main.tex (141355B)
1 \documentclass{article} 2 \usepackage[utf8]{inputenc} 3 \usepackage{amssymb} 4 \usepackage{amsmath} 5 \usepackage{amsthm} 6 %\usepackage[ngerman]{babel} 7 \usepackage[english]{babel} 8 \usepackage{geometry} 9 \usepackage{cases} 10 \usepackage{wasysym} 11 \usepackage{enumitem} 12 \usepackage{thmtools} 13 \usepackage{tikz} 14 \usepackage{pgfplots} 15 \usepgfplotslibrary{polar} 16 \pgfplotsset{compat = newest} 17 18 \usetikzlibrary{angles,quotes} % for pic (angle labels) 19 \usetikzlibrary{arrows.meta} 20 \usetikzlibrary{calc} 21 \usetikzlibrary{decorations.markings} 22 \usetikzlibrary{bending} 23 24 \tikzstyle{xline}=[black,thick,smooth] 25 \tikzstyle{width}=[{Latex[length=5,width=3]}-{Latex[length=5,width=3]},thick] 26 \tikzstyle{mydashed}=[dash pattern=on 1.7pt off 1.7pt] 27 28 \tikzset{>=latex} 29 \tikzset{ 30 traj/.style 2 args={xline,postaction={decorate},decoration={markings, 31 mark=at position #1 with {\arrow{<}}, 32 mark=at position #2 with {\arrow{<}}} 33 } 34 } 35 36 \geometry{ 37 left=3cm, 38 right=3cm, 39 top=2cm, 40 bottom=4cm, 41 bindingoffset=5mm 42 } 43 44 45 \newcommand*{\N}{\mathbb{N}} 46 \newcommand*{\Z}{\mathbb{Z}} 47 \newcommand*{\Q}{\mathbb{Q}} 48 \newcommand*{\R}{\mathbb{R}} 49 \newcommand*{\C}{\mathbb{C}} 50 \newcommand*{\I}{\mathbb{I}} 51 \newcommand*{\T}{\mathbb{T}} 52 53 \newcommand*{\Ns}{\N^*} 54 55 \newcommand*{\Hs}{{H^s}} 56 \newcommand*{\dHs}{{\dot H^s}} 57 \newcommand*{\Lp}{{L^p}} 58 \newcommand*{\Lq}{{L^q}} 59 \newcommand*{\Rd}{{\mathbb{R}^d}} 60 \newcommand*{\Rn}{{\mathbb{R}^n}} 61 \newcommand*{\half}[1]{\frac{#1}{2}} 62 \newcommand*{\jbr}[1]{{\langle #1 \rangle}} 63 \newcommand*{\ag}{\alpha} 64 \newcommand*{\bg}{\beta} 65 \newcommand*{\og}{\omega} 66 \newcommand*{\Og}{\Omega} 67 \newcommand*{\supp}{\text{supp}} 68 \newcommand*{\xj}{{x_j}} 69 \newcommand*{\reci}[1]{{\frac{1}{#1}}} 70 \newcommand*{\tr}{\text{tr}} 71 \newcommand*{\grad}{\text{grad}} 72 \newcommand*{\spanl}{\text{span}} 73 \newcommand*{\sgn}{\text{sgn}} 74 \newcommand*{\limn}{\lim_{n\to\infty}} 75 \newcommand*{\Per}{\text{Per}} 76 \newcommand*{\diam}{\text{diam}} 77 \newcommand*{\divg}{\text{div}} 78 79 \newcommand{\vectwo}[2]{\begin{pmatrix} #1\\#2\end{pmatrix}} 80 \newcommand{\vecthree}[3]{\begin{pmatrix} #1\\#2\\#3\end{pmatrix}} 81 82 \newcommand*{\mattwo}[4]{\begin{pmatrix} 83 #1\\#3 84 \end{pmatrix}} 85 \newcommand*{\matthree}[9]{\begin{pmatrix} 86 #1\\#4\\#7	 87 \end{pmatrix}} 88 %\newcommand*{\matfour}[16]{\begin{pmatrix} 89 % #1\\#5\\#9
\\#13 90 %\end{pmatrix}} 91 92 \newcommand*{\matutwo}[3]{\begin{pmatrix} 93 #1\\ \\ 94 \end{pmatrix}} 95 \newcommand*{\matuthree}[6]{\begin{pmatrix} 96 #1\\ \\ & 97 \end{pmatrix}} 98 99 \newcommand*{\matdiagtwo}[2]{\mattwo{#1}{\,}{\,}{#2}} 100 \newcommand*{\matdiagthree}[3]{\matthree{#1}{\,}{\,}{\,}{#2}{\,}{\,}{\,}{#3}} 101 102 \newcommand{\matdoublediagthree}[5]{\matthree{#1}{#2}{\,}{\,}{#3}{#4}{\,}{\,}{#5}} 103 104 \newcommand{\quests} 105 { 106 Modelling 107 Autonomous ODE in R^n 108 Invariant subspaces 109 Stability of equilibria 110 Polar coordinates 111 Asymptotic behavior 112 LaSalle's invariance principle 113 Hamiltonian systems in 2D 114 Special Hamiltonian systems: Newtonian systems 115 Gradient systems in R^n 116 First integral (or constant of motion) 117 How to find centers 118 Stable and unstable manifolds 119 Center manifold 120 Andronov bifurcation 121 122 Ideas from the General theory of dynamical systems 123 * (Def 2.29) Circle rotations 124 Maps with complicated orbit structure 125 Outlook: Coding for other systems 126 } 127 128 \declaretheorem[ 129 name=Theorem, 130 numberwithin=section 131 ]{thm} 132 \declaretheorem[ 133 name=Lemma, 134 sibling=thm, 135 ]{lem} 136 \declaretheorem[ 137 name=Proposition, 138 sibling=thm, 139 ]{prop} 140 \declaretheorem[ 141 name=Corollary, 142 sibling=thm, 143 ]{cor} 144 145 \declaretheorem[ 146 name=Definition, 147 style=definition, 148 sibling=thm, 149 numbered=yes, 150 ]{defin} 151 152 \declaretheorem[ 153 name=Remark, 154 style=remark, 155 numbered=no 156 ]{rem} 157 \declaretheorem[ 158 name=Recall, 159 style=remark, 160 numbered=no 161 ]{rec} 162 \declaretheorem[ 163 name=Example, 164 style=remark, 165 numbered=no 166 ]{exam} 167 \declaretheorem[ 168 name=Notation, 169 style=remark, 170 numbered=no 171 ]{notation} 172 \declaretheorem[ 173 name=Homework, 174 style=remark, 175 numbered=no 176 ]{hw} 177 178 179 \title{Dynamical Systems and Nonlinear Differential Equations 2023S \\ 180 Lecturers: Roland Zweimüller, Balázs Boros} 181 \author{Nikolas Hauschka} 182 \date{} 183 184 \begin{document} 185 186 \maketitle 187 \tableofcontents 188 189 \setcounter{section}{-1} 190 191 \section{Notations and conventions} 192 193 For simplicity, we use some notations and conventions, which aren't always specified. If not otherwise specified, we use the following things: 194 195 \begin{enumerate} 196 \item $U$ and $V$ are open sets. 197 198 \item $U$ and $V$ are subsets of $\Rn$. 199 200 \item For $A \subseteq \Rn$ we define $C^0(U,A) := C(U,A) := \{f:U \to A, f \text{ is continuous}\}$. 201 202 \item $C^{d+1}(U,A) := \{f:U\to A, f \text{ is differetiable and each first partial derivative lies in } C^d(U,A)\}$. 203 204 \item If $A = \Rn$ then we might write $C^d(U)$ instead of $C^d(U,\Rn)$. 205 206 \item For $m,n\in\Z$ with $m\leq n$, we define $\jbr{m,n}:=\{m,\dots,n\}=[m,n]\cap\Z$. 207 208 \item We also might write $\jbr{n}$ instead of $\jbr{1,n}$. 209 210 \item We use $\N := \{0,1,\dots\}$ and $\Ns:=\{1,2,\dots\}$. 211 212 \item We define $\T := \R / \Z$, which can be viewed as the interval $[0,1]$ where the ends are identified. 213 214 \item If an element of $\T$ is added/subtracted/multplied with an element of $\R$, the result is the corresponding element of $\T \pmod1$. We won't always state that it's calculated $\pmod1$. 215 216 \item For $a,b \in \T$ with $b<a$ the interval we define the interval $[a,b] := [a,1) \cup [0,b]$ if not otherwise stated. 217 \end{enumerate} 218 219 \section{Part 1} 220 221 \subsection{Modelling} 222 223 When modeling we have to make certain decisions. Some types of models are listed below. 224 225 \begin{itemize} 226 \item Continuous time or discrete time. 227 228 \item Deterministic or stochastic. 229 230 \item State space: 231 \begin{itemize} 232 \item finite, discrete 233 234 \item metric space 235 236 \item Euclidean space (finite dimensional) 237 238 \item Hilbert space 239 \end{itemize} 240 241 \item Homogeneous (ODE) or inhomogeneous (PDE) 242 243 \item Future depends only on the present or also on the past. 244 245 \item autonomous or non-autonomous 246 \end{itemize} 247 248 In this lecture we choose: Continuous time, deterministic, Euclidean space, only on the present, autonomous. 249 \newline 250 \newline 251 \subsection{Autonomous ODE in $\R^n$} 252 \begin{thm} 253 Given 254 $$\dot x(t) = f(x(t))$$ 255 where $f:U \to \R^n$ is locally Lipschitz continuous. Then for all $p \in U$ there exists a unique solution $t\mapsto \phi(t,p)$ on a maximal interval such that $\phi(0,p) = p$. 256 \end{thm} 257 258 Details can be found in the book "Differential Equations and dynamical systems" by Perko. 259 260 \begin{exam}[Lotka reactions] 261 $$\begin{array}{rcl} 262 X &\stackrel{\kappa_1}{\to}& 2X\\ 263 X+Y &\stackrel{\kappa_2}{\to}& 2Y\\ 264 Y &\stackrel{\kappa_3}{\to}& 0 265 \end{array}$$ 266 267 $$\begin{array}{rcccl}\dot x &=&\kappa_1x-\kappa_2xy &=& x(\kappa_1-\kappa_2y)\\ 268 \dot y&=&\kappa_2xy-\kappa_3y &=& y(\kappa_2x-\kappa_3)\\ 269 &&\kappa_1,\kappa_2, \kappa_3 &>& 0 270 \end{array}$$ 271 Let's go through the details. The line $X \stackrel{\kappa_1}{\to} 2X$ that the species of type $X$ doubles at the rate $\kappa_1$. So it makes sense to get an equation like $\dot x =\kappa_1x$. The third line is similar except that the species of type $Y$ decreases with a rate of $\kappa_3$. So we get an equation like $\dot y=-\kappa_3y$. The second line is more complicated. Here the transformation occurs at a rate of $\kappa_2$ when two species of the different types meet. If the $X$ count or the $Y$ is doubled then there are twice as many meetings between $X$ and $Y$ so the expression $\kappa_2xy$ makes sense. By this transformation the $Y$ count increases while the $X$ count decreases, so we have to add $\kappa_2xy$ to the $\dot y$-equation and subtract it from the $\dot x$-equation. 272 \end{exam} 273 274 \begin{exam}[Ivanova reactions] 275 $$\begin{array}{rcl}Z+X &\stackrel{\kappa_1}{\to}& 2X\\ 276 X+Y &\stackrel{\kappa_2}{\to}& 2Y\\ 277 Y+Z &\stackrel{\kappa_3}{\to}& 2Y 278 \end{array}$$ 279 280 281 282 $$\begin{array}{rcl}\dot x &=& x(\kappa_1z - \kappa_2y)\\ 283 \dot y &=& y(\kappa_2x - \kappa_3z)\\ 284 \dot z &=& z(\kappa_3y - \kappa_1x)\end{array}$$ 285 \end{exam} 286 287 \begin{exam}[Competitive Lotka-Volterra systems (two competing species)] 288 $$\dot x=x(r_1+b_{11}x+b_{12}y)$$ 289 $$\dot y=y(r_2+b_{21}x+b_{22}y)$$ 290 With the parameters $r_j > 0, b_{ij} < 0$ for $i,j = 1,2$. 291 \end{exam} 292 293 \begin{exam}[Cyclic competition of three species.] 294 $$\begin{array}{rcl}\dot x &=& x(1-x-\alpha y-\beta z)\\ 295 \dot y &=& y(1-\beta x-y-\alpha z)\\ 296 \dot z &=& x(1-\alpha x-\beta y-z) 297 \end{array}$$ 298 With the parameters $\alpha,\beta > 0$ and the restriction $x,y,z \geq 0$. 299 \end{exam} 300 301 \begin{exam}[Lotka-Volterra equation] 302 $$\dot x_i = x_i\left(r_i+\sum_{l = 1}^n b_{i,l}x_l\right), i\in\jbr{n}$$ 303 With the parameters $r \in \R^n, B \in \R^{n\times n}$ and the restriction $x \in \R^n_{\geq 0}$. 304 \end{exam} 305 306 \begin{exam}[Replicator dynamics on the simplex (e.g. rock-paper-scissors)] 307 $$\dot x_i = x_i((Ax)_i-x^TAx), i \in\jbr{n}$$ 308 With $A \in \R^{n\times n}$ and the restriction $x\in\R_{\geq0}^n$ such that $\sum_{j=1}^n x_j = 1$. 309 \end{exam} 310 311 \begin{exam}[Pendulum] 312 Newton's second law of motion. 313 $$\begin{aligned}F &= ma\\ 314 -mg\sin(x)&=ml\ddot x\\ 315 \ddot x + \frac{g}{l}\sin(x)&=0\end{aligned}$$ 316 \end{exam} 317 318 \begin{exam}[Van der Pol oscilator (electrical engineering)] 319 $$\ddot x-\mu(1-x^2)\dot x+x=0$$ 320 With the parameter $\mu \in \R$ and the restriction $x\in\R_{\geq0}$. 321 \end{exam} 322 323 \begin{exam}[SIR (epidemiology): $S \to I \to R$] 324 The population can be divided into three groups:\\ 325 $S:$ susceptible\\ 326 $I:$ infected\\ 327 $R:$ recovered 328 $$\begin{array}{rcl}\dot S&=&-\beta SI\\ 329 \dot I&=&\beta SI - \gamma I\\ 330 \dot R&=&\gamma I 331 \end{array}$$ 332 Where $\beta > 0$ is the rate of transmission, $\gamma > 0$ is the rate of recovery and $S+I+R$ is constant. 333 \end{exam} 334 335 \begin{exam}[Two body problem] 336 Here $r_1(t),r_2(t) \in \R^3$ describe the positions, $\dot r_1(t), \dot r_2(t) \in \R^3$ describe the velocities and $\ddot r_1(t),\ddot r_2(t) \in \R^3$ describe the accelerations. Also $m_1$ and $m_2$ are the masses and $\gamma > 0$ is the gravitational constant. 337 $$m_1\ddot r_1 = - \frac{\gamma m_1 m_2}{|r_2-r_1|^3}(r_1-r_2)$$ 338 $$m_2\ddot r_2 = - \frac{\gamma m_1 m_2}{|r_2-r_1|^3}(r_2-r_1)$$ 339 \end{exam} 340 341 \begin{exam}[Lorenz equation] 342 $$\begin{array}{rcl}\dot x &=& \sigma(y-x)\\ 343 \dot y &=& \rho x-y-xz\\ 344 \dot z &=& xy-\beta z 345 \end{array}$$ 346 Where $\sigma,\rho, \beta > 0$ and $x,y,z \in \R$. It shows chaos for $\sigma = 10, \rho = 28, \beta=\frac83$. 347 \end{exam} 348 349 \begin{exam}[Linear ODEs] 350 $$\dot x(t) = Ax(t)$$ 351 Where $x(t)\in \R^n$ and $A \in \R^{n \times n}$. The solution is the function $x: \R \to \R^{n}$ with $x(t)=e^{At}x(0)$ for all $t$, where 352 $$e^{At}:=\sum_{k=0}^\infty\frac{t^k}{k!}A^k.$$ 353 \end{exam} 354 355 \begin{thm}[Real Jordan normalform] 356 For any $A \in \R^{n\times n} $ there is an invertible $P \in \R^{n \times n}$, such that $B = P^{-1}AP$ is a block diagonal matrix with blocks of the form\\ 357 $$\matdoublediagthree\lambda1\ddots1\lambda \text{ or } \matdoublediagthree{D}{I_2}{\ddots}{I_2}{D},$$ 358 where $\lambda \in \sigma(A)\cap \R$ or $\mu \pm i\omega \in \sigma(A)\setminus\R$ ($\sigma(A)$ is the set of the generalized eigenvalues of $A$) and 359 $$D = \mattwo\mu{-\omega}\omega\mu, \quad I_2=\mattwo1001.$$ 360 \end{thm} 361 362 \begin{cor} 363 Suppose that $P,B$ are as above. Then 364 $$x(t)=Pe^{Bt}P^{-1}x(0).$$ 365 \end{cor} 366 367 \begin{prop} 368 If 369 $$B = \matdoublediagthree{\lambda}{1}{\ddots}{1}{\lambda} \in \mathbb{R}^{m \times m}$$ 370 then 371 $$e^{Bt} = e^{\lambda t}\matuthree1\dots{\frac{t^{m-1}}{(m-1)!}}\ddots\vdots1.$$ 372 If 373 $$B = \matdoublediagthree{D}{I_2}{\ddots}{I_2}{D} \in \mathbb{R}^{2m \times 2m}$$ 374 then 375 $$e^{Bt}=e^{\mu t}\matuthree R\dots{\frac{Rt^{m-1}}{(m-1)!}}\ddots\vdots R,$$ 376 where 377 $$R = \mattwo{\cos(\omega t)}{-\sin(\omega t)}{\sin(\omega t)}{\cos(\omega t)}.$$ 378 \end{prop} 379 380 \begin{cor} 381 Each coordinate of each solution of $\dot x = Ax$ is a linear combination of $e^{\mu t}t^k\cos(\omega t)$ or $e^{\mu t}t^k\sin(\omega t)$, where $\mu\pm i \omega \in \sigma(A)$ and $k$ is smaller than the multiplicity of $\lambda$ in the minimal polynomial of $A$. 382 \end{cor} 383 384 Let $n = 2$. Then we have the following cases: 385 \begin{itemize} 386 \item If $B = \matdiagtwo\lambda\mu$ then $e^{Bt} = \matdiagtwo{e^{\lambda t}}{e^{\mu t}}$. 387 388 \item If $B = \matutwo\lambda1\lambda$ then $e^{Bt}=e^{\lambda t}\matutwo1t1$. 389 390 \item If $B = \mattwo\mu{-\omega}\omega\mu$ then $e^{Bt}=e^{\mu t}\mattwo{\cos(\omega t)}{-\sin(\omega t)}{\sin(\omega t)}{\cos(\omega t)}$. 391 \end{itemize} 392 393 Depending on the case, the diagram looks different. 394 395 \begin{enumerate} 396 \item Saddle: $\matdiagtwo\lambda\mu$ with $\lambda < 0 < \mu$. 397 The flow moves towards the origin on the horizontal axis and moves away on the vertical axis. 398 399 \begin{tikzpicture} 400 \begin{axis}[ 401 xmin = -4, xmax = 4, 402 ymin = -4, ymax = 4, 403 zmin = 0, zmax = 1, 404 axis equal image, 405 view = {0}{90}, 406 samples = 9, 407 samples y = 9, 408 ] 409 410 \addplot3[ 411 quiver = { 412 u = {-x}, 413 v = {y}, 414 scale arrows = 0.25, 415 }, 416 -stealth, 417 ] {0}; 418 \end{axis} 419 \end{tikzpicture} 420 421 \item Stable nodes: 422 423 \begin{itemize} 424 \item $B=\begin{pmatrix} 425 \lambda & 0\\ 426 0 & \mu 427 \end{pmatrix}$ with $\lambda = \mu < 0$. 428 429 \begin{tikzpicture} 430 \begin{axis}[ 431 xmin = -4, xmax = 4, 432 ymin = -4, ymax = 4, 433 zmin = 0, zmax = 1, 434 axis equal image, 435 view = {0}{90}, 436 samples = 9, 437 samples y = 9, 438 ] 439 440 \addplot3[ 441 quiver = { 442 u = {-x}, 443 v = {-y}, 444 scale arrows = 0.25, 445 }, 446 -stealth, 447 ] {0}; 448 \end{axis} 449 \end{tikzpicture} 450 451 \item $B=\begin{pmatrix} 452 \lambda & 0\\ 453 0 & \mu 454 \end{pmatrix}$ with $\lambda < \mu < 0$. 