text{T}_u\text{M}_\eta f)(x,\omega)
    182     &= \int_\mathbb{R}
    183      \left(\text{T}_u \text{M}_\eta f(t)\right) \bar{\varphi}(t-x) e^{-2\pi i
    184          \omega t}\ dt\\
    185     &= \int_\mathbb{R} e^{2\pi i \eta(t-u)}f(t-u) e^{-2\pi i \omega
    186     t}\bar{\varphi}(t-x)\ dt \qquad \text{(sub: $s = t-u$)}\\
    187     &= \int_\mathbb{R} f(s)\bar{\varphi}(s-(x-u))e^{2\pi i \eta s}e^{-2\pi i
    188     \omega s} e^{-2\pi i \omega u}\ ds \\
    189     &=e^{-2\pi i \omega u}\int_\mathbb{R} f(s) \bar{\varphi}(s-(x-u))e^{-2\pi i
    190     (\omega - \eta)s}\ ds\\
    191     &=e^{-2\pi i \omega u}\int_\mathbb{R}
    192     f(s)\overline{ \text{M}_{(\omega-\eta)} \text{T}_{(x-u)}\varphi(s)}\ ds\\
    193     &=e^{-2\pi i \omega u} S_\varphi f\left(x-u,\ \omega -\eta\right).
    194 \end{align}
    195 The second identity we can show
    196 \begin{align}
    197     S_\varphi f(x, \omega)
    198     &= \langle f, \overline{\text{M}_\omega \text{T}_x \varphi}\rangle \\
    199     &= \langle\mathcal{F} f, \mathcal{F} \overline{\text{M}_\omega \text{T}_x \varphi}\rangle \\
    200     &= \int_\xi \hat{f}(\xi)\int_t \overline{\text{M}_\omega \text{T}_x
    201     \varphi}(t) e^{-2\pi i \xi t}\ dt\ d\xi \\
    202     &= \int_\xi \hat{f}(\xi)\int_t \hat{\bar{\varphi}}(t-x) e^{2\pi i \omega
    203     t} e^{-2\pi i \xi t}\ dt\ d\xi \\
    204     &= \int_\xi \hat{f}(\xi)\int_t \hat{\bar{\varphi}}(t-x)e^{-2\pi i (\xi
    205     -\omega)t}\ dt\ d\xi \qquad \text{sub $u=t-x$}\\
    206     &= \int_\xi \hat{f}(\xi)\int_t \hat{\bar{\varphi}}(u)e^{-2\pi i (\xi
    207     -\omega)u}e^{-2\pi i (\xi -\omega)x} \ dt\ d\xi\\
    208     &= \int_\xi \hat{f}(\xi)e^{-2\pi i (\xi -\omega)x}\int_t
    209     \hat{\varphi}(u)e^{-2\pi i (\xi -\omega)u} \ dt\ d\xi\\ &= e^{2\pi i
    210     \omega x}\int_\xi \hat{f}(\xi) \hat{\bar{\varphi}}(\xi - \omega) e^{-2\pi
    211     i \xi x}d\xi\\
    212     &= e^{2\pi i \omega x} S_{\hat{\varphi}} \hat{f}(\omega, -x).
    213 \end{align}
    214 % printbibliography
    215 \end{document}