455 456 \begin{tikzpicture} 457 \begin{axis}[ 458 xmin = -4, xmax = 4, 459 ymin = -4, ymax = 4, 460 zmin = 0, zmax = 1, 461 axis equal image, 462 view = {0}{90}, 463 samples = 9, 464 samples y = 9, 465 ] 466 467 \addplot3[ 468 quiver = { 469 u = {-2*x}, 470 v = {-y}, 471 scale arrows = 0.25, 472 }, 473 -stealth, 474 ] {0}; 475 \end{axis} 476 \end{tikzpicture} 477 478 \item $B=\begin{pmatrix} 479 \lambda & 1\\ 480 0 & \lambda 481 \end{pmatrix}$ with $\lambda < 0$. 482 483 \begin{tikzpicture} 484 \begin{axis}[ 485 xmin = -4, xmax = 4, 486 ymin = -4, ymax = 4, 487 zmin = 0, zmax = 1, 488 axis equal image, 489 view = {0}{90}, 490 samples = 9, 491 samples y = 9, 492 ] 493 494 \addplot3[ 495 quiver = { 496 u = {-x+y}, 497 v = {-y}, 498 scale arrows = 0.25, 499 }, 500 -stealth, 501 ] {0}; 502 \end{axis} 503 \end{tikzpicture} 504 \end{itemize} 505 506 The flow moves towards the origin from all sides. 507 508 \item Focus: $\begin{pmatrix} 509 \mu & -\omega\\ 510 \omega & \mu 511 \end{pmatrix}$ with $\omega \neq 0, \mu \neq 0$. 512 513 \begin{tikzpicture} 514 \begin{axis}[ 515 xmin = -4, xmax = 4, 516 ymin = -4, ymax = 4, 517 zmin = 0, zmax = 1, 518 axis equal image, 519 view = {0}{90}, 520 samples = 9, 521 samples y = 9, 522 ] 523 524 \addplot3[ 525 quiver = { 526 u = {x-y}, 527 v = {x+y}, 528 scale arrows = 0.25, 529 }, 530 -stealth, 531 ] {0}; 532 \end{axis} 533 \end{tikzpicture} 534 535 The flow moves around the origin and moves closer or further away from it (depending on the sign of $\mu$). 536 537 \item Center: $\begin{pmatrix} 538 \mu & -\omega\\ 539 \omega & \mu 540 \end{pmatrix}$ with $\omega \neq 0, \mu = 0$. 541 542 \begin{tikzpicture} 543 \begin{axis}[ 544 xmin = -4, xmax = 4, 545 ymin = -4, ymax = 4, 546 zmin = 0, zmax = 1, 547 axis equal image, 548 view = {0}{90}, 549 samples = 9, 550 samples y = 9, 551 ] 552 553 \addplot3[ 554 quiver = { 555 u = {-y}, 556 v = {x}, 557 scale arrows = 0.25, 558 }, 559 -stealth, 560 ] {0}; 561 \end{axis} 562 \end{tikzpicture} 563 564 The flow moves periodically around the origin in circles. 565 \end{enumerate} 566 567 If $0 \in \sigma(A)$ then the origin is not an isolated equilibrium.\\ 568 %Bifurcation diagram.\\ 569 \newline 570 Let $\delta = \det(A)$ and $\tau = \tr(A)$. Then the characteristic polynomial of $A$ is: $x^2-\tau x + \delta$. 571 Given 572 $$\dot x = Ax$$ 573 we define $B := P^{-1}AP$ and $y := P^{-1}x$. Then we get 574 $$\dot y = P^{-1}\dot x = P^{-1}Ax = P^{-1}APy = By.$$ 575 576 \subsection{Invariant subspaces} 577 578 \begin{defin} 579 Let $A\in\C^{n\times n}$ and $\lambda \in \sigma(A), v \in \C^n$ is a generalized eigenvector, if 580 $$(\lambda I-A)^kv=0$$ 581 for some $k\in\Ns$. 582 \end{defin} 583 584 \begin{thm} 585 Let $A\in \R^{n\times n}$ with eigenvalues as follows: 586 \begin{itemize} 587 \item $\lambda_1,\dots,\lambda_k\in\R$ 588 589 \item $\lambda_j=\mu_j+i\omega_j, \overline{\lambda_j}=\mu_j-i\omega_j, \quad j\in\jbr{k+1,m}\quad (2m-k=n)$ 590 \end{itemize} 591 592 Then the set $\{u_1,\dots,u_k,u_{k+1},v_{k+1},\dots,u_m,v_m\}$ is a basis of $\R^n$, where $u_1, \dots,u_k$ are generalized eigenvectors corresponding to $\lambda_1, \dots, \lambda_k$ and the $u_j\pm i v_j$ are generalized eigenvectors corresponding to the $\mu_j \pm i\omega_j$ where $j\in\jbr{k+1,m}$. 593 \end{thm} 594 595 \begin{defin} 596 We define the following subspaces: 597 \begin{itemize} 598 \item Stable subspace: $E^s=\spanl\{u_j,\nu_j:\Re(\lambda_j)<0\}$. 599 600 \item Center subspace: $E^c=\spanl\{u_j,\nu_j:\Re(\lambda_j)=0\}$. 601 602 \item Unstable subspace: $E^u=\spanl\{u_j,\nu_j:\Re(\lambda_j)>0\}$. 603 \end{itemize} 604 We also define: 605 \begin{itemize} 606 \item $s(A) = \dim(E^s)$ 607 608 \item $c(A) = \dim(E^c)$ 609 610 \item $u(A) = \dim(E^u)$ 611 \end{itemize} 612 \end{defin} 613 614 \begin{exam} 615 Given 616 $$\begin{aligned} 617 \dot x&=-2x-y\\ 618 \dot y &= x-2y\\ 619 \dot z &= 3z, 620 \end{aligned}$$ 621 we can read the matrix 622 $$A=\matthree{-2}{-1}{0}{1}{-2}{0}{0}{0}{3}.$$ 623 We get the following eigenpairs: 624 \begin{itemize} 625 \item $\lambda_1 = 3, \quad u_1 =\vecthree001$ 626 627 \item $\lambda_2 = -2+i, \quad u_2+iv_2 = \vecthree010+i\vecthree100$ 628 \end{itemize} 629 Also 630 $$\begin{array}{ll}E^s=(x,y)-\text{plane}, &\quad s(A) = 2,\\ 631 E^c=\{0\}, &\quad c(A)=0,\\ 632 E^u=z-\text{axis}, &\quad u(A)=1. 633 \end{array}$$ 634 \end{exam} 635 636 \begin{exam} 637 Given 638 $$\begin{array}{rcl} 639 \dot x &=& -y\\ 640 \dot y &=& x\\ 641 \dot z &=& 2z, 642 \end{array}$$ 643 we can read the matrix 644 $$A=\matthree{0}{-1}{0}{1}{0}{0}{0}{0}{2}$$ 645 We get the following eigenpairs: 646 \begin{itemize} 647 \item $\lambda_1=2, \quad u_1=\vecthree001$ 648 649 \item $\lambda_2=i, \quad u_2+iv_2=\vecthree010+i\vecthree100$ 650 \end{itemize} 651 $\begin{array}{ll}E^s=\{0\},\\E^c=(x,y)-\text{plane},\\ 652 E^u=z-\text{axis}. 653 \end{array}$ 654 \end{exam} 655 656 \begin{exam} 657 Given 658 $$\dot x=0$$ 659 $$\dot y = x,$$ 660 we can read the matrix 661 $$A=\mattwo0010$$ 662 Since $(A-0)^2 = 0$, we get the following eigenpairs: 663 \begin{itemize} 664 \item $\lambda_1=0, \quad u_1=\vectwo01$ 665 666 \item $\lambda_2=0, \quad u_2\vectwo10$. 667 \end{itemize} 668 $\begin{array}{ll}E^s=\{0\},\\ 669 E^c=(x,y)-\text{plane},\\ 670 E^u=\{0\}. 671 \end{array}$ 672 \end{exam} 673 674 \begin{thm} 675 The whole space is a direct sum of the three subspaces, meaning $\R^n=E^s\oplus E^c \oplus E^u$. Also the following statements hold: 676 \begin{itemize} 677 \item $E^i$ is invariant ($i = s,c,u)$.\\ 678 If $x(0)\in E^i$ then $x(t)=e^{At}x(0)\in E^i$ for all $t \in \R$. 679 680 \item If $x(0) \in E^s$ then $x(t) \to 0$ as $t\to \infty$. Moreover there exist $K,\alpha > 0$, such that 681 $$\|e^{At}\| \leq Ke^{-\alpha t}$$ 682 for all $ t \geq 0$. 683 684 \item If $x(0)\in E^u$ then $x(t) \to 0$ as $t \to -\infty$. Moreover there exist $L,\beta > 0$, such that 685 $$\|e^{At}\|\leq Le^{\beta t}$$ 686 for all $t\leq 0$.\\ 687 %$|x(t)|\leq Le^{\beta t}|x(0)| \forall t \leq 0$ 688 \item $E^s = \{ p \in \R^n:e^{At}p \to 0$ as $t \to \infty\}$ 689 \item $E^u = \{ p \in \R^n:e^{At}p \to 0$ as $t \to -\infty\}$ 690 \end{itemize} 691 \end{thm} 692 693 \begin{defin} 694 We say that a matrix $A$ is stable if $\Re(\lambda) < 0$ for all $\lambda \in\sigma(A)$. 695 \end{defin} 696 697 \begin{itemize} 698 \item For $n=2$ the matrix $A$ is stable if and only if $\det(A) > 0$ and $\tr(A) < 0$. The characteristic polynomial is $\lambda^2-\tr(A)\lambda+\det(A)$. 699 700 %\det(A)>M\tr(A) 701 \item For $n=3$ the matrix $A$ is stable if and only if $\det(A) < 0, \tr(A)< 0,M>0$, where $M$ is the sum of the $2\times2$ principal minors 702 $$M =\det\mattwo{a_{11}}{a_{12}}{a_{21}}{a_{22}} + \det\mattwo{a_{11}}{a_{13}}{a_{31}}{a_{33}}+\det\mattwo{a_{22}}{a_{23}}{a_{32}}{a_{33}}.$$ 703 The characteristic polynomial is (up to the faktor $(-1)$) $\lambda^3 -\tr(A)\lambda^2+M\lambda-\det(A)$. 704 \end{itemize} 705 706 707 \begin{thm}[Routh-Hurwitz] 708 Each root of $x^n+b_{n-1}x^{n-1}+\dots +b_1x+b_0$ has a negative real part if and only if all the leading principal minors of $H$ are positive, where 709 $$H := \begin{pmatrix} 710 b_{n-1} & 1 & 0 & 0 & 0 & 0 & 0 & \dots & 0\\ 711 b_{n-3} & b_{n-2} & b_{n-1} & 1 & 0 & 0 & 0 & \dots & 0\\ 712 b_{n-5} & b_{n-4} & b_{n-3} & b_{n-2} & b_{n-1} & 1 & 0 & \dots & 0\\ 713 \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots\\ 714 0 & \dots & 0 & 0 & b_0 & b_1 & b_2 & b_3 & b_4\\ 715 0 & \dots & 0 & 0 & 0 & 0 & b_0 & b_1 & b_2\\ 716 0 & \dots & 0 & 0 & 0 & 0 & 0 & 0 & b_0 717 \end{pmatrix}.$$ 718 \end{thm} 719 Applying this to $\det(xI-A)$, we get 720 \begin{itemize} 721 \item $b_0 = (-1)^n\det(A)$ 722 723 \item $b_{n-1} = -\tr(A)$ 724 725 \item $b_j=(-1)^{n-j}\sum_{\alpha\subseteq \jbr{n}, |\alpha|=n-j} A[\alpha|\alpha]$\\ 726 The sum of principal minors corresponding to the rows/columns in $\alpha$. 727 \end{itemize} 728 729 \begin{thm}[Lyapunov] 730 For $A\in \R^{n\times n}$. The following are equivalent: 731 \begin{enumerate} 732 \item $A$ is stable. 733 734 \item There is a symmetric $Q>0$, such that $QA+A^TQ < 0$. 735 736 \item For every symmetric $C <0$ there is a symmetric $Q>0$ such that $QA+A^TQ=C$. 737 \end{enumerate} 738 \end{thm} 739 740 \begin{proof} 741 We prove $(2) \Rightarrow (1) \Rightarrow (3) \Rightarrow (2)$. 742 \begin{itemize} 743 \item $(2) \Rightarrow (1)$: Let $Q$ be as in the statement. Now we take the time derivative of $x^TQx$. For better readability, we write $x$ instead of $x(t)$. 744 $$\frac{d}{dt}(x^TQx) = \dot x^TQx+x^TQ\dot x = x^TA^TQx+x^TQAx = x^T(QA+A^TQ)x.$$ 745 The last expression is negative if $x(t) \neq 0$. The level sets $\{x \in \R^n: x^TQx = \gamma\}$ for $\gamma > 0$ are ellipsoids and solutions are going inwards, because if the time increases then $x^TQx$ decreases. Therefore $x(t) = e^{At}p\to 0$ as $t\to\infty$ for all $p \in \R^n$. So we get $E^s = \R^n$ and $A$ is stable. 746 747 \item $(1)\Rightarrow (3):$ Let $C < 0$ be a symmetric matrix. Let 748 $$Q = -\int_0^\infty e^{A^Tt}Ce^{At}dt.$$ It exists and is finite, because $\|e^{At}\|\leq Ke^{-\alpha t}$ for $t\geq 0$. 749 \begin{itemize} 750 \item Clearly $Q=Q^T>0$, because 751 $$Q^T = \left(-\int_0^\infty e^{A^Tt}Ce^{At}dt\right)^T = -\int_0^\infty\left(e^{A^Tt}Ce^{At}\right)^Tdt= -\int_0^\infty\left(e^{At}\right)^TC^T\left(e^{A^Tt}\right)^Tdt = Q$$ 752 and 753 $$x^TQx = -\int_0^\infty x^Te^{A^Tt}Ce^{At}xdt = -\int_0^\infty \left(e^{A^Tt}x\right)^TCe^{At}xdt = -\int_0^\infty y^TCydt > 0.$$ 754 755 \item We also note that 756 $$QA+A^TQ = -\int_0^\infty e^{A^Tt}Ce^{At}A+A^Te^{A^Tt}Ce^{At}dt = -\int_0^\infty \frac{d}{dt}(e^{A^Tt}Ce^{At})dt =$$ 757 $$=-[e^{A^Tt}Ce^{At}]_{t=0}^{t=\infty} = -(0-C)=C.$$ 758 \end{itemize} 759 760 \item $(3)\Rightarrow (2)$: Trivial. 761 \end{itemize} 762 \end{proof} 763 764 \begin{defin} 765 For $k \in\Ns$, we say that $h:U\to V$ is a homeomorphism (or $C^k$-diffeomorphism) if it is bijective and $h,h^{-1}$ are continuous (or $C^k$).\\ 766 \end{defin} 767 768 \begin{defin}[Flow] 769 Let $f \in C^1(U)$. Denote the solution of 770 $$\begin{aligned}\dot x(t) &= f(x(t))\\ 771 x(0) &= p\end{aligned}$$ 772 by $t \mapsto \varphi(t,p)$.\\ 773 The flow of $\dot x=f(x)$ is 774 $$\varphi_t:\{p\in U: t\in I(p)\} \to U$$ 775 $$p \mapsto \varphi(t,p)$$ 776 For fixed $t$, the set $\varphi_t(K)$ is where a set $K$ is moved after time $t$ (as opposed to $\{\varphi(t,p)\colon t \in I(p)\}$, which is the trajectory of a single point $p$). 777 \end{defin} 778 779 For $\dot x = Ax$, the flow is $\varphi_t = e^{At}:\R^n\to\R^n$. 780 781 \begin{prop} 782 The flow has the following properties (where these make sense): 783 \begin{enumerate} 784 \item $\varphi_0=id$ 785 786 \item $\varphi_s\circ\varphi_t = \varphi_{t+s}$ 787 788 \item $\varphi_t\circ\varphi_{-t}=id$ 789 \end{enumerate} 790 \end{prop} 791 792 \begin{defin}[Conjugate flow] 793 We have the following ODEs 794 $$\dot x=f(x)$$ 795 in $U$ with the flow $\varphi_t$ and 796 $$\dot y=g(y)$$ 797 in $V$ with the flow $\psi_t$.\\ 798 We say that the flows $\varphi_t$ and $\psi_t$ are topologically conjugate if there is a homeomorphism $h:U\to V$ such that $h\circ \varphi_t=\psi_t\circ h$. If $h$ is a $C^k$-diffeomorphism, we say $\varphi_t$ and $\psi_t$ are $C^k$ conjugate. 799 \end{defin} 800 801 \begin{thm} 802 If the matrices $A,B \in\R^{n\times n}$ are stable then the flows $e^{At}, e^{Bt}$ are topologically conjugate. (There is a homeomorphism $\R^n\to\R^n$ such that $h(e^{At}p)=e^{Bt}h(p)$ for all $p\in\R^n$ and $t\in\R$.) 803 \end{thm} 804 805 \begin{proof}[Sketch of the proof.] 806 Without loss of generality, assume $B = -I$ (because being topological conjugate is an equivalence relation). Because $A$ is stable, we can find a symmetric $Q > 0$ satisfying $QA+A^TQ < 0$. Let 807 $$S = \{p\in\R^n:p^TQp=1\}.$$ 808 Then for all $p \in \R^n\setminus \{0\}$ there is a unique $\tau(p)$ such that $e^{A\tau(p)}p\in S$. It exists, because $e^{At}p$ approaches $0$ at $\infty$ and $\infty$ at $-\infty$ and the flow is continuous. It is unique because the time derivative of $x(t)^TQx(t)$ is negative (see proof of the Lyapunov theorem). Then $\tau:\R^n \setminus\{0\} \to \R$ is continuous (because solutions depend on the initial conditions continuously).\\ 809 %$$e^{A\tau(e^{At}p)}\left(e^{At}p\right) = e^{A(\tau(e^{At}p)+t)}p = e^{A\tau(p)}p,$$ 810 Since $p$ and $e^{At}p$ are on the same orbit with a time difference of $t$, we know that 811 $$\tau(e^{At}p)=\tau(p)-t.$$ 812 Define 813 $$h(p) := \begin{cases} 814 e^{(A+I)\tau(p)}p&p \neq 0\\ 815 0&p=0. 816 \end{cases}$$ 817 The orbits are mapped to orbits: Indeed, for $p\neq 0$ we get 818 $$h(e^{At}p)=e^{(A+I)\tau(e^{At}p)}e^{At}p = e^{(A+I)(\tau(p)-t)}e^{At}p = e^{-It}e^{(A+I)\tau(p)}p = e^{-It}h(p).$$ 819 We omit the proof that $h$ is a homeomorphism. 820 \end{proof} 821 822 Hence, a stable focus and a stable node are topologically conjugate. 823 824 \begin{defin} 825 We say that $A\in \R^{n\times n}$ is hyperbolic if $\Re(\lambda) \neq 0$ for all $\lambda \in \sigma(A)$. 826 \end{defin} 827 828 \begin{thm} 829 For $A, B \in \R^{n\times n}$ hyperbolic matrices, the following statements are equivalent: 830 \begin{itemize} 831 \item $s(A) = s(B)$ and $u(A) = u(B)$ 832 833 \item $e^{At}$ and $e^{Bt}$ are topologically conjugate. 834 \end{itemize} 835 \end{thm} 836 837 \begin{exam} 838 The matrices 839 $$A = \mattwo{0}{-2}{2}{0}, \quad B=\mattwo{0}{-1}{1}{0}$$ 840 are not topologically conjugate. To show this, we compute 841 $$e^{At} = \mattwo{\cos(2t)}{-\sin(2t)}{\sin(2t)}{\cos(2t)}, \quad e^{Bt} = \mattwo{\cos(t)}{-\sin(t)}{\sin(t)}{\cos(t)}.$$ 842 Suppose that there is a homeomorphism $h$ such that 843 $$h(e^{At}p) = e^{Bt}h(p)$$ 844 for all $p\in\R^2$ and for all $t\in \R$. Setting $t = \pi$ yields $h(p)= -h(p)$ and then $h(p) = 0$ for all $p \in \R^2$, which is a contradiction. 845 \end{exam} 846 847 \begin{thm} 848 If $c(A) = c(B) =n$ then $e^{At}$ and $e^{Bt}$ are topologically conjugate if and only if $A$ and $B$ are similar matrices. 849 \end{thm} 850 851 \begin{thm} 852 The flows $e^{At}, e^{Bt}$ are topologically conjugate if and only if $s(A) = s(B), u(A) = u(B), c(A) = c(B)$ and $A|_{E^c(A)}, B|_{E^c(B)}$ are similar. 853 \end{thm} 854 855 \begin{prop} 856 $A$ and $B$ are $C^1$-conjugate if and only if $A$ and $B$ are similar. 857 \end{prop} 858 859 \begin{proof} 860 We need to show both directions. 861 \begin{itemize} 862 \item $\Leftarrow$: We just use the transformation matrix as a homeomorphism. 863 864 \item $\Rightarrow$: By definition $h(e^{At}p)=e^{Bt}h(p)$ for all $t,p$. Differentiate with respect to $p$ and set $p = 0$. 865 $$h'(e^{At}0)e^{At}=e^{Bt}h'(0)$$ 866 $$h'(0)e^{At}=e^{Bt}h'(0),$$ 867 where $h'$ is the Jacobian matrix of $h$. Differentiate with respect to $t$ and set $t=0$. 868 $$h'(0)Ae^{A0}=Be^{B0}h'(0)$$ 869 Let $P := (h'(0))^{-1}$. Then 870 $$B=P^{-1}AP.$$ 871 \end{itemize} 872 \end{proof} 873 874 Hence $C^1$-conjugacy is too strong: e.g. 875 876 $$\dot x = -x$$ 877 and 878 $$\dot y = -2y$$ 879 are not $C^1$-conjugate. 880 881 \begin{rem}[Related to Routh-Hurwitz] 882 Given the real polynomial $x^n+b_{n-1}x^{n-1} +\dots + b_0$, where all roots have negative real parts. Then $b_{n-1} > 0, \dots, b_0 > 0$. 883 \end{rem} 884 885 \begin{proof} 886 We first consider the simplest cases. 887 \begin{itemize} 888 \item $n=1$: The polynomial $x + b_0$ has the root $-b_0$. By assumtion, it has to have a negative real part, so $b_0 > 0$. 889 890 \item $n=2$: The polynomial $x^2+b_1x+b_0=(x-\lambda_1)(x-\lambda_2)$ has the roots $\lambda_1$ and $\lambda_2$, which have a negative real part. Then $b_0 = \lambda_1\lambda_2$ and $b_1 = -\lambda_1-\lambda_2$. Obviously $b_1 > 0$. If $\lambda_1$ and $\lambda_2$ are real, then they are negative and $b_0>0$. Otherwise, they are of the form $\mu\pm i\omega$. In this case, $b_0 = (\mu+i\omega)(\mu-i\omega) = \mu^2+\omega^2 > 0$. 891 892 \item For higher degree, find the decomposition of the polynomial to irreducible factors, which leads to linear and quadratic polynomials. Then each coefficient of the factors is positive. Multiplying those factors together, we get positive coefficients of the whole polynomial. 893 \end{itemize} 894 \end{proof} 895 896 \subsection{Stability of equilibria} 897 898 Let the following general differential equation be given: 899 $$\dot x(t)=f(x(t)),$$ 900 where $f \in C^1(U)$. For $p\in U$ and $ t\mapsto \phi(t,p)$ denote the solution for which $x(0)=p$ holds (on a maximal time interval $I(p)$). 901 902 \begin{defin} 903 We say that $p\in U$ is an equilibrium if $f(p) = 0$. In this case, $\phi(t,p)$ is constant over time. So $\phi_t(p)=p$, meaning that $p$ is a fixed point of the flow for all $t \in \R$. 904 \end{defin} 905 906 \begin{defin} 907 An equilibrium $p$ is Lyapunov stable if for all $\epsilon > 0$ there is a $\delta > 0$ such that $|q-p| < \delta$ implies $|\phi(t,q)-p| < \epsilon$ for all $t\geq 0$. Otherwise $p$ is called unstable. 908 \end{defin} 909 910 \begin{defin} 911 An equilibrium is called attracting if there is a neighborhood $U_0 \subseteq U$ of $p$ such that $\lim_{t\to\infty} \phi(t,q)=p$ for all $q\in U_0$. 912 \end{defin} 913 914 \begin{defin} 915 An equilibrium is said to be asymptotically stable if it is Lyapunov stable and attracting. 916 \end{defin} 917 918 \begin{exam}[An attracting equilibrium that is not Lyapunov stable] 919 Let the following system be given in polar coordinates 920 $$\begin{array}{ll}\dot r=r(1-r), &\quad r\geq 0,\\ 921 \dot \theta=\sin^2\left(\half\theta\right), &\quad (0\leq \theta < 2\pi).\end{array}$$ 922 923 \begin{tikzpicture} 924 \begin{polaraxis}[ 925 ymax = 1.5, 926 ] 927 928 \addplot3[ 929 samples=12, 930 samples y=12, 931 quiver = { 932 u = {deg(sin(atan2(y,x)/2)^2)},%{veclen(y,x)*(1-veclen(y,x))}, 933 v = {veclen(y,x)*(1-veclen(y,x))},%{sin(atan2(y,x)/2)^2}, 934 scale arrows = 0.5, 935 }, 936 -latex, 937 domain=-1.5:1.5, 938 domain y=-1.5:1.5, 939 data cs=cart 940 ] (x, y, 0); 941 \end{polaraxis} 942 \end{tikzpicture} 943 944 The point $(r^*,\theta^*) = (1,0)$ is not Lyaponov stable, but attracts $\R^2\setminus \{0\}$. In the polar form it attracts all points with $r > 0$ and $0\leq \theta < 2\pi$. 945 \end{exam} 946 947 \begin{exam} 948 Given 949 $$\begin{array}{rcl}\dot x &=& -y-x^3\\ 950 \dot y &=& x-y^3.\end{array}$$ 951 Let $V(x,y):= x^2+y^2, \R^2\to\R$. Taking the derivative with respect to $t$ gives us 952 $$\frac{d}{dt}V(x,y) = \nabla V(x,y)\cdot\vectwo{\dot x}{\dot y} = 2(x\dot x+y\dot y) = 2(x(-y-x^3)+ y(x-y^3)) = -2(x^4+y^4) < 0.$$ 953 \end{exam} 954 955 In general, $V \in C^1(\Rn,\R)$. When differentiating with respect to $t$ and setting $t=0$ we get 956 $$\frac{d}{dt} V(x)|_{t=0} = \nabla V(x)\cdot \dot x|_{t=0} = \nabla V(x)\cdot f(x)|_{t=0}.$$ 957 So 958 $$\dot V(x) := \nabla Vf(x) := \nabla V(x)\cdot f(x), \dot V: U\to \R$$ 959 is the derivative of $V$ with respect to $f$. 960 961 \begin{defin} 962 Let $p$ be an equilibrium and $U_0 \subseteq U$ an open neighbourhood of $p$. A function $V: U_0\to \R$ is called a Lyapunov function for $p$ if: 963 \begin{enumerate} 964 \item $V(p) = 0$ and $V(x) > 0$ for $x \in U_0\setminus\{p\}$. 965 966 \item $V$ is continuous in $U_0$, $C^1$ in $U_0\setminus \{p\}$ and $\dot V(x)\leq 0$ for $x \in U_0\setminus \{p\}$. 967 \end{enumerate} 968 If $\dot V(x) < 0$ for all $x\in U_0\setminus\{p\}$, then we call it a strict Lyapunov function for $p$. 969 \end{defin} 970 971 We can imagine that each orbit moves along $V$ such that the value of $V$ doesn't increase. So as long as the orbit starts close at $p$, it stays close to it. 972 973 \begin{hw} 974 Consider 975 $$\dot x = f(x)$$ 976 in $\R$ with an equilibrium $f(p)=0$. Show that $p$ is asymptotically stable if and only if $V(x) = |x-p|$ is a strict Lyapunov function for $p$ in a neighborhood. 977 \end{hw} 978 979 \begin{hw} 980 Pendulum with friction: Given 981 $$\begin{aligned}\dot x&=y\\ 982 \dot y &= \sin x-\delta y\end{aligned}$$ 983 where $\delta \geq 0$. Show that 984 $$V(x,y) := \half{y^2}-\cos x$$ 985 is a Lyapunov function at the origin. 986 \end{hw} 987 988 \begin{hw} 989 For which $A\in\R^{n\times n}$ is the origin of $\dot x = Ax$ Lyapunov stable? 990 \end{hw} 991 992 \begin{thm}[Lyapunov, 1892] 993 The following statements hold: 994 \begin{enumerate} 995 \item If there is a Lyapunov function for the equilibrium $p$ then $p$ is Lyapunov stable. 996 997 \item If there is a strict Lyaponov function for the equilibrium $p$ then $p$ is asymptotically stable. 998 \end{enumerate} 999 \end{thm} 1000 1001 \begin{proof} 1002 For the proof, we use some $\epsilon$-$\delta$-tricks. 1003 \begin{enumerate} 1004 \item Let $\epsilon > 0$ such that 1005 $$\overline{B_\epsilon(p)} \subseteq U_0.$$ 1006 Let 1007 $$\alpha := \min_{|x-p|=\epsilon}V(x) > 0.$$ 1008 Clearly, $V(p)<\alpha$. Let $\delta > 0$ such that $|x-p|<\delta$ implies $V(x) < \alpha$ (recall $V$ is continuous).\\ 1009 Then for $q$ with $|q-p| < \delta$ we have $V(\varphi(t,q))< \alpha$ for $t \geq 0$. This is, because $V(\varphi(0,q)) = V(q) < \alpha$ and $\dot V \leq 0$. So the flow will never intersect the sphere $\{x\in\Rn:|x-p| = \epsilon\}$. Therefore we get $|\varphi(t,q)-p|<\epsilon$ for $t\geq 0$. 1010 1011 \item We show that $\lim_{t\to\infty}\varphi(t,q) = p$ if $|q-p|<\delta$. Since $t\mapsto V(\varphi(t,q))$ is monotone decreasing, the following limit exists: 1012 $$\lim_{t\to\infty}V(\varphi(t,q))=:c \geq 0.$$ 1013 \begin{itemize} 1014 \item If $c = 0$, then the orbit stays in a compact neighborhood of $p$, since $V$ is Lyapunov stable. Therefore the orbit accumulates at a certain point $r$. Since $c = 0$, the only accumulation point possible is $p$. So $\lim_{t\to\infty} \varphi(t,q) = p$. 1015 1016 \item If $c > 0$ then there is a $\gamma > 0$ such that $|\varphi(t,q)-p|\geq \gamma$ for $t\geq 0$. On the compact set 1017 $$\{x\in U_0: \gamma \leq |x-p|\leq \epsilon\},$$ 1018 we get that 1019 $$\dot V(x)\leq -\beta < 0$$ 1020 for every $x$. Therefore $V(\varphi(t,q))\to-\infty$ as $t\to\infty$, which is a contradiction. 1021 \end{itemize} 1022 \end{enumerate} 1023 \end{proof} 1024 1025 \begin{hw} 1026 Given the following scalar ODE: 1027 $$\dot x = x^3 \sin^2\left(\reci x\right)$$ 1028 Is the origin Lyapunov stable? Can you find a Lyapunov function? 1029 \end{hw} 1030 1031 \begin{hw} 1032 Prove the following statements about the pendulum with friction: 1033 \begin{itemize} 1034 \item If $\delta = 0$ then the origin is Lyapunov stable. 1035 1036 \item If $\delta > 0$ then the origin is asymptotically stable. 1037 \end{itemize} 1038 \end{hw} 1039 1040 \begin{hw} 1041 Is the following statement true or false? Give a proof or a counterexample. 1042 \begin{itemize} 1043 \item If $V:\R^n\to\R$ is a strict Lyapunov function for the equilibrium $p$, then $\lim_{t\to\infty} \varphi(t,q) = p$ for all $q \in\R^n$.\\ 1044 \end{itemize} 1045 \end{hw} 1046 1047 \begin{hw} 1048 Lorenz:\\ 1049 Given the following system of equations: 1050 $$\begin{array}{rcl}\dot x&=&\sigma(y-x)\\ 1051 \dot y &=& \rho x-y-xz\\ 1052 z &=& xy-\beta z\end{array}$$ 1053 Show that the origin is globally asymptotically stable if $0<\rho < 1$.\\ 1054 Hint: $V(x,y,z) = \rho x^2+\sigma y^2+\sigma z^2$ 1055 \end{hw} 1056 1057 Given 1058 $$\dot x(t)=f(x(t))$$ 1059 where $f \in C^1(U)$ and $f(p) = 0$. Then 1060 $$f(x)=f'(p)(x-p)+r(x)$$ 1061 where $f'$ is the Jacobin matrix of $f$. 1062 $$f'=\matthree{\partial_1f_1}{\dots}{\partial_nf_1}{\vdots}{}{\vdots}{\partial_1f_n}{\dots}{\partial_nf_n}=(\partial_jf_i)_{i,j=1}^n$$ 1063 Also $r(p) = 0$ and $\lim_{x\to\infty}\frac{r(x)}{|x-p|}=0$. Let $A := f'(p)$. 1064 \begin{thm} 1065 If $A$ is stable then $p$ is asymptotically stable for $\dot x=f(x)$. 1066 \end{thm} 1067 1068 \begin{proof} 1069 Assume without loss of generality that $p=0$. Let $Q = Q^T > 0$ such that $QA+A^TQ<0$.\\ 1070 We claim that $V(x)=x^TQx$ is a strict Lyapunov function for $p$. So we need to show that $\dot V(x) < 0$ for $x \neq p$.\\ 1071 $$\dot V(x) = \nabla V(x)\cdot f(x)=2x^TQ (Ax+r(x))$$ 1072 Because $x^TQAx$ is a scalar, we can transpose it, to get to $x^TA^TQx$. Then we get 1073 $$\dot V(x) = x^T(QA+A^TQ)x + 2x^T Q r(x).$$ 1074 We define the inner product 1075 $$\jbr{x,y}:=x^TQy$$ 1076 with the induced norm 1077 $$\|x\|^2 := \jbr{x,x}=x^TQx.$$ 1078 Now let's calculate the following quotient: 1079 $$\frac{\dot V(x)}{V(x)}=\frac{x^T(QA+A^TQ)x}{x^TQx}+2\frac{\jbr{x,r(x)}}{\|x\|^2}$$ 1080 The first term is smaller than or equal $-c$ for $c := \min_{\|x\|=1}\left(\frac{-x^T(QA+A^TQ)x}{x^TQx}\right)>0$. For the second term: 1081 $$\frac{\jbr{x,r(x)}}{\|x\|^2}\leq \frac{\|x\|\|r(x)\|}{\|x\|^2} = \frac{\|r(x)\|}{\|x\|} \to 0$$ 1082 as $x \to 0$. Therefore, $\frac{\dot{V}}{V}$ is negative in a neighborhood of the origin. So for $x \neq 0$ close to $p$, $\dot V(x) < 0$ so $V$ is a Lyapunov function. 1083 \end{proof} 1084 1085 \begin{hw} 1086 Show that the origin is asymptotically stable for the pendulum with friction $(\delta > 0)$ (linearize). 1087 \end{hw} 1088 1089 \begin{defin} 1090 An equilibrium $p$ is hyperbolic if $f'(p) \in \R^{n\times n}$ has no eigenvalue with zero real part. 1091 \end{defin} 1092 1093 \begin{thm}[Hartman-Grobman] 1094 If $f$ is $C^1$ and $p$ is a hyperbolic equilibrium then the local flow $\varphi_t$ is topologically conjugate to the local flow of 1095 $$\dot y = f'(p)y$$ 1096 at the origin. (There is an open neighborhood $U_0$ of $p$, an open neighborhood $U_1$ of $0 \in \R^n$ and a homeomorphism $h:U_0 \to U_1$ such that 1097 $$h\circ \varphi_t = e^{At}\circ h$$ 1098 (here $A := f'(p)$) where this is defined ($\varphi_t(x) \in U_0$).)\\ 1099 (Simon, Perko, Teschl) 1100 \end{thm} 1101 1102 \begin{defin} 1103 Let $p$ be an equilibrium and $A = f'(p)$. 1104 1105 \begin{itemize} 1106 \item We say that $p$ is a sink if $\Re(\lambda) < 0$ for all $\lambda \in \sigma(A)$. 1107 1108 \item We say that $p$ is a source if $\Re(\lambda)>0$ for all $\lambda \in \sigma(A)$. 1109 1110 \item We say that $p$ is a saddle if it is hyperbolic, meaning th there is a $\lambda_1 \in \sigma(A)$ with $\Re(\lambda_1)<0$ and $\lambda_2 \in \sigma(A)$ with $\Re(\lambda_2)> 0$. 1111 \end{itemize} 1112 \end{defin} 1113 1114 \begin{hw} 1115 Classify all of the equilibria of 1116 $$\begin{aligned}\dot x&=x^2-y^2-1\\ 1117 \dot y &= 2y.\end{aligned}$$ 1118 \end{hw} 1119 1120 \begin{exam} 1121 Show that the flows of 1122 $$\begin{aligned}\dot x &= -x\\ 1123 \dot y &= y+x^2\end{aligned}$$ 1124 and 1125 $$\begin{aligned}\dot u &= -u\\ 1126 \dot v &= v\end{aligned}$$ 1127 are topologically conjugate (not only locally, but even globally).\\ 1128 Let 1129 $$h:(x,y)\mapsto (x,y+\frac{x^2}{3}).$$ 1130 Then 1131 $$h^{-1}: (u,v)\mapsto (u,v-\frac{u^2}{3})$$ and $h$ is a homeomorphism. Let 1132 $$(u,v) = h(x,y)$$ 1133 or 1134 $$\begin{aligned}u&=x\\ 1135 v&=y+\frac{x^2}{3}\end{aligned}.$$ 1136 Then 1137 $$\begin{aligned}\dot u &= \dot x=-x = -u\\ 1138 \dot v &= \dot y + \frac{2}{3}x\dot x=y+x^2+\frac{2}{3}(-x^2)= y+\frac{x^2}{3}=v.\end{aligned}$$ 1139 \end{exam} 1140 1141 \subsection{Polar coordinates} 1142 1143 If there is a system in Cartesian form like 1144 $$\begin{aligned}\dot x &= f(x,y)\\ 1145 \dot y &= g(x,y)\end{aligned}$$ 1146 we can get to a system in polar form like 1147 $$\begin{aligned}\dot r = F(r,\theta)\\ 1148 \dot \theta = G(r,\theta)\end{aligned}$$ 1149 where 1150 $$\begin{aligned}&x = r\cos(\theta), &y = r\sin(\theta)\\ 1151 &r = \sqrt{x^2+y^2}, &\theta = \arctan(y/x).\end{aligned}$$ 1152 Using some derivative tricks, we get 1153 $$\dot x = \dot r \cos(\theta) +r(-\sin(\theta))\dot \theta, \quad \dot y = \dot r \sin(\theta) + r \cos(\theta) \dot \theta,$$ 1154 $$\dot r = \frac{2x\dot x +2y \dot y}{2\sqrt{x^2+y^2}}, \quad \dot \theta = \frac{\frac{\dot yx - y\dot x}{x^2}}{1+\frac{y^2}{x^2}} = \frac{\dot yx-y\dot x}{x^2+y^2},$$ 1155 1156 $$\dot x=-y\dot \theta +x\frac{\dot r}{r}, \quad 1157 \dot y = x\dot \theta +y\frac{\dot r}{r},$$ 1158 $$\dot r = \frac{x\dot x + y\dot y}{r}, \quad 1159 \dot \theta = \frac{x\dot y-\dot xy}{r^2}.$$ 1160 1161 Linearization at a nonhyperbolic equilibrium (these are situations, where the Hartman-Grobman theorem does not apply): 1162 1163 \begin{exam} 1164 1D 1165 \begin{itemize} 1166 \item Given 1167 $$\dot x = -x^3,$$ 1168 the equilibrium $0$ attracts from both sides. 1169 1170 \item Given 1171 $$\dot x = x^3,$$ 1172 the equilibrium $0$ repells. 1173 1174 \item Given 1175 $$\dot x = x^2,$$ 1176 the flow goes to the right. 1177 1178 \item Given 1179 $$\dot x = 0,$$ 1180 everything is stationary. (This is the linearization of all three equations above.) 1181 \end{itemize} 1182 1183 \end{exam} 1184 1185 \begin{exam} 1186 2D 1187 \begin{itemize} 1188 \item Given 1189 $$\begin{aligned}\dot r &= -r^3\\ 1190 \dot \theta &= 1\end{aligned}$$ 1191 in polar coordinates or 1192 $$\begin{aligned}\dot x &= -y-xy^2-x^3\\ 1193 \dot y &= x-y^3-x^2y\end{aligned}$$ 1194 in Cartesian coordinates, the flow spirals inwards. So the origin is asymptotically stable. 1195 1196 \item Given 1197 $$\begin{aligned}\dot r &= r^3\\ 1198 \dot \theta &= 1\end{aligned}$$ 1199 in polar coordinates or 1200 $$\begin{aligned}\dot x &= -y+xy^2-x^3\\ 1201 \dot y &= x+y^3+x^2y\end{aligned}$$ 1202 in Cartesian coordinates, the flow spirals outwards. So the origin is repelling. 1203 1204 \item Given 1205 $$\begin{aligned}\dot r &= 0\\ 1206 \dot \theta &= 1+r\cos(\theta)\end{aligned}$$ 1207 in polar coordinates or 1208 $$\begin{aligned}\dot x &= -y-xy\\ 1209 \dot y &= x+x^2\end{aligned}$$ 1210 in Cartesian coordinates, we get a center at the origin. 1211 1212 \item All three examples above have the same linearization: 1213 $$\begin{aligned}\dot x &= -y\\ 1214 \dot y &= x\end{aligned}.$$ 1215 Here the flow moves in circles around the origin. 1216 \end{itemize} 1217 \end{exam} 1218 1219 \subsection{Asymptotic behavior} 1220 1221 What do solutions do as $t \to \infty$? Given 1222 $$\dot x(t) = f(x(t))$$ 1223 where $f \in C^1(U, \Rn)$ and $t \mapsto \varphi(t,p)$ is the solution with $x(0) = p$. 1224 1225 \begin{defin} 1226 For $p \in U$, the $\omega$-limit of $p$ is 1227 $$\omega(p)=\{q\in U: \exists (t_n)_{n\in\N} \subseteq \R \text{ such that } \lim_{n\to\infty}t_n = \infty \text{ and } \lim_{n\to\infty}\varphi(t_n,p)=q\}.$$ 1228 For $p\in U$, the $\alpha$-limit of $p$ is 1229 $$\alpha(p) = \{q\in U:\exists (t_n)_{n\in\N} \subseteq \R \text{ such that }\lim_{n\to\infty}t_n=-\infty \text{ and } \lim_{n\to\infty}\varphi(t_n,p)=q\}.$$ 1230 \end{defin} 1231 1232 \begin{exam} 1233 Let's do some examples. 1234 \begin{enumerate} 1235 \item Given: 1236 $$\begin{aligned}\dot x&=x\\ 1237 \dot y &= -y.\end{aligned}$$ 1238 \begin{itemize} 1239 \item If $p = 0$ then $\alpha(p) = \{0\}$ and $\omega(p)=\{0\}.$ 1240 1241 \item If $p \neq 0$ is on the $x$-axis then $\alpha(p)=\{0\}$ and $\omega(p)=\emptyset$. 1242 1243 \item If $p \neq 0$ is on the $y$-axis then $\alpha(p) = \emptyset$ and $\omega(p) = \{0\}$. 1244 1245 \item If $p$ is on no axis then $\alpha(p) = \emptyset$ and $\omega(p) = \emptyset$. 1246 \end{itemize} 1247 1248 \item Given: 1249 $$\begin{aligned}\dot x &= -y+x(1-x^2-y^2)\\ 1250 \dot y &= x+y(1-x^2-y^2)\end{aligned}$$ 1251 or 1252 $$\begin{aligned}\dot r &= r(1-r^2)\\ 1253 \dot \theta &= 1\end{aligned}$$ 1254 1255 \begin{itemize} 1256 \item If $p = 0$ then $\alpha(p) = \{0\}$ and $\omega(p) = \{0\}$. 1257 1258 \item If $p \neq 0$ is inside the unit circle then $\alpha(p) = \{0\}$ and $\omega(p)$ is the boundary of the unit circle. 1259 1260 \item If $|p| = 1$ then $\alpha(p)$ and $\omega(p)$ are the boundary of the unit circle. 1261 1262 \item If $p$ is outside the unit circle then $\alpha(p)=\emptyset$ and $\omega(p)$ is the boundary of the unit circle. 1263 \end{itemize} 1264 1265 1266 1267 \item Given: 1268 $$\begin{aligned}\dot x &= -y+x(1-x^2-y^2)\\ 1269 \dot y &= x+y(1-x^2-y^2)\\ 1270 \dot z &= \beta > 0 \text{ (constant)} \end{aligned}$$ 1271 Then for every $p \in \R^3$ we get $\alpha(p) = \omega(p) = \emptyset$. 1272 1273 \item Same as 3, but identify $0$ and $2\pi$ on the $z$-axis. Then the invariant cylinder becomes an invariant torus. If $\beta\in\Q$ then the torus is filled with periodic orbits (and the $\omega$-limit is one of these periodic orbits, provided $p$ is not on the $z$-axis).\\ 1274 If $\beta \notin \Q$ then there are everywhere dense orbits on the torus and $\omega(p)$ is the torus for all $p$ not on the $z$-axis. 1275 1276 \item Lorenz equation: Strange attractor. 1277 \end{enumerate} 1278 \end{exam} 1279 1280 \begin{thm} 1281 The following statements are true: 1282 \begin{enumerate} 1283 \item $\omega(p)$ is closed. 1284 1285 \item $\omega(p)$ is invariant (if $q \in \omega(p)$ then $\varphi(t,q) \in \omega(p)$ for all $t \in \mathbb{R}$). 1286 1287 \item If $\{\varphi(t,p):t\geq 0\}$ is bounded then $\omega(p)$ is nonempty an connected. 1288 \end{enumerate} 1289 \end{thm} 1290 1291 \begin{proof} 1292 Let's go through the proof. 1293 \begin{enumerate} 1294 \item Let $q\notin \omega(p)$. Then there is an open neighborhood $U_0\subseteq U$ of $q$ and $T > 0$, such that $\varphi(t,p)\notin U_0$ for all $t \geq T$. So after time $T$, the solution does not enter $U_0$. Therefore $U_0 \subseteq \omega(p)^c$ implying that $\omega(p)^c$ is open and $\omega(p)$ is closed. 1295 1296 \item Fix $q \in \omega(p)$. Then there is a sequence $(t_n)_{n\in\N} \subseteq \R$, such that $\lim_{n\to\infty}t_n = \infty$ and $\lim_{n\to \infty}\varphi(t_n,p) = q$.\\ 1297 Fix $t\in\R$ and let $\tau_n = t_n+t$. Then $\lim_{n\to\infty}\tau_n=\infty$ and $$\lim_{n\to\infty}\varphi(\tau_n,p) = \lim_{n\to\infty}\varphi(t_n+t,p) = \lim_{n\to\infty}\varphi(t,\varphi(t_n,p))=\varphi(t,q)$$ 1298 (because of the continuous dependence of solutions on the initial conditions). Therefore, we get $\varphi(t,q) \in \omega(p)$. 1299 1300 \item The solution lies in a compact set $K$. Take any sequence $(t_n)_{n\in\N}\subseteq\R$ such that $\lim_{n\to\infty}t_n=\infty$. Then $(\varphi(t_n,p))_{n\in\N} \subseteq K$ and there is a subsequence $(\varphi(t_{n_k},p))_k$ such that $\lim_{k\to\infty}\varphi(t_{n_k},p) \in K$ exists. Therefore $\omega(p) \neq \emptyset$.\\ 1301 Now we show that $\omega(p)$ is connected. By way of contradiction, assume there exist $G_1, G_2$ open sets such that: 1302 \begin{itemize} 1303 \item $G_1$ and $G_2$ are disjoint. 1304 1305 \item $G_1 \cup G_2 \supseteq \omega(p)$. 1306 1307 \item $G_1 \cap \omega(p) \neq \emptyset$ and $G_2 \cap \omega(p) \neq \emptyset$. 1308 \end{itemize} 1309 1310 Then there are sequences $(t_n)_{n\in\N}, (\tau_n)_{n\in\N} \subseteq \R$ such that 1311 $\lim_{n\to\infty} t_n=\infty$, $\lim_{n\to\infty}\tau_n=\infty$, 1312 $$\lim_{n\to\infty}\varphi(t_n,p)=q_1 \in G_1 \cap \omega(p)$$ 1313 and 1314 $$\lim_{n\to\infty}\varphi(\tau_n,p)=q_2 \in G_2 \cap \omega(p),$$ 1315 where $t_1 < \tau_1 < t_2 < \tau_2 < \dots$.\\ 1316 Let $\theta_n$ be in the interval $(t_n,\tau_n)$ such that $\varphi(\theta_n,p)\notin G_1 \cup G_2$. Then as above $(\varphi(\theta_n,p))_{n\in\N}$ has a convergent subsequence, thus we found a point in $\omega(p) \setminus(G_1 \cup G_2)$ which is a contradiction. 1317 \end{enumerate} 1318 \end{proof} 1319 1320 \begin{hw} 1321 Sketch a 2D example with nonempty and disconnected $\omega$-limit set. 1322 \end{hw} 1323 1324 In a one-dimensional system the $\omega$-limit of a point $p$ is either $\emptyset$ or $\{q\}$, where $q$ is an equilibrium. What happens in the two-dimensional case? 1325 1326 \begin{thm}[Poincar\'e-Bendixson] 1327 Let $U \subseteq \R^2$ be open. Let 1328 $$\dot x(t)=f(x(t))$$ 1329 be given where $f\in C^1(U,\R^2)$. Let $K \subseteq U$ be a forward invariant ($p \in K$ implies $\varphi(t,p)\in K$ for all $t \geq 0$), compact set with finitely many equilibria. Then for any $p \in K$ the set $\omega(p)$ is one of the following: 1330 \begin{itemize} 1331 \item $\omega(p) = \{q\}$, where $q$ is an equilibrium. 1332 1333 \item $\omega(p) = \gamma$, where $\gamma$ is a closed orbit (the image of a periodic solution). 1334 1335 \item $\omega(p)$ is the union of $\{q_1, \dots ,q_n\}$ and countably many non closed orbits $\gamma$ such that $\alpha(\gamma) = q_i$ and $\omega(\gamma)=q_j$. 1336 \end{itemize} 1337 \end{thm} 1338 1339 \begin{defin} 1340 If $q$ is an equilibrium and $\gamma$ is an orbit with $\lim_{t \to \pm\infty}\gamma(t) = q$, then $\gamma$ is called a homoclinic orbit. 1341 \end{defin} 1342 1343 \begin{defin} 1344 If $q_1, q_2$ are two different equilibria and $\gamma$ is an orbit with $\lim_{t\to-\infty}\gamma(t) = q_1$ and $\lim_{t\to\infty}\gamma(t) = q_2$, then $\gamma$ is called a heteroclinic orbit. 1345 \end{defin} 1346 1347 \begin{exam} 1348 The system 1349 $$\begin{aligned}\dot x &= x(1-x)(x-y)\\ 1350 \dot y &= y(1-y)(2x-1)\end{aligned}$$ 1351 has an attractin rectangle. 1352 \end{exam} 1353 1354 \begin{rem} 1355 The Poincar\'e-Bendixson-Theorem does not apply to 2D manifolds other than subsets of $\R^2$ or the $2$-sphere. 1356 \end{rem} 1357 1358 For instance, let 1359 $$\dot x = v$$ 1360 for $v \in \R^2$ such that $\frac{v_1}{v_2}\notin \Q$ in the $2$-torus $\mathbb{T}^2$. 1361 $$x(t)=tv+p$$ 1362 is dense in $\mathbb{T}^2$ and $\omega(p) = \mathbb{T}^2$. 1363 1364 \begin{defin} 1365 Given 1366 $$\begin{aligned} 1367 \dot x_1 = f_1(x)\\ 1368 \dot x_2 = f_2(x)\\ 1369 \vdots\\ 1370 \dot x_n = f_n(x) 1371 \end{aligned}$$ 1372 for $f = (f_1, \dots, f_n) \in C(U)$. For $i \in \jbr{n}$, we define $\{x \in U: f_i(x) = 0\}$ the $x_i$-nullcline. 1373 \end{defin} 1374 1375 \paragraph{Chlorine dioxide-Iodine-Malonic-Acid reaction: $(X = I, Y = ClO_2^-)$} 1376 Given 1377 $$\begin{aligned} \dot x &= a-x-\frac{4xy}{x^2+1}\\ 1378 \dot y &= bx\left(1-\frac{y}{x^2+1}\right),\end{aligned}$$ 1379 where $a,b > 0$ and $x,y\geq 0$. We first compute the nullclines. 1380 $$\begin{aligned}\dot x = 0 &\Leftrightarrow y = \frac{(a-x)(x^2+1)}{4x}\\ 1381 \dot y = 0 &\Leftrightarrow y = x^2+1\end{aligned}$$ 1382 Solving this system of equation gives 1383 $$x^* = \frac a5,\quad y^* = 1+(x^*)^2.$$ 1384 Now we compute the Jacobian matrix $J$ at $(x^*,y^*)$. 1385 $$J (x^*,y^*) = \reci{(x^*)^2+1}\mattwo{3(x^*)^2-5}{-4x^*}{2b(x^*)^2}{-bx^*}$$ 1386 To get information about the eigenvalues, we calculate the determinant and the trace of it. 1387 $$\det J(x^*,y^*)=\frac{5bx^*}{(x^*)^2+1}>0$$ 1388 $$\tr J(x^*,y^*)=\frac{3(x^*)^2-bx^*-5}{(x^*)^2+1}$$ 1389 $$\sgn(\tr J(x^*,y^*)) = \sgn(3a^2-5ab-125)$$ 1390 \begin{itemize} 1391 \item For $b > \frac35a-\frac{25}a$ it is asymptotically stable. 1392 1393 \item For $b < \frac35a-\frac{25}a$ it is repelling, and, by the Poincar\'e-Bendixson Theorem, there is a closed orbit. 1394 1395 \item At $b = \frac35a-\frac{25}a$ a supercritical Andronov--Hopf bifurcation occurs (such a bifurcation will be discussed on May 8th). 1396 \end{itemize} 1397 1398 \begin{defin} 1399 A limit cycle is a closed orbit $\gamma$ which is the $\omega$-limit or $\alpha$-limit of at least one point outside $\gamma$. 1400 \end{defin} 1401 1402 \begin{defin} 1403 A periodic attractor is a closed orbit such that for all $p$ in a neighborhood of $\gamma$, we get 1404 $$\omega(p)=\gamma.$$ 1405 (Note: a neighborhood of $\gamma$ in $\R^2$ is an annulus, in $\R^n$ it is a torus.) 1406 \end{defin} 1407 1408 \begin{hw} 1409 Given 1410 $$\begin{aligned} 1411 \dot x &= y+xh(r)\\ 1412 \dot y &= x+yh(r)\\ 1413 r &= \sqrt{x^2+y^2}, 1414 \end{aligned}$$ 1415 write in polar coordinates and find $h$ such that there are infinitely many limit cycles. 1416 \end{hw} 1417 1418 \begin{thm}[Green's theorem] 1419 Let $F:\R^2\to\R^2$ be smooth, $D\subseteq \R^2$ be a simply connected region, $\gamma$ be its boundary and 1420 $n: \gamma \to\R^2$ is the outward facing unit normal vector field. Then 1421 $$\int_\gamma F\cdot n=\iint_D\divg F.$$ 1422 With $F=(P,Q)$ this reads as 1423 $$\oint_\gamma Pdy-Qdx = \iint_D\partial_x P+\partial_y Q.$$ 1424 1425 \end{thm} 1426 1427 \begin{thm}[Bendixson-Dulac criterion] 1428 Given 1429 $$\begin{aligned} 1430 \dot x = f(x,y)\\ 1431 \dot y = g(x,y) 1432 \end{aligned}$$ 1433 where $(f,g):D \to\R^2$ is $C^1$ and $D \subseteq \R^2$ is a simply connected region.\\ 1434 If there is an $h:\R^2\to\R$ which is $C^1$ such that $\text{div}(hf,hg) > 0$ in $D$ (or $\text{div}(hf,hg)<0$ in $D$) then there is no closed orbit that lies entirely in $D$. 1435 \end{thm} 1436 1437 \begin{proof} 1438 Suppose by contradiction that there is a closed orbit $\gamma$ (with period $T$) with $\gamma(t) = (x(t),y(t))$. Then 1439 $$0 < \iint_{\text{int} \gamma} \text{div}(hf,hg) \stackrel{\text{Green}}{=} \oint_\gamma hfdy-hgdx = \int_0^T (hf\dot y-hg\dot x)dt = \int_0^T (hfg-hgf)dt = 0$$ 1440 which is a contradiction. 1441 \end{proof} 1442 1443 \begin{hw} 1444 Rule out closed orbits. 1445 \begin{enumerate} 1446 \item Given 1447 $$\begin{aligned} 1448 \dot x &= y\\ 1449 \dot y &= -\sin(x)-\delta y 1450 \end{aligned}$$ 1451 where $\delta > 0$ and $(x,y)\in\R^2$. 1452 1453 \item Given 1454 $$\begin{aligned} 1455 \dot x &= x(1-x)(x-y)\\ 1456 \dot y &= y(1-y)(2x-1) 1457 \end{aligned}$$ 1458 where $(x,y) \in (0,1)^2$. 1459 1460 \item The intraspecific competition is decribed by 1461 $$\begin{aligned} 1462 \dot x &= x(n-ax+by)\\ 1463 \dot y &= y(s+cx-dy) 1464 \end{aligned}$$ 1465 where $a,d > 0$ and $(x,y)\in\R_+^2$. 1466 1467 \item Given 1468 $$\ddot x + p(x)\dot x+q(x)=0$$ 1469 where $p(x) > 0$ for all $x \in \R$. 1470 \end{enumerate} 1471 \end{hw} 1472 1473 \paragraph{Hilbert's 16th problem:} 1474 Given 1475 $$\begin{aligned} 1476 \dot x = f(x,y)\\ 1477 \dot y = g(x,y) 1478 \end{aligned}$$ 1479 where $f,g$ are polynomials of degree $n$. For a fixed $n$, find the maximum number of limit cycles, and denote this as $H(n)$. It is known that any fixed planar polynomial ODE has only finitely many limit cycles. However, it still not known whether $H(2)$ is finite. It is known that $H(2) \geq 4$, and in fact, people conjecture that $H(2)=4$. Further, there is a cubic example with 13 limit cycles, and hence we know that $H(3)\geq 13$. 1480 1481 \subsection{LaSalle's invariance principle} 1482 1483 Given 1484 $$\dot x = f(x),$$ 1485 where $f \in C^1(U, \Rn)$. 1486 1487 \begin{lem} 1488 Let $V \in C(U,\R)$ such that $V(\varphi(\cdot, p))$ is monotone increasing (or decreasing). Then $V$ is constant on $\omega(p)$. 1489 \label{Constant on orbit} 1490 \end{lem} 1491 1492 \begin{proof} 1493 Let $q,r \in \omega(p)$. Then there are sequences $(t_n)_{n\in\N}\subseteq \R$ and $(\tau_n)_{n\in\N} \subseteq \R$ such that $\lim_{n\to\infty} t_n = \infty, \lim_{n\to\infty}\tau_n = \infty, \limn \varphi(t_n,p)=q$ and $ \limn \varphi(\tau_n,p)=r$. By refining the sequences, we may assume that $t_n \leq \tau_n \leq t_{n+1}$ for every $n$. Hence, 1494 $$V(\varphi(t_n,p)) \leq V(\varphi(\tau_n,p)) \leq V(\varphi(t_{n+1},p))$$ 1495 for every $n$. Letting $n$ approach $\infty$, we get $V(q) \leq V(r) \leq V(q)$. So $V(r)=V(q)$, showing that $V$ is constant on $\omega(p)$. 1496 \end{proof} 1497 1498 \begin{thm} 1499 Let $V \in C^1(U,\R)$ such that $\nabla Vf(x)\leq 0$ for all $x \in U$ (or $\geq 0$). Then 1500 $$\omega(p)\subseteq \{x\in U:\nabla Vf(x)=0\}$$ 1501 for all $p \in U$. Moreover, $\omega(p)$ is contained in the maximal invariant subset of $\{x\in U:\nabla Vf(x)=0\}$. 1502 \end{thm} 1503 1504 \begin{proof} 1505 Suppose $q \in \omega(p)$. Then $\varphi(t,q) \in \omega(p)$ for all $t \geq 0$. By assumtion, the map $t \mapsto V(\varphi(t,q))$ monotone decreasing. By lemma \ref{Constant on orbit} it is constant. By differentiating with respect to time, we get 1506 $$\nabla V(\varphi(t,q))\partial_t\varphi(t,q) = 0.$$ 1507 Because $\dot x = f(x)$, we get 1508 $$\nabla V(\varphi(t,q))f(\varphi(t,q)) = 0$$ 1509 and setting $t=0$, we get $\nabla Vf(q)=0$. 1510 \end{proof} 1511 1512 \begin{rem} 1513 Such a function is called a Lyapunov function. ($\nabla Vf \leq 0$ or $\nabla Vf \geq 0$.) 1514 \end{rem} 1515 1516 \begin{thm} 1517 If $V:\Rn \to \R$ is a strict Lyapunov function for the equilibrium $p$ and $V$ is radially unbounded (meaning $V(x) \to \infty$ if $|x| \to \infty$; hence, the sublevelsets of $V$ are bounded) then $\limn\varphi(t,q) = p$ for all $q \in \Rn$ (i.e., $p$ is globally asymptotically stable). 1518 \end{thm} 1519 1520 \begin{exam}[Pendulum with friction] 1521 Given 1522 $$\begin{aligned} 1523 \dot x &= y\\ 1524 \dot y &= -\sin(x)-\delta y 1525 \end{aligned}$$ 1526 where $\delta > 0$. We define $V(x,y) = \half {y^2}-\cos(x)$ to be our candidate. Then 1527 $$\nabla Vf(x,y) = \sin(x)\cdot y + y(-\sin(x)-\delta y)=-\delta y^2 \leq 0.$$ 1528 So 1529 $$\{(x,y)\in\R^2:\nabla Vf(x,y)=0\} = x-\text{axis}.$$ 1530 The maximal invariant subset of it is $\{(\xi \pi,0), \xi \in \Z\}$. Therefore every bounded solution converges to a point here. 1531 \end{exam} 1532 1533 \begin{exam} 1534 Given 1535 $$\begin{aligned} 1536 \dot x&= x\\ 1537 \dot y &= -y, 1538 \end{aligned}$$ 1539 we choose $V(x,y) = x^2-y^2$ as our candidate. Then 1540 $$\dot V(x,y) = 2x\dot x-2y\dot y = 2(x^2+y^2) \geq 0.$$ So $\dot V(x,y) = 0$ if and only if $(x,y)=0$. Hence, $\omega(p) = \{(0,0)\}$ or $\omega = \emptyset$. The former holds if $p$ is on the $y-$axis, while the latter holds when $p$ is outside the $y$-axis. 1541 \end{exam} 1542 1543 \subsection{Hamiltonian systems in 2D} 1544 1545 Let $U \subseteq R^2$ be open, $H \in C^2(U, \R)$. We analyze systems of the form 1546 $$\begin{aligned} 1547 \dot x &= \partial_y H\\ 1548 \dot y &= -\partial_x H. 1549 \end{aligned}\quad (H)$$ 1550 1551 \begin{thm}[Conservation of energy] 1552 $H$ is constant along trajectories. 1553 \end{thm} 1554 1555 \begin{proof} 1556 We just need to show that the time derivative vanishes. 1557 $$\frac{d}{dt} H(x(t),y(t)) = \partial_x H\dot x +\partial_y H \dot y = \partial_x H \partial_y H +\partial_y H (-\partial_x H)=0$$ 1558 \end{proof} 1559 1560 \begin{rem} 1561 Equilibria of $H$ are exactly the critical points of $H$ (where the gradient of $H$ vanishes). 1562 \end{rem} 1563 1564 \begin{defin} 1565 An equilibrium $p$ of $\dot x = f(x)$ in $\Rn$ is said to be degenerate if $0 \in \sigma(f'(p))$. Otherwise, it is called non-degenerate. 1566 \end{defin} 1567 1568 \begin{rem} 1569 For $n = 2$, a non-degenerate equilibrium is either hyperbolic or a center of the linearized system. 1570 \end{rem} 1571 1572 \begin{defin} 1573 An equilibrium $p$ of $\dot x = f(x)$ on $\R^2$ is called 1574 \begin{itemize} 1575 \item a center if all nearby orbits are closed. 1576 1577 \item a saddle if there are trajectories $\Gamma_1, \Gamma_2$ that approach $p$ as $t\to\infty$, $\Gamma_3, \Gamma_4$ that approach $p$ as $t\to-\infty$ and there is a $\delta>0$ such that all other trajectories in $B_\delta(p)\setminus\{p\}$ leave $B_\delta(p)$ as $t \to \pm\infty$. 1578 \end{itemize} 1579 \end{defin} 1580 1581 \begin{thm} 1582 Any non-degenerate equilibrium of $(H)$ is either a saddle (when $p$ is saddle of $H$) or a center (if $p$ is a local extremum of $H$). 1583 \end{thm} 1584 1585 \begin{proof} 1586 Without loss of generality the equilibrium is at the origin. The linearization is $\vectwo{\dot x}{\dot y}=A\vectwo xy$, where 1587 $$A = \mattwo{\partial_x\partial_y H}{\partial_y^2H}{-\partial_x^2H}{-\partial_y\partial_x H}.$$ 1588 Then $\tr A = 0$ and $\det A= -(\partial_x\partial_yH)^2+\partial_y^2 H\partial_x^2 H$. The Hessian $\mathcal H$ of $H$ is 1589 $$\mathcal H = \mattwo{\partial_x^2H}{\partial_x\partial_y H}{\partial_x\partial_yH}{\partial_y^2H}$$ 1590 Then $\det \mathcal H = \det A$. Since the equilibrium is non-degenerate, we have $\det\mathcal H \neq 0$. Then we get two cases. 1591 \begin{enumerate} 1592 \item In the first case, we have $\det \mathcal H < 0$ ($\mathcal H$ is indefinite). Therefore it's a saddle of $H$ and a saddle of the linearized system. So the equilibrium is a saddle. 1593 1594 \item In the other case, we have $\det \mathcal H > 0$ ($\mathcal H$ is positive or negative definite). Therefore it's a strict local extremum of $H$. Then the level sets are closed curves. Since $H$ is constant along solutions, the equilibrium is a center. 1595 \end{enumerate} 1596 1597 \end{proof} 1598 1599 \subsection{Special Hamiltonian systems: Newtonian systems} 1600 1601 Given 1602 $$\ddot x = F(x)$$ 1603 in $\R$ (scalar ODE, second order). We can use the substitution $y:= \dot x$ to get two ODEs of order one 1604 1605 1606 $$\begin{aligned} 1607 \dot x &= y\\ 1608 \dot y &= F(x). 1609 \end{aligned}\quad (N)$$ 1610 (planar ODE, first order). Now let 1611 $$H(x,y) = \half{y^2}-\int_{x_0}^x F(s)ds$$ 1612 In this case, $H(x,y)$ is called the total energy and $\half{y^2}$ is the kinetic energy. The rest is the potential energy, so 1613 $$H(x,y) = T(y)+U(x).$$ 1614 1615 \begin{thm} 1616 The following statements hold: 1617 \begin{enumerate} 1618 \item The equilibria of $(N)$ all lie on the $x$-axis. 1619 1620 \item The point $(x^*,0)$ is an equilibrium of $(N)$ if and only if $x^*$ is a critical point of $U$ ($\Leftrightarrow$ $F(x^*) = 0$). 1621 1622 \item If $x^*$ is a strict local max/min of $U$ then $(x^*,0)$ is a saddle/center of $(N)$. 1623 1624 \item The phase portrait of $(N)$ is symmetric to the $x$-axis. 1625 \end{enumerate} 1626 \end{thm} 1627 1628 \begin{exam} 1629 Given 1630 $$\ddot x +\sin(x) = 0,$$ 1631 so $F(x) = -\sin(x)$. By substitution, we get 1632 $$\begin{aligned} 1633 \dot x &= y\\ 1634 \dot y &= -\sin(x). 1635 \end{aligned}$$ 1636 The potential energy is 1637 $$U(x) = -\int_0^x-\sin(s)ds = -[\cos(s)]_{s=0}^{s=x} = 1-\cos(x).$$ 1638 Then the total energy is 1639 $$H(x,y) = \half {y^2}+1-\cos(x).$$ 1640 So $H(x,y) = 2$ if and only if $y = \pm\sqrt{2(\cos x+1)}$. We can conclude that $(-\pi,0)$ and $(\pi,0)$ are connected by heteroclinic orbits.\\ 1641 \\ 1642 Equilibria: The point $(0,0)$ is a center (Lyapunov stable), while $(\pm \pi,0)$ are saddles (not Lyapunov stable). 1643 \end{exam} 1644 1645 \subsection{Gradient systems in $\Rn$} 1646 1647 Let $V \in C^2(U,\R)$ and 1648 $$\dot x = -\nabla V(x)^T,$$ 1649 where $\nabla V(x) = (\partial_{x_1} V, \dots, \partial_{x_n} V)$. 1650 So 1651 $$\dot x_i = -\partial_{x_i} V, \quad i \in\jbr{n} \text{ for all }$$ 1652 Sometimes the system 1653 $$\dot x = \nabla V(x)^T$$ 1654 is analyzed (but not here). Critical points of $V$ are the points, where $\nabla V(x) = 0$ (and these are exactly the equilibria of the ODE).\\ 1655 Regular points of $V$ are the points, where $\nabla V(x) \neq 0$. In this case $\nabla V(x)$ is orthogonal to the level sets $\{V = c\}$ and the vector field points to the steepest descent. 1656 1657 \begin{exam} 1658 Let $V(x,y) = \half1(2x^2+y^2)$. 1659 $$\begin{aligned} 1660 \dot x &= -2x\\ 1661 \dot y &= -y. 1662 \end{aligned}$$ 1663 The level sets look like ellipses. The flows are orthogonal to the level sets and converge to the origin. 1664 \end{exam} 1665 1666 \begin{lem} 1667 For a gradient system, the following statements hold: 1668 \begin{enumerate} 1669 \item $V$ is a Lyapunov function ($\dot V \leq 0$). 1670 1671 \item $\dot V(p)=0$ if and only if $p$ is an equilibrium. 1672 1673 \item Strict local minima of $V$ are asymptotically stable equilibria. 1674 1675 \item The $\omega$-limit set consists of equilibria only. 1676 1677 \item If equilibria are isolated then every bounded trajectory converges to an equilibrium. 1678 \end{enumerate} 1679 \end{lem} 1680 1681 \begin{proof} 1682 The statements are simple to prove. 1683 \begin{enumerate} 1684 \item $\dot V = \nabla V\cdot(-\nabla V)^T = -\|\nabla V\|^2 \leq 0$. 1685 1686 \item We know that $p$ is an equilibrium if and only if $\nabla V(p) = 0$. This is the case if and only if $\dot V(p) = 0$. 1687 1688 \item Follows from the Lyapunov stability theorem. 1689 1690 \item Follows from LaSalle. 1691 1692 \item trivial. 1693 \end{enumerate} 1694 \end{proof} 1695 1696 \begin{exam} 1697 Let $V(x,y) = (x+1)^2(x-1)^2+y^2$. So 1698 $$\begin{aligned} 1699 \dot x &= -4(x+1)x(x-1)\\ 1700 \dot y &= -2y. 1701 \end{aligned}$$ 1702 Equilibria are: 1703 \begin{itemize} 1704 \item $(-1,0)$ asymptotically stable 1705 1706 \item $(0,0)$ saddle 1707 1708 \item $(1,0)$ asymptotically stable 1709 \end{itemize} 1710 \end{exam} 1711 1712 Linearization at an equilibrium $-(\partial_{x_i}\partial_{x_j}V)_{i,j}^n$ is symmetric. Therefore eigenvalues are real. 1713 1714 \begin{thm} 1715 A non-degenerate equilibrium of a planar gradient system is either a saddle (when it is a saddle of $V$), a stable node (when it is a strict local minimum of $V$) or an unstable node (when it is a strict local maximum of $V$). 1716 \end{thm} 1717 1718 \begin{rem} 1719 Surprisingly $\omega(p)$ can be a continuum of equilibria (for example, a circle). 1720 \end{rem} 1721 1722 How to recognize a gradient system? 1723 The system $\dot x = f(x)$ is a gradient system in $\Rn$ if and only if $\partial_{x_j}f_i = \partial_{x_i}f_j$ for $i,j\in\jbr{n}$. 1724 1725 \begin{hw} 1726 Given $\dot x=Ax,$ where $ A\in\R^{n\times n}$. Which linear systems are gradient systems? Find $V$. 1727 \end{hw} 1728 1729 \begin{thm} 1730 Given 1731 $$\begin{aligned} 1732 \dot x &= f(x,y)\\ 1733 \dot y &= g(x,y). 1734 \end{aligned}$$ 1735 Rotate the vector field by $-90$ degree. 1736 $$\begin{aligned} 1737 \dot x &= g(x,y)\\ 1738 \dot y &= -f(x,y) 1739 \end{aligned}$$ 1740 A center of the first system is a node in the second system. A saddle of the first system is a saddle of the second system. Focus refers to focus. At non-equilibrium points, the trajectories are orthogonal. The first one is a Hamiltonian system if and only if the second one is a gradient system. (Flows and level sets switch roles.) 1741 \end{thm} 1742 1743 \begin{hw} 1744 Given 1745 $$\begin{aligned} 1746 \dot x &= y\\ 1747 \dot y &= -x+x^2. 1748 \end{aligned}$$ 1749 Find the Hamiltonian $H$ and sketch the phase portrait. 1750 \end{hw} 1751 1752 \subsection{First integral (or constant of motion)} 1753 1754 Given 1755 $$\dot x(t)=f(x(t)),$$ 1756 where $f \in C^1(U, \Rn)$. 1757 1758 \begin{defin} 1759 A function $V \in C^1(U,\Rn)$ is called a first integral or a constant of motion if $\dot V = 0$ in $U$. 1760 \end{defin} 1761 1762 \begin{exam}[Lotka reactions] 1763 Given 1764 $$\begin{array}{rcl} 1765 X &\stackrel{\kappa_1}{\to}& 2X\\ 1766 X+Y &\stackrel{\kappa_2}{\to}& 2Y\\ 1767 Y &\stackrel{\kappa_3}{\to}& 0 1768 \end{array}$$ 1769 we can model it as a system of differential equations. 1770 $$\begin{array}{rcccl}\dot x &=&\kappa_1x-\kappa_2xy &=& x(\kappa_1-\kappa_2y)\\ 1771 \dot y&=&\kappa_2xy-\kappa_3y &=& y(\kappa_2x-\kappa_3)\\ 1772 &&\kappa_1,\kappa_2, \kappa_3 &>& 0 1773 \end{array}$$ 1774 The ositive equilibrium is $(x^*,y^*)=\left(\frac{\kappa_3}{\kappa_2},\frac{\kappa_1}{\kappa_2}\right)$. Calculating the Jacobian matrix at $(x^*, y^*)$ gives 1775 $$J = \mattwo0{-\kappa_3}{\kappa_1}0.$$ 1776 So $\sigma(J)=\{\pm\omega i\}$ with $\omega = \sqrt{\kappa_1\kappa_3}$. Now we define 1777 $$V(x,y)=\kappa_3\log x + \kappa_1\log y-\kappa_2(x+y).$$ 1778 Then 1779 $$\dot V(x,y) = \partial_xV\dot x+\partial_y V\dot y = \left(\frac{\kappa_3}{x}-\kappa_2\right)x(\kappa_1-\kappa_2y)+\left(\frac{\kappa_1}{y}-\kappa_2\right)y(\kappa_2x-\kappa_3) = 0,$$ 1780 so $V$ is a first integral. 1781 \end{exam} 1782 1783 \begin{exam}[Ivanova reactions] 1784 Given 1785 $$\begin{array}{rcl}Z+X &\stackrel{\kappa_1}{\to}& 2X\\ 1786 X+Y &\stackrel{\kappa_2}{\to}& 2Y\\ 1787 Y+Z &\stackrel{\kappa_3}{\to}& 2Y 1788 \end{array}$$ 1789 or 1790 $$\begin{array}{rcl}\dot x &=& x(\kappa_1z - \kappa_2y)\\ 1791 \dot y &=& y(\kappa_2x - \kappa_3z)\\ 1792 \dot z &=& z(\kappa_3y - \kappa_1x),\end{array}$$ 1793 define 1794 $$V_1(x,y,z) = x+y+z.$$ 1795 Then 1796 $$\dot V_1=\dot x+\dot y+\dot z = 0,$$ 1797 so $V_1$ is a first integral. We can get a different first integral defining 1798 $$V_2(x,y,z) = x^{\kappa_3}y^{\kappa_1}z^{\kappa_2} \text{ or } \log x^{\kappa_3}y^{\kappa_1}z^{\kappa_2}.$$ 1799 In those cases 1800 $$\dot V_2=0$$ 1801 and we can conclude that $x(t)^{\kappa_3}y(t)^{\kappa_1}z(t)^{\kappa_2}$ is constant. 1802 \end{exam} 1803 1804 \begin{defin}[Lotka-Volterra equation] 1805 A Lotka-Volterra equation is a system of equations like 1806 $$\dot x_i = x_i\left(r_i + \sum_{k=1}^na_{ik}x_k\right)$$ 1807 where $i \in \jbr{n}$. 1808 \end{defin} 1809 1810 \begin{exam}[A Newtonian system] 1811 Given 1812 $$\begin{aligned} 1813 \dot x &= y\\ 1814 \dot y &= -x+x^3 1815 \end{aligned}$$ 1816 we can find the first integral 1817 $$V(x,y)=\half{y^2}+\half{x^2}-\frac{x^4}{4}$$ 1818 since 1819 $$\dot V(x,y) = (x-x^3)y +y(-x+x^3)=0.$$ 1820 \end{exam} 1821 1822 \begin{rem} 1823 For a Hamiltonian system 1824 $$\begin{aligned} 1825 \dot x&=\partial_y H\\ 1826 \dot y &= -\partial_x H 1827 \end{aligned}$$ 1828 $H$ is a constant of motion. 1829 \end{rem} 1830 1831 \begin{rem} 1832 A planar vector field $(f,g)$ is divergence-free if and only if 1833 $$\begin{aligned} 1834 \dot x &= f(x,y)\\ 1835 \dot y &= g(x,y) 1836 \end{aligned}$$ 1837 is Hamiltonian system. Why? 1838 Let $H$ be such that 1839 $$\begin{aligned} 1840 \partial_y H &= f\\ 1841 \partial_x H &= -g. 1842 \end{aligned}$$ 1843 This holds if and only if 1844 $$\partial_y\partial_xH = \partial_x\partial_yH.$$ 1845 Now we rearrange it a bit 1846 $$\partial_xf = -\partial_yg$$ 1847 or 1848 $$\divg(f,g) = \partial_xf+\partial_y g = 0.$$ 1849 How to find $H$? 1850 $$H(x,y) = \int f(x,y)dy+c(x)$$ 1851 where $c(x)$ is found by making sure $-\partial_xH=g$ holds. 1852 \end{rem} 1853 1854 \begin{hw} 1855 The system 1856 $$\begin{aligned} 1857 \dot x &= -2x-2y-2\\ 1858 \dot y &= -2x+2y-2 1859 \end{aligned}$$ 1860 is divergence-free. Find the Hamiltonian function $H$. 1861 \end{hw} 1862 1863 \begin{lem} 1864 Let $f:U\to \Rn$ locally Lipschitz, $v:U\to \R_{>0}$ locally Lipschitz. Then the orbits of $\dot x(t)=f(x(t))$ and $\dot y(t)=v(y(t))f(y(t))$ coincide and the directions of the flows are the same. 1865 \end{lem} 1866 1867 \begin{exam} 1868 The systems 1869 $$\begin{aligned} 1870 \dot x &= y\\ 1871 \dot y &= -x+x^3 1872 \end{aligned} 1873 \leftrightarrow 1874 \begin{aligned} 1875 \dot x &= 2y\\ 1876 \dot y &= -2x+2x^3 1877 \end{aligned} 1878 \leftrightarrow 1879 \begin{aligned} 1880 \dot x &= (x^2+y^2+1)y\\ 1881 \dot y &= (x^2+y^2+1)(-2x+2x^3) 1882 \end{aligned}$$ 1883 have the same orbits. 1884 \end{exam} 1885 1886 \begin{exam}[Lotka ODE in $\R^2_+$] 1887 For $v(x,y)=\reci{xy}$ let 1888 $$\begin{aligned} 1889 \dot x &= \frac{\kappa_1}{y}-\kappa_2\\ 1890 \dot y &= \kappa_2-\frac{\kappa_3}{x} 1891 \end{aligned}$$ 1892 be given. 1893 \end{exam} 1894 1895 \begin{hw} 1896 Find the Hamiltonian function $H$. 1897 \end{hw} 1898 1899 \begin{defin} 1900 For 1901 $$\begin{aligned} 1902 \dot x=f(x,y)\\ 1903 \dot y = g(x,y) 1904 \end{aligned}$$ 1905 the function $v(x,y) > 0$ is called a Dulac function if $\divg(vf,vg) = 0$. 1906 \end{defin} 1907 1908 \subsection{How to find centers?} 1909 1910 Given 1911 $$\begin{aligned} 1912 \dot x &= f(x,y)\\ 1913 \dot y &= g(x,y) 1914 \end{aligned}$$ 1915 where $(x^*,y^*)$ is an equilibrium and $J \in \R^{2\times 2}$ is the Jacobian matrix at $(x^*,y^*)$. If $\tr J = 0$ and $\det J > 0$ then $\sigma(J) = \{\pm \omega i\}$ with $\omega = \sqrt{\det J}$. In this case the equilibrium of the linearization is a center. Try to find a Dulac function. 1916 1917 \subsubsection{Planar S-systems} 1918 1919 Given 1920 $$\begin{aligned} 1921 \dot x_1 &= \alpha_1 x_1^{g_{11}}x_2^{g_{12}}-\beta_1x_1^{h_{11}}x_2^{h_{12}}\\ 1922 \dot x_2 &= \alpha_2 x_1^{g_{21}}x_2^{g_{22}}-\beta_2x_1^{h_{21}}x_2^{h_{22}} 1923 \end{aligned}$$ 1924 where $\alpha_1, \alpha_2, \beta_1, \beta_2 > 0$ and $g_{ij}, h_{ij} \in \R$ for $i,j = 1,2$. With some nonlinear transformation: 1925 $$\begin{aligned} 1926 \dot u &= e^{a_1u+b_1v}-e^{a_2u+b_2v}\\ 1927 \dot v &= e^{a_3u+b_3v}-e^{a_4u+b_4v} 1928 \end{aligned}$$ 1929 For which $a_i,b_i$ is the origin a center? 1930 1931 $$J=\mattwo{a_1-a_2}{b_1-b_2}{a_3-a_4}{b_3-b_4}$$ 1932 is the Jacobian at the origin. Assume $\tr J=0$ and $\det J > 0$. Assume further $a_1=a_2$ and $b_3=b_4$. Use the Dulac function $e^{-a_1u-b_4v}$. Then 1933 $$\begin{aligned} 1934 \dot u &= e^{(b_1-b_4)v}-e^{(b_2-b_4)v}\\ 1935 \dot v &= e^{(a_3-a_1)u}-e^{(a_4-a_1)u} 1936 \end{aligned}$$ 1937 is divergence-free and the origin is a center. 1938 1939 \begin{hw} 1940 Find $H(u,v)$, such that 1941 $$\begin{aligned} 1942 \dot u &= \partial_v H\\ 1943 \dot v &= -\partial_u H. 1944 \end{aligned}$$ 1945 \end{hw} 1946 1947 \subsubsection{Reversible systems} 1948 1949 Given 1950 $$\begin{aligned} 1951 \dot x &= f(x,y)\\ 1952 \dot y &= g(x,y). 1953 \end{aligned}$$ 1954 Assume $f$ is odd in $y$ ($f(x,-y) = -f(x,y)$) and $g$ is even in $y$ ($g(x,-y) = g(x,y)$). For example, Newtonian systems. If $(x(t), y(t))$ is a solution, then $(\tilde x(t), \tilde y(t)):=(x(-t),-y(-t))$ is also a solution. We can show this directly. 1955 $$\dot{\tilde x}(t) = -\dot x(-t)=-f(x(-t),y(-t))=-f(\tilde x(t),-\tilde y(t)) = f(\tilde x(t),\tilde y(t))$$ 1956 $$\dot{\tilde y}(t) = \dot y(-t)=g(x(-t),y(-t))=g(\tilde x(t),-\tilde y(t)) = g(\tilde x(t),\tilde y(t))$$ 1957 1958 \begin{thm} 1959 An equilibrium on the $x$-axis of a reversible system with purely imaginary eigenvalues is a center. 1960 \end{thm} 1961 1962 More generally: 1963 \begin{itemize} 1964 \item Let $R: \R^2\to \R^2$ be a reflection along a line. 1965 1966 \item A vector field $F:\R^2\to \R^2$ is said to be reversible with respect to $R$ if $-R^{-1}\circ F\circ R = F$. 1967 1968 \item A similar theorem holds. 1969 \end{itemize} 1970 1971 \paragraph{Reversibility with respect to $x = y$ line:} 1972 1973 Generally, a system of the form 1974 $$\begin{aligned} 1975 \dot x &= f(x,y)\\ 1976 \dot y &= -f(y,x) 1977 \end{aligned}$$ 1978 is reversible with respect to the $x=y$ line. 1979 1980 \begin{exam} 1981 Given 1982 $$\begin{aligned} 1983 \dot u &= e^{(a_1-a)u+(b_1-b)v}-e^{(a_2-a)u+(b_2-b)v}\\ 1984 \dot v &= e^{(a_3-a)u+(b_3-b)v}-e^{(a_4-a)u+(b_4-b)v} 1985 \end{aligned}$$ 1986 where we assume that 1987 $$\begin{aligned} 1988 a_1-a = b_4-b\\ 1989 a_2-a = b_3-b\\ 1990 a_3-a = b_2-b\\ 1991 a_4-a = b_1-b, 1992 \end{aligned}$$ 1993 the system is reversible with respect to the $u=v$ line. There exist such $a,b$ if and only if $$a_1-b_4=a_2-b_3 = a_3-b_2=a_4-b_1 \quad (*).$$ 1994 Then the origin is thus a center if $(*)$ holds and $\det J > 0$ (notice that $\tr J=0$ follows automatically from $(*)$). 1995 \end{exam} 1996 1997 1998 1999 \begin{hw} 2000 Figure out when 2001 $$\begin{aligned} 2002 \dot u &= f(u,v)\\ 2003 \dot v &= g(u,v) 2004 \end{aligned}$$ 2005 is reversible with respect to 2006 \begin{enumerate} 2007 \item the $v$-axis 2008 2009 \item the $v=-u$ line. 2010 \end{enumerate} 2011 And try to find planar $S$-systems with a reversible center (especially in the latter case, i.e., reversible with respect to the line $v=-u$). 2012 \end{hw} 2013 2014 \subsection{Stable and unstable manifolds} 2015 2016 \begin{exam} 2017 For the system 2018 $$\begin{aligned} 2019 \dot x &= -x\\ 2020 \dot y &= -y+x^2\\ 2021 \dot z &= z+x^2 2022 \end{aligned}$$ 2023 the only equilibrium is at the origin. The Jacobian matrix at the origin is 2024 $$J = \matdiagthree{-1}{-1}{1}.$$ 2025 $$\begin{aligned} 2026 E^s &= (x,y)-\text{axis}\\ 2027 E^c &= \{0\}\\ 2028 E^u &= z-\text{axis} 2029 \end{aligned}$$ 2030 Solution: 2031 $$\begin{aligned} 2032 x(t) &= x(0)e^{-t}\\ 2033 y(t) &= y(0)e^{-t}+x(0)^2(e^{-t}-e^{-2t})\\ 2034 z(t) &= z(0)e^t+\frac{x(0)^2}{3}(e^t-e^{-2t}) 2035 \end{aligned}$$ 2036 Obeserve that if $z(0) = -\frac{x(0)^2}{3}$ then 2037 $$(x(t),y(t),z(t)) \stackrel{t\to\infty}{\to} (0,0,0)$$ 2038 and if $x(0) = y(0) = 0$ then 2039 $$(x(t),y(t),z(t)) \stackrel{t\to-\infty}{\to} (0,0,0).$$ 2040 Define 2041 $$W^s=\{(x,y,z)\in\R^3:z=-\frac{x^2}{3}\}$$ 2042 the stable manifold (tangent to $E^s$) and 2043 $$W^u=\{(x,y,z)\in\R^3:x=y=0\}$$ 2044 the unstable manifold ($W^u = E^u$). 2045 \end{exam} 2046 2047 Setting 2048 $$\dot x(t) = f(x(t))$$ 2049 where $f\in C^1(U,\Rn)$. Assume $0\in U$ is a hyperbolic equilibrium ($f(0) = 0$ and $\Re \lambda \neq 0$ for all $\lambda \in \sigma(f'(0))$. Then $\Rn = E^s \oplus E^u$. 2050 2051 \begin{thm}[Stable and unstable manifolds] 2052 There exist a neighborhood $\tilde U$ of the origin, $\psi\in C^1(E^s\cap\tilde U, E^u)$ and $\phi\in C^1(E^u\cap \tilde U, E^s)$ for which $W^s=\{(x_s,\psi(x_s)): x_s\in E^s\cap \tilde U\}$ is the stable manifold and $W^u=\{(\psi(x_u),x_u),x_u\in E^u \cap \tilde U\}$ is the unstable manifold with 2053 \begin{enumerate} 2054 \item $W^s$ is positively invariant ($\varphi_t(W^s)\subseteq W^s$ for $t \geq 0$). 2055 2056 $W^u$ is negatively invariant ($\varphi_t(W^u)\subseteq W^u$ for $t \leq 0$). 2057 2058 \item $W^s$ is tangential to $E^s$ at the origin. $W^u$ is tangential to $E^u$ at the origin. 2059 2060 \item $\lim_{t\to\infty} \varphi(t,p) = 0$ for $p\in W^s$ and $\lim_{t\to-\infty} \varphi(t,p)=0$ for $p\in W^u$. 2061 \end{enumerate} 2062 \end{thm} 2063 2064 \begin{rem} 2065 If $f$ is $C^r$ for $r \geq 1$ (or analytic) then $\psi$ and $\phi$ are also $C^r$ (or analytic). 2066 \end{rem} 2067 2068 \begin{exam} 2069 Given 2070 $$\begin{aligned} 2071 \dot x &= -x\\ 2072 \dot y &= y-x^2. 2073 \end{aligned}$$ 2074 Draw the phase portrait. 2075 We first come to the obvious conclusions 2076 $$\begin{aligned} 2077 E^s = x\text{-axis}\\ 2078 E^u = y\text{-axis} 2079 \end{aligned}$$ 2080 $$\begin{aligned} 2081 W^s &= ?\\ 2082 W^u &= y\text{-axis}. 2083 \end{aligned}$$ 2084 So how do we find $W^s$. We choose the following Ansatz for the stable manifold: 2085 $$y = \psi(x)=a_2x^2+a_3x^3+\dots$$ 2086 It must be tangential to the $x$-axis. So we drop the first two terms $a_0$ and $a_1x$. 2087 $$\dot y = \psi'(x)\dot x$$ 2088 Pluggin it in and using the system from before, we get 2089 $$(a_2-1)x^2+\sum_{k=3}^\infty a_kx^k=\left(\sum_{k=2}^\infty ka_kx^{k-1}\right)(-x).$$ 2090 Comparing coefficients gives us: 2091 $$\begin{aligned} 2092 a_2-1 &=-2a_2\\ 2093 a_k &= -ka_k \text{ for } k \geq 3 2094 \end{aligned}$$ 2095 Therefore $a_2 = \reci3$ and $a_k = 0$ for $k\geq 3$. 2096 \end{exam} 2097 2098 \begin{defin}[Global mainfolds] 2099 Global stable manifold: $S = \bigcup_{t \leq 0} \varphi_t(W^s)$\\ 2100 Global unstable manifold: $U=\bigcup_{t\geq 0}\varphi_t(W^u)$. 2101 \end{defin} 2102 2103 \begin{prop} 2104 The global stable and unstable manifolds are invariant (meaning $\varphi_t(S)\subseteq S$ for all $t \in \mathbb{R}$ and $\varphi_t(U)\subseteq U$ for all $t \in \mathbb{R}$) and 2105 $$\lim_{t\to \infty}\varphi(t,p)=0$$ 2106 for $p \in S$ and 2107 $$\lim_{t\to-\infty}\varphi(t,p) = 0$$ 2108 for $p\in U$. 2109 \end{prop} 2110 2111 \begin{exam} 2112 The system 2113 $$\begin{aligned} 2114 \dot x &=-x-y^2\\ 2115 \dot y &= y+x^2 2116 \end{aligned}$$ 2117 is reversible with respect to the line where $x = y$ (since we can swap the roles of $x$ and $y$ without changing the system). 2118 $$J(x,y) = \mattwo{-1}{-2y}{2x}{1}$$ 2119 $$J(0,0)=\matdiagtwo{-1}1$$ 2120 $$J(-1,-1)=\mattwo{-1}{2}{-2}{1}$$ 2121 $S$ and $U$ intersect in a homoclinic loop. 2122 \end{exam} 2123 2124 \subsection{Center manifold} 2125 2126 Given 2127 $$\begin{aligned} 2128 \dot x &= xy+x^3\\ 2129 \dot y &= -y-2x^2 2130 \end{aligned}$$ 2131 we get the Jacobian matrix at the origin 2132 $$J = \matdiagtwo{0}{-1}.$$ 2133 Since $\sigma(J) = \{0,-1\}$ the Jacobian matrix is not hyperbolic and 2134 $$\begin{aligned} 2135 E^s&= y-\text{axis}\\ 2136 E^c&= x-\text{axis}\\ 2137 E^u&= \{0\}. 2138 \end{aligned}$$ 2139 2140 Setting $x \in \R^c, y \in \R^{s+u}$ where $c+s+u=n$, we get 2141 $$\begin{aligned} 2142 \dot x &= Ax+f(x,y) \text{ with } f(0,0) = 0, f'(0,0)=0\\ 2143 \dot y &= By+g(x,y) \text{ with } g(0,0) = 0, g'(0,0)=0, 2144 \end{aligned}$$ 2145 where $(0,0) \in U$ and $(f,g)\in C^r(U,\Rn)$. The Jacobian matrix at $(0,0)$ is 2146 $$J=\matdiagtwo{A}{B}$$ 2147 Assume $\Re \lambda = 0$ for all $\lambda \in \sigma(A)$ and $\Re \lambda \neq 0$ for all $\lambda \in \sigma(B)$. 2148 2149 \begin{thm}[Center manifold] 2150 There exists a neighborhood $\tilde U$ of the origin and a function $\psi \in C^r(E^c\cap \tilde U,E^s\oplus E^u)$ for which 2151 \begin{enumerate} 2152 \item $W^c = \{(x,\psi(x)): x\in E^c\cap \tilde U\}$ is locally invariant. 2153 2154 \item $\psi(0) = 0, \psi'(0) = 0$ (meaning $W^c$ is tangential to $E^c$ at the origin. 2155 2156 \item $B\psi(x)+g(x,\psi(x)) = \psi'(x)(Ax+f(x,\psi(x)))$ (this helps finding $\psi$) 2157 2158 \item The system 2159 $$\begin{aligned} 2160 \dot x &= Ax +f(x,\psi(x))\\ 2161 \dot y &= By 2162 \end{aligned}$$ 2163 is locally topologically equivalent to the original system at the origin. (Generalization of the Hartman-Grobman Theorem to the nonhyperbolic case.) 2164 \end{enumerate} 2165 \end{thm} 2166 2167 \begin{rem} 2168 Differentiating $y(t)=\psi(x(t))$ with respect to the time, one gets 3). 2169 \end{rem} 2170 2171 \paragraph{Bad news:} 2172 The center manifold is not unique, and need not be as smooth as $(f,g)$. (E.g.\ for analytic $(f,g)$ there can be a continuum of center manifolds, and only one of them is analytic. Or even none of them is analytic!) 2173 2174 \paragraph{Good news:} 2175 The Taylor series expansion of $\psi$ is unique (as far as it exists), and can usually be computed. All orbits near the origin that stay near the origin for all time $t\in\R$ are contained in every center manifold. 2176 2177 \begin{exam} 2178 Given 2179 $$\begin{aligned} 2180 \dot x &= xy+x^3\\ 2181 \dot y &= -y-2x^2 2182 \end{aligned}$$ 2183 approximate the center manifold with the ansatz 2184 $$y=\psi(x)=a_2x^2+a_3x^3+\dots$$ 2185 The linear term is missing, because the center manifold must be tangential to the center subspace. By the invariance of $W^c$, $y=\psi'(x)x$. 2186 $$-\sum_{k=2}^\infty a_kx^k-2x^2=\left(\sum_{k=2}^\infty ka_kx^{k-1}\right)\left(x\sum_{k=2}^\infty a_kx^k+x^3\right)$$ 2187 Comparing the coefficients of $x^2$, we get $$-a_2-2=0$$ 2188 or 2189 $$a_2=-2.$$ 2190 So we conclude that 2191 $$\psi(x)=-2x^2+O(x^3)$$ 2192 and 2193 $$\dot x = x(-2x^2+O(x^3))+x^3=-x^3+O(x^4).$$ 2194 So the trajectories on the center manifold tend to the origin. 2195 \end{exam} 2196 2197 \begin{exam} 2198 Given 2199 $$\begin{aligned} 2200 \dot x &= x^2y-x^5\\ 2201 \dot y &= -y+x^2, 2202 \end{aligned}$$ 2203 a similar analysis as above reveals 2204 $$y=\psi(x)=x^2+O(x^5)$$ 2205 so 2206 $$\dot x = x^4+O(x^5).$$ 2207 Hence, on any center manifold, the origin attracts for $x<0$ and repels for $x>0$. 2208 2209 \end{exam} 2210 2211 \subsection{Andronov--Hopf bifurcation} 2212 2213 \begin{exam} 2214 Given 2215 $$\begin{aligned} 2216 \dot x &= \alpha x-y-x(x^2+y^2)\\ 2217 \dot y &= x+\alpha y - y(x^2+y^2), 2218 \end{aligned}$$ 2219 where $\alpha \in \R$ is a parameter. 2220 The Jacobian at the origin is 2221 $$\mattwo\alpha{-1}1\alpha$$ 2222 with the eigenvalues $\alpha \pm i$. In polar coordinates, the system is 2223 $$\begin{aligned} 2224 \dot r &= r(\alpha-r^2)\\ 2225 \dot \theta &= 1. 2226 \end{aligned}$$ 2227 \begin{itemize} 2228 \item If $\alpha < 0$: The solutions spiral counter clockwise to the origin. It is linearly stable. It approaches the origin at an exponential speed. 2229 2230 \item If $\alpha = 0$: The solutions spiral counter clockwise to the origin much slower. 2231 2232 \item If $\alpha > 0$: We get a stable limit cycle of radius $\sqrt{\alpha}$. 2233 \end{itemize} 2234 Supercritical Andronov--Hopf bifurcation. 2235 \end{exam} 2236 2237 \begin{exam} 2238 Given 2239 $$\begin{aligned} 2240 \dot x &= \alpha x-y+x(x^2+y^2)\\ 2241 \dot y &= y + \alpha y + y(x^2+y^2) 2242 \end{aligned}$$ 2243 or 2244 $$\begin{aligned} 2245 \dot r &= r(\alpha + r^2)\\ 2246 \dot \theta &= 1. 2247 \end{aligned}$$ 2248 \begin{itemize} 2249 \item If $\alpha < 0$: We get an unstable limit cycle of radius $\sqrt{-\alpha}$. 2250 2251 \item If $\alpha = 0$: The solutions spiral counter clockwise away from the origin much slower than for $\alpha>0$. 2252 2253 \item If $\alpha > 0$: The solutions spiral counter clockwise away from the origin. It is linearly stable. It leaves the origin at an exponential speed. 2254 \end{itemize} 2255 Subcritical Andronov--Hopf bifurcation. 2256 \end{exam} 2257 2258 \begin{exam} 2259 Given 2260 $$\begin{aligned} 2261 \dot x &= \alpha x - y\\ 2262 \dot y &= x+\alpha y 2263 \end{aligned} \quad\text{ or in polar form }\quad\begin{aligned} 2264 \dot r &= \alpha r\\ 2265 \dot \theta &= 1. 2266 \end{aligned}$$ 2267 \begin{itemize} 2268 \item If $\alpha < 0$: The solutions spiral counter clockwise to the origin. It is linearly stable. It approaches the origin at an exponential speed. 2269 2270 \item If $\alpha = 0$: The origin is a center. 2271 2272 \item If $\alpha > 0$: The origin repells. 2273 \end{itemize} 2274 Vertical Andronov--Hopf bifurcation. 2275 \end{exam} 2276 2277 \begin{thm} 2278 Let $U \subseteq \R^2$ be open and 2279 $$\dot x(t) = f_\alpha(x(t))$$ 2280 be a familiy of ODEs, where $\alpha \in (-\epsilon, \epsilon)$ for some $\epsilon > 0$. We assume that 2281 $$(\alpha,x) \mapsto f_\alpha(x)$$ 2282 is $C^1$ with respect to $\alpha$ and $C^3$ with respect to $x$. Assume $f_\alpha(0) = 0$ for all $\alpha \in (-\epsilon, \epsilon)$. Let 2283 $$\mu(\alpha)\pm i\omega(\alpha)$$ 2284 be the eigenvalues of the Jacobian matrix at the origin, 2285 where $\mu(0)=0$ and $\omega(0) > 0$. 2286 Assume $\mu'(0)\neq 0$ (transverality) and $L_1\neq 0$ (nondegeneracy), where $L_1$ is the first focal value (the computation is explained in the next lemma). Then there are invertible coordinate and parameter changes and also time reparametrisation transforming the 2287 $$\dot x(t)=f_\alpha(x(t))$$ 2288 to 2289 $$d_t y(t)=\mattwo{\beta}{-1}{1}{\beta}y\pm|y|^2y+O(|y|^4),$$ where $\pm$ is the sign of $L_1$. Furthermore, omitting $O(|y|^4)$ leads to a family that is locally topologically equivalent near the origin. 2290 \begin{itemize} 2291 \item $L_1<0$: supercritical Andronov--Hopf (stable limit cycle) 2292 2293 \item $L_1>0$: subcritical Andronov--Hopf (unstable limit cycle) 2294 \end{itemize} 2295 \end{thm} 2296 2297 \begin{proof} 2298 e.g. Kuznetsov: Elements of bifurcation theory (Section 3.5) 2299 \end{proof} 2300 2301 \begin{lem} 2302 Given 2303 $$\begin{aligned} 2304 \dot x &= f(x,y)=-\omega y+\sum_{i+j=2} f_{ij}x^iy^j\\ 2305 \dot y &= g(x,y)=\omega x+\sum_{i+j=2} g_{ij}yx^iy^j. 2306 \end{aligned}$$ 2307 We define, $f_{ij}=\frac{1}{i!j!}\frac{\partial^{i+j}f}{\partial_x^i \partial_y^j}\Big|_{(x,y)=(0,0)}$ and $g_{ij}=\frac{1}{i!j!}\frac{\partial^{i+j}g}{\partial_x^i \partial_y^j}\Big|_{(x,y)=(0,0)}$. 2308 Then 2309 $$L_1 = 3f_{30}+f_{12}+3g_{03}+g_{21}+\reci{\omega}[f_{11}(f_{20}+f_{02})-g_{11}(g_{20}+g_{02})+2f_{02}g_{02}-2f_{20}g_{20}]$$ 2310 (Bautin 1949). 2311 \end{lem} 2312 2313 Other names for the focal value 2314 \begin{itemize} 2315 \item Lyapunov value 2316 2317 \item Lyapunov coefficient 2318 2319 \item Lyapunov constant 2320 2321 \item Lyapunov quantity 2322 2323 \item Poincar\'e--Lyapunov coefficient 2324 2325 \item Poincar\'e constant 2326 2327 \item Bautin constant 2328 2329 \item Fokusgröße 2330 2331 \item Strudelgröße 2332 \end{itemize} 2333 2334 \begin{exam}[Brusselator] 2335 Given 2336 $$0 \stackrel{\stackrel{\kappa_1}{\rightarrow}}{\stackrel{\leftarrow}{\kappa_2}} X \stackrel{\kappa_3}{\rightarrow} Y$$ 2337 $$2X+Y\rightarrow^{\kappa_4}3X$$ 2338 where $\kappa_1,\kappa_2,\kappa_2,\kappa_2 > 0$ are parameters. We get 2339 $$\begin{aligned} 2340 \dot x&= \kappa_1-(\kappa_2+\kappa_3)x+\kappa_4x^2y\\ 2341 \dot y &= \kappa_3x-\kappa_4x^2y 2342 \end{aligned}$$ 2343 where $x,y\geq 0$. Then the 2344 positive equilibrium is $(x^*,y^*) = \left(\frac{\kappa_1}{\kappa_2},\frac{\kappa_2\kappa_3}{\kappa_1\kappa_4}\right)$. The Jacobian at this point is 2345 $$J=\mattwo{-\kappa_2+\kappa_3}{\frac{\kappa_1^2\kappa_4}{\kappa_2^2}}{-\kappa_3}{-\frac{\kappa_1^2\kappa_4}{\kappa_2^2}}$$ and also 2346 $$\tr J=-\kappa_2+\kappa_3-\frac{\kappa_1^2\kappa_4}{\kappa_2^2}$$ 2347 $$\det J=\frac{\kappa_1^2\kappa_4}{\kappa_2} > 0.$$ 2348 Fix $\kappa_1,\kappa_2,\kappa_4$ and keep only $\kappa_3$ as a parameter 2349 $$\mu(\kappa_3) = \Re \lambda_{12}(\kappa_3) = \half1\left(\kappa_3-\left(\kappa_2+\frac{\kappa_1^2\kappa_4}{\kappa_2^2}\right)\right)$$ 2350 $$\mu'(\kappa_3) = \half1$$ 2351 so the transversality holds. 2352 \begin{enumerate} 2353 \item Shift the equilibrium to the origin 2354 $$\tilde x(t) = x(t)-x^*$$ 2355 $$\tilde y(t) = y(t)-y^*$$ 2356 $$\begin{aligned} 2357 &\dot{\tilde x} = \dot x = \kappa_1-(\kappa_2+\kappa_3)(\tilde x+x^*)+\kappa_4(\tilde x+x^*)^2(\tilde y+y^*)\\ 2358 &\dot{\tilde y} = \dot y = \kappa_3(\tilde x+x^*)-\kappa_4(\tilde x+x^*)^2(\tilde y+y^*). 2359 \end{aligned}$$ 2360 2361 \item Eliminate $\kappa_3$ by $\tr J = 0$. 2362 $$J = \mattwo abc{-a}.$$ 2363 We define 2364 $$T=\mattwo10{-\frac a\omega}{-\frac b\omega}$$ 2365 so 2366 $$T^{-1} = \mattwo10{-\frac ab}{-\frac\omega b}.$$ 2367 Therefore 2368 $$TJT^{-1} = \mattwo0{-\omega}\omega0.$$ 2369 In general $\dot x = f(x), f(0)=0$. We define $u = Tx$ where $T \in \R^{n\times n}$ is invertible. So 2370 $$\dot u = T\dot x = Tf(x) = Tf(T^{-1}u).$$ 2371 In this case the Jacobian at $u = 0$ is $Tf'(0)T^{-1}$.\\ 2372 Back to the Brusselator: 2373 $$\vectwo uv = T\vectwo{\tilde{x}}{\tilde{y}}$$ 2374 $$\dot u = -\omega v+\left(\frac{\kappa_2^2}{\kappa_1}-\frac{\kappa_1\kappa_4}{\kappa_2}\right)u^2-2\sqrt{\kappa_2\kappa_4}uv-\kappa_4u^3-\frac{\kappa_2^2}{\kappa_1^2}\omega u^2v$$ 2375 $$\dot v = \omega u.$$ 2376 So we get 2377 $$L_1 = -3\kappa_4+\reci\omega(-2\sqrt{\kappa_2\kappa_4})\left(\frac{\kappa_2^2}{\kappa_1}-\frac{\kappa_1\kappa_4}{\kappa_2}\right)=-\frac{1}{\kappa_1^2}(2\kappa_2^3+\kappa_1^2\kappa_4),$$ where we used 2378 $\omega = \sqrt{\det J}=\kappa_1\sqrt{\frac{\kappa_4}{\kappa_2}}$. Hence, $L_1<0$, and the Andronov--Hopf bifurcation is supercritical. Therefore for $\kappa_3$ slightly larger than $\kappa_2+\frac{\kappa_1^2\kappa_4}{\kappa_2^2}$, the repelling positive equilibrium is surrounded by a stable limit cycle. 2379 \end{enumerate} 2380 \end{exam} 2381 In general, we have 2382 $$\dot x(t) = f_\alpha(x(t))$$ 2383 where $x(t) \in \R^n, \alpha \in (-\epsilon, \epsilon), f_\alpha(0)=0$ and 2384 $$\sigma(f_\alpha'(0))=\{\mu(\alpha)\pm \omega(\alpha)i, \lambda_3(\alpha),\dots, \lambda_n(\alpha)\},$$ 2385 where $\mu(0)=0, \omega(0)>0, \mu'(0)\neq 0, \Re \lambda_j(0)\neq 0 \, \forall j \in \jbr{3,n}$. At $\alpha = 0$ there is a 2-dim center manifold. Figure out the behavior there. A similar theorem holds as in 2d, and a recipe for computing the first focal value is available (but not easy). 2386 2387 \paragraph{Back to 2d:} 2388 What if $L_1 = 0$? Then further work is needed to answer the stability of the equilibrium at the critical parameter value. One has to compute $L_2$ and the formula is roughly one page long and uses up to fifth order derivatives. 2389 2390 \begin{exam} 2391 Given 2392 $$\begin{aligned} 2393 \dot r &=r(\alpha_1+\alpha_2r^2-r^4)\\ 2394 \dot \theta &= 1. 2395 \end{aligned}$$ 2396 \begin{itemize} 2397 \item If $\alpha_1 < 0$ and $\alpha_2 > 2\sqrt{-\alpha_1}$ then there are 2 limit cycles (the outer one is stable, the inner one is unstable). 2398 2399 \item If $\alpha_1<0$ and $\alpha_2 = 2\sqrt{-\alpha_1}$, then there is a semistable limit cycle (it attracts solutions from the outside, but repels in the inside). 2400 2401 \item If $L_2\neq 0$ then we talk about a Bautin bifurcation, where, among other things, the above-described fold bifurcation of limit cycles occurs (with a semistable limit cycle at the critical value). 2402 \end{itemize} 2403 \end{exam} 2404 2405 \section{Part 2} 2406 2407 \subsection{Ideas from the General theory of dynamical systems} 2408 2409 Dynamical systems theory is understanding the long-term behavior of a dynamical system. We will focus on (autonomous) deterministic system. For the whole chapter $X$ is the statespace of a system and all $x\in X$ are the possible states of the system. 2410 2411 \subsubsection{Continuous vs. discrete time DS} 2412 2413 In the continuous case a flow is defined like the following: 2414 2415 \begin{defin} 2416 \item A flow $\phi =(\phi_t)_{t\in\R}$ in $X$ is a family of maps $\phi_t:X\to X$ with $t\in \R$, satisfying $\phi_{s+t}=\phi_s\circ\phi_t$. This is a group of transformations. The elements are invertible, because $\phi_t\circ\phi_{-t}=id_X$. We say, $\phi_t(x)$ is the state at time $t$ where $x$ is the start state. 2417 \end{defin} 2418 2419 For simplicity, we use the notation $(\phi_t)_t$ for $(\phi_t)_{t\in \R}$. 2420 2421 \begin{defin} 2422 A semiflow on $X$ is a family $\phi=(\phi_t)_{t\geq0}$ of maps which satisfies $\phi_{s+t}=\phi_s\circ\phi_t$ for $s,t\geq 0$ and $\phi_0 = id_X$. The maps need not be invertible. 2423 \end{defin} 2424 2425 We can define the same for discrete time systems. 2426 2427 \begin{defin} 2428 A flow is a family $(T_n)_{n\in\N}$ of maps $T_n:X\to X$ such that $T_{n+m}=T_n\circ T_m$ for all $m,n\in \N$. Then $T_n = \underbrace{T\circ\dots\circ T}_{n-\text{times}} =T^n$, where $T := T_1$. $T^0 = id_X$. 2429 \end{defin} 2430 2431 For simplicity, we use the notation $(\phi_n)_n$ for $(\phi_n)_{n\in \N}$. 2432 2433 \begin{exam} 2434 Maps on the interval/circle: 2435 \begin{enumerate} 2436 \item Circle rotation: Fix $\alpha\in\T$. Start at $e^{2\pi ix}$, where $x \in \T$. Rotate by $\alpha$ to get $e^{2\pi i (x+\alpha)}$. 2437 $$T:\T\to\T,\quad Tx = x+\alpha$$ 2438 2439 \item Angular doubling map: 2440 $$T:\T\to\T, \quad Tx = 2x$$ 2441 2442 \item Full logistic map: 2443 $$T:[0,1]\to[0,1], \quad Tx = 4x(1-x)$$ 2444 2445 \item Tent map: Linear interpolation of the points $(0,0),(0.5,1),(1,0)$. 2446 2447 \item Maps of the square/torus: 2448 \end{enumerate} 2449 \end{exam} 2450 2451 \subsubsection{Continuous time systems can also give you discrete systems: $(\phi_t)_{t\geq0}$ semiflows of $X$} 2452 2453 There are different possibilities to convert a continuous semiflow to a discrete flow. We show two of them. 2454 2455 \begin{enumerate} 2456 \item Fix a constant $\tau>0$ and consider the system at times $0,\tau, 2\tau, \dots$. 2457 $$x, \phi_\tau(x)=:Tx, \phi_{2\tau}(x)=:T^2x,\dots$$ 2458 2459 \item Poincare section: Let $Y\subseteq X$ be a submanifold of lower dimension such that $\forall y \in Y$ there is a $\tau(y)>0$ (minimal) such that $\phi_{\tau(y)}\in Y$. Then we define the Poincare map of $Y$ as 2460 $$T:Y\to Y, \quad Ty:=\phi_{\tau(y)}\in Y.$$ 2461 \end{enumerate} 2462 2463 Discrete time systems are Poincare maps $T: Y\to Y$. Let $\tau:Y\to[\epsilon,\infty)$. Define a semiflow on: 2464 $$X=\{(y,s):y\in Y,s < \tau(y)\}$$ 2465 $$\phi_t(y,s):=\begin{cases} 2466 (y,s+t) & s+t < \tau(y)\\ 2467 (Ty,t-(\tau(y)-s)) & \tau(y) \leq t+s < \tau(Ty)\\ 2468 (T^2y,t-(\tau(Ty)-s)) & \tau(Ty) \leq t+s < \tau(T^2y)\\ 2469 \vdots 2470 \end{cases}$$ 2471 In this case, the semiflow starts at $(y,s)$. Then it moves upwards right before it reaches $(y,\tau(y))$. Then it jumps to $(Ty,0)$ and moved upwards. Right before it reaches $(Ty, \tau(Ty))$, it jumps to $(T^2y,0)$ and so on. 2472 2473 \subsubsection{Relations between systems} 2474 2475 \begin{defin} 2476 Two maps $T:X\to X$ and $S:Y\to Y$ are conjugate, if there is a bijective $\eta:X\to Y$, such that 2477 $$\eta \circ T=S\circ \eta.$$ 2478 This means that $\eta$ is just a change of coordinates and $S$ represents $T$ in these new coordinates.\\ 2479 \\ 2480 If $\eta$ is just onto, then $\eta$ is a semi-conjugacy (factor map). 2481 \end{defin} 2482 2483 %\begin{exam} 2484 % $T(a,b) := (Sa,H(a,b))$ 2485 % $$\eta(a,b) := a$$ 2486 %\end{exam} 2487 2488 2489 \begin{exam} 2490 Let $X := \R^2, Y := \R$. Now we define maps 2491 $$\begin{array}{ll} 2492 T:X \to X & T(a,b) := (2a,3b)\\ 2493 S:Y \to Y & S(a) := 2a\\ 2494 \eta:X\to Y & \eta(a,b) := a. 2495 \end{array}$$ 2496 Here we can see that 2497 $$\eta(T(a,b)) = \eta(2a,3b) = 2a$$ 2498 while 2499 $$S(\eta(a,b)) = S(a) = 2a$$ 2500 so we conclude that 2501 $$\eta \circ T = S \circ \eta.$$ 2502 Since $\eta$ is surjective, we know that it is a semi-conjugacy, but due to the lack of injectivity, it is not a conjugacy. 2503 \end{exam} 2504 2505 \subsubsection{Example: Mathematical Billiards "table" $Q \subseteq \R^2$, open} 2506 2507 Let $Q$ be bounded by $C^3$ curves. We assume that there is no friction and the reflections are elastic. The state of a moving billiard sphere can be represented by an element of $Q\times S^1$ (position and direction). To make sure that the flow is continuous with respect to the time even during a reflection, we have to identify the incoming and outgoing directions on the boundary. It can have very complicated dynamics. 2508 2509 \paragraph{Poincare sections:} 2510 Let $Y = \partial Q\times S^1$ be the set of the states at the boundaries. Then we can define the collision map $T:Y\to Y$. So if the system starts at $x \in Y$ then $Tx$ is the first point where it hits the boundary. 2511 2512 \begin{rem} 2513 Such a system is usually not continuous with respect to the starting condition, because a small change of the starting position might change the fact that the flow hits a certain obstacle. 2514 \end{rem} 2515 2516 \subsubsection{Questions and structure} 2517 2518 \begin{defin} 2519 For a given $x\in X$ we define the following: 2520 \begin{itemize} 2521 \item Discrete case: Let $T:X\to X$ be a map. Then we define $(T^nx)_n$ to be the forward orbit. 2522 2523 \item Continuous case: Let $(\phi_t)_{t\geq 0}$ be a semiflow. Then we define $(\phi_tx)_{t\geq0}$ to be the forward orbit. 2524 \end{itemize} 2525 \end{defin} 2526 2527 \begin{defin} 2528 For $A\subseteq X$ and $T:X\to X$ we use the notation $T^{-n}(A) := (T^n)^{-1}(A)$ for the preimage. 2529 \end{defin} 2530 2531 Using these definitions, we can ask some questions for $A\subseteq X$: 2532 2533 \begin{itemize} 2534 \item For given $x\in X$ and $n\in\N$ is $T^nx \in A$ or equivalently, $x \in T^{-n}A$? 2535 2536 \item Is there a $k\in\N$ such that $T^kx\in A$ or equivalently, $x \in \bigcup_{k\geq 1}T^{-k}A$? 2537 2538 \item For $x \in A$ are there infinitely many $k\geq1$ such that $T^kx\in A$? (Recurrence) 2539 \end{itemize} 2540 2541 \paragraph{Coarse structure:} 2542 2543 Sometime subsets have useful properties. 2544 2545 \begin{defin} 2546 A set $A\subseteq X$ is called forward invariant, if $TA\subseteq A$. 2547 \end{defin} 2548 2549 In such a case, we can just study $T|_A:A\to A$. 2550 2551 \begin{defin} 2552 A set $A\subseteq X$ is called completely invariant, if $TA\subseteq A$ and $TA^c\subseteq A^c$. 2553 \end{defin} 2554 2555 \paragraph{Topological dynamics:} 2556 Let $X$ be a (often compact) topological space. We can ask some questions. 2557 2558 \begin{itemize} 2559 \item Does $T^nx$ converge to $y$? Does $y\in \omega(x):=\{\text{Limit points of } (T^nx)_n\}$? 2560 2561 \item Does $d_X(T^nx,T^ny)$ approach $0$? 2562 2563 \item Is $x\in\omega(x)$? ($x$ recurrent point) 2564 \end{itemize} 2565 Usually $A$ should be open or closed. We want forward invariant sets to be closed. 2566 In case of a conjugacy, we prefer a topological conjugacy which is additionally a homeomorphism. In the case of differentiable dynamics the set $X$ is a $C^r$-manifold. In the case of measurable dynamics $X$ is a measure space (Ergodic Theory). 2567 2568 \subsection{Circle rotations} 2569 2570 Let $X = \T$. We define $A\subseteq \T$ to be an arc (connected subset). We use $\lambda$ as the length of the arc. Let $\alpha \in [0,1]$, and 2571 $$T:\T\to \T, \quad Tx:=x+\alpha.$$ 2572 Obviously, $T$ is invertible and isometric. 2573 2574 \subsubsection{Rational rotation} 2575 2576 We assume that $\alpha = \frac pq \in \Q$. Then 2577 $$T^q x=x+q\frac pq=x.$$ 2578 2579 \begin{prop} 2580 Every orbit is $q$-periodic. So it is recurrent. 2581 \end{prop} 2582 2583 \begin{rem} 2584 We can predict that if $y$ is in a neighborhood of $x$ then $T^ny$ is close to $T^nx$. 2585 \end{rem} 2586 2587 \subsubsection{Irrational Rotations} 2588 2589 We assume that $\alpha \notin \Q$. In this case, every orbit $(T^nx)_{n\geq 0}$ is an infinite set. 2590 2591 \begin{prop} 2592 Every orbit is dense. 2593 \end{prop} 2594 2595 \begin{proof} 2596 We show that for all $\epsilon > 0$ the orbit $(T^nx)_n$ is $\epsilon$-dense, meaning that for every $a \in X$ there is a $n\in N$ such that $d(a,T^nx) < \epsilon$.\\ 2597 \\ 2598 Take $\epsilon > 0$ then by Bolzano Weierstraß there exist $m,n$, such that $0<d(T^mx,T^{m+n}x) < \epsilon$. Let $y := T^mx$ and $S:=T^n$. Then $d(y, Sy) < \epsilon$ and $(S^jy, S^{j+1}y) < \epsilon$ for every $j$. So $(S^jy)_j$ is $\epsilon$-dense. Since $(S^jy)_j\subseteq (T^nx)_n$, we know that $(T^nx)_n$ is also $\epsilon$-dense. 2599 \end{proof} 2600 2601 \begin{cor} 2602 Every $x$ is recurrent. 2603 \end{cor} 2604 2605 \begin{rem} 2606 We predict that there is no small open set containing the orbit of $y$. 2607 \end{rem} 2608 2609 \subsubsection{Linear flows on the $2$-torus $\T^2$} 2610 Given 2611 $$\begin{aligned} 2612 \dot x&=\omega_1\\ 2613 \dot y&=\omega_2, 2614 \end{aligned}$$ 2615 where $\omega_1,\omega_2 > 0$. Then 2616 $$(\phi_t(x,y))=(x+t\omega_1,y+t\omega_2).$$ 2617 Let $Y:= \{0\}\times \T$. This is a global Poincare section, because every flow line meets $Y$ infinitely often. Let $T:Y\to Y$ be the Poincare map. So $T(0,y) = (0,y+\alpha)$, where $\alpha=\frac{\omega_2}{\omega_1}$. So $T$ corresponds to the circle rotation by $\alpha$. 2618 2619 \begin{prop} 2620 The following statements hold. 2621 \begin{enumerate} 2622 \item If $\frac{\omega_2}{\omega_1} \in \Q$ then every $\phi$-orbit is periodic. 2623 2624 \item If $\frac{\omega_2}{\omega_1} \notin \Q$ then every $\phi$-orbit is dense in the torus. 2625 \end{enumerate} 2626 \end{prop} 2627 2628 \begin{cor} 2629 Every $\phi$-orbit is recurring. 2630 \end{cor} 2631 2632 \subsubsection{Some notions of topological dynamics} 2633 2634 \begin{defin} 2635 A map $T$ on a topological space $X$ is called topologically transitive if it has a dense orbit, meaning that there is an $x\in X$ such that $(T^nx)_n$ is dense. 2636 \end{defin} 2637 This means that under certain conditions, we can go from any open set to any other open set. So all orbits are dense. In this case there is no closed forward invariant set other than $\emptyset$ and $X$ 2638 2639 \begin{defin} 2640 IThere is no closed forward invariant set other than $\emptyset$ and $X$ then the system $T$ is called minimal. 2641 \end{defin} 2642 2643 \subsubsection{Distribution of orbits} 2644 2645 Let $X = \T$, $\alpha \in \R\setminus\Q$ and $Tx=x+\alpha$. Let $A\subseteq \T$ be an arc, consisting of more than one point. Then each orbit intersects $A$. The question is, how many times does the state land in $A$? Let $S_n:\T\to \R$ with 2646 $$S_n(A):=\sum_{k=0}^{n-1}1_A\circ T^k.$$ 2647 Then 2648 $$S_n(A)(x)=1_A(x)+1_A(Tx)+\dots+1_A(T^{n-1}x)$$ 2649 is the number of visits (occupation time) of $(T^kx)_{k=0}^{n-1}$. The relative frequency of visits can be calculated, using 2650 $$\reci nS_n(A).$$ 2651 2652 \begin{prop}[Equidistribution of orbits] 2653 For all arcs $A\subseteq \T$, we get 2654 $$\limn\frac{S_n(A)(x)}n = \lambda(A),$$ 2655 where $\lambda(A)$ is the Lebesgue measure of $A$. This even converges uniformly in $x\in X$. 2656 \end{prop} 2657 2658 \begin{defin} 2659 We call the limit the asymptotic frequency of visits to $A$. 2660 \end{defin} 2661 2662 \begin{lem} 2663 If $A,B\subseteq X$ are arcs with $\lambda(B) < \lambda(A)$, then there is an $N_0\in\Ns$ such that 2664 $$S_{n+N}(A) > S_n(B)$$ 2665 for each $N\geq N_0$ and $n\in\N$. 2666 \label{Monotonicity} 2667 \end{lem} 2668 2669 \begin{proof} 2670 Since $\lambda(B)<\lambda(A)$ and all orbits are dense, there is $N_0 \in\Ns$ such that $T^{N_0}B\subseteq A$, hence $T^nx\in B$ implies $T^{n+N_0}x\in A$. Therefore 2671 $$S_n(B)\leq S_{n+N_0}(A) \leq S_{n+N}(A)$$ 2672 for all $N \geq N_0$. 2673 \end{proof} 2674 2675 Let 2676 $$\overline S(A) := \limsup_{n \to \infty} \reci nS_n(A)$$ 2677 and 2678 $$\underline S(A) := \liminf_{n \to \infty} \reci nS_n(A).$$ 2679 2680 \begin{lem} 2681 The following statements hold: 2682 \begin{enumerate} 2683 \item If $A,B$ are arcs with $\lambda(B) < \lambda(A)$, then 2684 $$\overline S(A) \geq \overline S(B)$$ 2685 on $\T$. 2686 2687 \item If $A_1,\dots,A_m$ are pairwise disjoint arcs, then 2688 $$\overline S\left(\bigcup_{j=1}^mA_j\right) \leq \sum_{j=1}^m \overline S(A_j).$$ 2689 2690 \item $\overline S(A) = 1-\underline S(A^c)$. 2691 \end{enumerate} 2692 \end{lem} 2693 2694 \begin{proof} 2695 We only provide proof for the first two statements. 2696 \begin{enumerate} 2697 \item We use lemma \ref{Monotonicity}. 2698 $$\overline S(B)=\limsup_{n\to \infty} \reci nS_n(B) \leq \limsup_{n\to\infty}\reci n S_{n+N_0}(A) = \limsup_{n\to\infty}\underbrace{\frac{n+N_0}n}_{\to1}\reci{n+N_0} S_{n+N_0}(A) = \overline S(A)$$ 2699 2700 \item Obviously we get 2701 $$S_n\left(\bigcup_{j=1}^mA_j\right) = \sum_{j=1}^mS_n(A_j)$$ 2702 for a disjoint union. So 2703 $$\limsup_{n\to\infty}\reci n\underbrace{S_n\left(\bigcup_{j=1}^mA_j\right)}_{=\sum_{j=1}^mS_n(A_j)} = \limsup_{n\to\infty}\sum_{j=1}^m\reci nS_n(A_j)\leq \sum_{j=1}^m\limsup_{n\to\infty}\reci nS_n(A_j) = \sum_{j=1}^m \overline S(A_j).$$ 2704 2705 \item Exercise 2706 \end{enumerate} 2707 \end{proof} 2708 2709 \begin{lem} 2710 If $A$ is an arc with $\lambda(A) = \reci k$, then $\overline S(A) \leq \reci {k-1}$. 2711 \end{lem} 2712 2713 \begin{proof} 2714 Take $k-1$ pairwise disjoint arcs $A_1,\dots,A_{k-1}$ of length $\reci{k-1}$ such that $X = A_1 \cup \dots \cup A_{k-1}$. By Lemma \ref{Monotonicity}, there is $N_j \in \Ns$ such that $S_{n+N}(A_j)\geq S_n(A)$ for all $N \geq N_j$. 2715 $$\sum_{j=1}^{k-1}S_{n+N}(A_j)\geq(k-1)S_n(A)$$ 2716 for all $N \geq \max_{j\in \jbr{k-1}} N_j =: \overline N$. The left side is 2717 $$S_{n+N}\left(\bigcup_{j=1}^{k-1}A_j\right)=S_{n+N}(\T)=n+N,$$ 2718 so we get 2719 $$\reci{k-1}\geq \frac{n}{n+N}\reci nS_n(A).$$ 2720 Letting $n$ approach infinity, we get 2721 $$\reci{k-1}\geq \overline S(A).$$ 2722 \end{proof} 2723 2724 \begin{proof}[Proof of proposition] 2725 Take any arc $A\subseteq X$, $\epsilon > 0$. Choose another arc $B\supseteq A$ such that 2726 $$\lambda(A)\leq\lambda(B)=\frac lk<\lambda(A)+\epsilon$$ 2727 with $k = k(\epsilon)>\reci\epsilon$. Then 2728 $$\overline S(A)\leq\overline S(B)=\overline S\left(\bigcup_{j=1}^lB_j\right)\leq \sum_{j=1}^l\overline S(B_j) \leq \frac l{k-1}=\frac lk\frac{k}{k-1} < (\lambda(A)+\epsilon)\frac k{k-1}$$ 2729 with $B=\bigcup_{j=1}^l B_j$, a disjoint union with $\lambda(B_j)=\reci k$ for $j \in\jbr{l}$. Letting $\epsilon$ approach $0$ and $k$ approach $\infty$, we get 2730 $$\overline S(A)\leq \lambda(A)$$ 2731 Also, $\underline S(A)\geq \lambda(A)$, because of $\overline S(A)=1-\underline S(A^c)$. We conclude that 2732 $$\underline S(A) = \overline S(A) = \lambda(A).$$ 2733 \end{proof} 2734 2735 \paragraph{An application:} 2736 Take $k\in\Ns$ which is not a power of $10$. Let $p\in\jbr{9}$. Consider $k^j$ where $j\in\Ns$. Let 2737 $$\sigma_n:=\#\{j\in\jbr{0,n-1}: \text{ the decimal expansion of } k^j \text{ starts with } p\}.$$ 2738 Then 2739 $$\limn\frac{\sigma_n}n =\log_{10}(p+1)-\log_{10}(p).$$ 2740 2741 \begin{exam} 2742 Let $k=2, n=10$ and $p = 1$. Then we take a look at the powers of $2$ up to $2^9$. 2743 $$1,2,4,8,16,32,64,128,256,512$$ 2744 The numbers $1,16$ and $128$ start with $1$, so 2745 $$\sigma_{10}=3.$$ 2746 \end{exam} 2747 2748 \begin{proof} 2749 The number $k^j$ starts with the digit $p$. This means there exists $l\in\N$ such that $k^j=p\cdot10^l+q$, where $0\leq q < 10^l$. We can write it like this: 2750 $$p = \frac{k^j}{10^l}$$ 2751 Doing some algebra, we get 2752 $$0<\log_{10}(p)=\log_{10}(k^j)-\log_{10}(10^l)= j\cdot\log_{10}k-l<\log_{10}(p+1)\leq1.$$ 2753 Obviously we can choose $l$ such that $j\cdot\log_{10}k-l$ lands in the interval $(0,1]$. Let $\alpha:=\log_{10}k\notin\Q$ and $T:\T\to\T$ with $Tx:=x+\alpha$. Then $T^jx=x+j\alpha$. By the proposition, we get 2754 $$\frac{\sigma_n}{n}=\frac{S_n(A_p)(0)}{n}\to \lambda(A_p).$$ 2755 \end{proof} 2756 2757 \subsubsection{More general circle maps} 2758 2759 Let $X = \T$, $\pi:\R\to \T$, $\pi(x) = x \pmod 1$. Let $T:\T\to\T$ be continuous (often a homeomorphism). Recall that rotations are defined such that $Tx = x+\alpha$. If $\alpha \in \Q$ then all orbits are periodic with the same periodicity. Otherwise all orbits are dense. 2760 \newline 2761 \newline 2762 Question: Can we classify rotations?\\ 2763 Recall $S$ and $T$ are topologically conjugate ($T\cong S$) if there is a homeomorphism $\eta:\T\to\T$ such that $\eta\circ T=S\circ \eta$. Equivalently $S = \eta \circ T\circ \eta^{-1}$. 2764 2765 \begin{defin} 2766 If $T$ has a periodic point, we define $\Per(T)$ to be the smallest $k\in\N$ such that there is a $x\in \T$ which is $k$-periodic. 2767 \end{defin} 2768 2769 \begin{hw} 2770 Show that if $S\cong T$ then $\Per(S)=\Per(T)$. This means that $\Per(T)$ is invariant under topologically conjugacy. Therfore if $\Per(S) \neq \Per(T)$, we can conclude that $S$ and $T$ are not topologically conjugate. 2771 \end{hw} 2772 2773 The question is: What happens if $T$ and $S$ are non-periodic? 2774 \newline 2775 \newline 2776 General $T$ can display more complicated dynamics. For example let 2777 $$\Delta_L(x):= Lx-x$$ 2778 be a displacement function where $L:\R\to\R$ satisfies $\pi\circ L = T \circ \pi$. In the case of the rotation, the displacement function is just $\alpha$ which is then $1$-periodic. 2779 2780 \begin{prop} 2781 If $T:\T\to\T$ is continuous, then there exists a continuous $L:\R\to\R$ with 2782 $$\pi\circ L=T\circ \pi.$$ 2783 \end{prop} 2784 2785 \begin{defin} 2786 Any such $L$ is a lift of $T$ to $\R$. 2787 \end{defin} 2788 2789 \begin{proof} 2790 The idea is to keep track of how many rounds the point has done. This number is then added to the position. 2791 \end{proof} 2792 2793 \begin{prop} 2794 If $T: \T\to\T$, then: 2795 \begin{enumerate} 2796 \item If $L$ is a lift of $T$ then $\{L+m:m\in\Z\}$ is the collections of all lifts. 2797 2798 \item $L(x+1)-L(x)$ is an integer independent of $x$ and $L$. 2799 \end{enumerate} 2800 \end{prop} 2801 2802 \begin{defin} 2803 For a given map $T$ we define 2804 $$\deg(T):=L(x+1)-L(x)$$ 2805 to be the degree of $T$. This does not depend on $x$. 2806 \end{defin} 2807 2808 \begin{rem} 2809 $\deg(T)$ counts how often $T$ maps around $\T$. 2810 \end{rem} 2811 2812 \begin{rem} 2813 $L(x+m)=L(x)+m\deg(T)$ 2814 \end{rem} 2815 2816 \begin{prop} 2817 Additionally: 2818 \begin{enumerate} 2819 \setcounter{enumi}{2} 2820 \item If $T$ is a homeomorphism of $\T$, then $L$ is a homeomorphism of $\R$ and $\deg(T)=\pm1$. 2821 \end{enumerate} 2822 \end{prop} 2823 2824 \begin{rem} 2825 The sign of the degree gives information about the orientation.\\ 2826 $\deg(T)=1$ means $T$ is orientation preserving (o.p.).\\ 2827 $\deg(T)=-1$ means $T$ is orientations reversing (o.r.). 2828 \end{rem} 2829 2830 \begin{prop} 2831 In addition: 2832 \begin{enumerate} 2833 \setcounter{enumi}{3} 2834 \item $L_\Delta(x) := L(x)-\deg(T)x$ is continuous, bounded, $1$-periodic on $\R$. 2835 2836 \item $L^m$ is a lift of $T^m$ for all $m\in\Z$. 2837 2838 \item If $S,T$ are orientation preserving homeomorphisms of $X$ with $S=\eta\circ T\circ \eta^{-1}$ and $L,H$ lifts of $T,\eta$, then $H\circ L\circ H^{-1}$ is a lift of $S$. 2839 \end{enumerate} 2840 \end{prop} 2841 2842 \begin{proof} 2843 Again, we only prove the first two statements, since the rest is easy to show. 2844 \begin{enumerate} 2845 \item If $L$ is a lift of $T$ then $\tilde L:=L+m$ ist also a lift. If $L,\tilde L$ are lifts then 2846 $$\pi\circ \tilde L = T\circ \pi=\pi\circ L.$$ Therefore $\tilde L(x)-L(x)\in\Z$ for all $x$. Since $\tilde L-L$ is continuous, $\tilde L-L$ is constant. 2847 2848 \item We easily see that 2849 $$\pi(L(x+1))=T(\underbrace{\pi(x+1)}_{=\pi(x)})=\pi(L(x)).$$ Therefore $L(x+1)-L(x)\in\Z$ is constant. 2850 \end{enumerate} 2851 \end{proof} 2852 2853 \begin{lem} 2854 Let $T$ be an orientation preserving homeomorphism of $\T$ with lift $L$. Then for $\Delta_L(x) := Lx-x$ we get 2855 $$\Delta_L(x)\leq \Delta_L(y)+1$$ 2856 for all $x,y\in\R$. 2857 \end{lem} 2858 2859 \begin{proof} 2860 Set $k:=\lfloor y-x\rfloor\in\Z$ and $\theta\in[0,1)$ such that $y=x+k+\theta$. Then 2861 $$\Delta_L(y)=L(y)-L(x+k)+L(x+k)-(x+k)+\underbrace{(x+k)-y}_{=-\theta\leq0} \leq \underbrace{L(y)-L(x+k)}_{\leq 1 \text{ since } y\in[x+k,x+k+1]}+\Delta_L(x+k)$$ 2862 \end{proof} 2863 2864 \begin{rem}[Recall:] 2865 If $T$ is a orientation preserving homeomorphism of $X$ with lift $L$, then 2866 $$\rho(L)(x):=\limn\frac{L^nx-x}n$$ 2867 exists in $\R$, is an integer and doesn't depend on $x$. So we define 2868 $$\rho(L):=\rho(L)(x)$$ 2869 and we get 2870 $$\rho(L+m)=\rho(L)+m$$ 2871 for all $m\in\Z$. 2872 \end{rem} 2873 2874 \begin{exam} 2875 Let $T:\T\to\T$ with $Tx=x+\alpha$ and $L:\R\to\R$ with $Lx=x+\alpha$. Then 2876 $$\rho(L)=\limn\frac{x+n\alpha-x}n = \alpha.$$ 2877 \end{exam} 2878 2879 So we can say that $\rho(L)$ describes the average rotation speed. 2880 2881 \begin{defin} 2882 We say that $\rho(L)$ is the rotation number of $L$. Also $\rho(T):=\pi(\rho(L))$ is the rotation number of $T$. 2883 \end{defin} 2884 2885 \begin{rem} 2886 $\rho(T^q)=q\rho(T)\pmod1$ 2887 \end{rem} 2888 2889 \begin{lem} 2890 If $(a_n)_{n\in\Ns}\subseteq\R$ are such that there exist $k\in\N,\kappa\in\R$ with 2891 $$a_{m+n}\leq a_m+a_{n+k}+\kappa\quad (*)$$ 2892 for every $m,n\in\Ns$, then the following limit exists: 2893 $$\limn \frac{a_n}n\in[-\infty,\infty)$$ 2894 \end{lem} 2895 2896 \begin{proof} 2897 We split this proof into three parts. 2898 \begin{enumerate} 2899 \item We show that we can assume wlog that $k=0$. Using $(*)$ with the switched roles $m \mapsto n, n\mapsto k, k \mapsto k$, we get 2900 $$a_{n+k}\leq a_n+a_{2k}+\kappa $$ 2901 for all $n\in\Ns$. Therefore 2902 $$a_{m+n}\leq a_m+a_{n+k}+\kappa \leq a_m+a_n+a_{2k}+\kappa$$ 2903 for all $n,m\in\Ns$. Setting $k=0$ and replacing $a_0+\kappa$ by $\kappa$, we get the result 2904 $$a_{m+n} \leq a_m+a_n\kappa.$$ 2905 2906 \item Now we show that 2907 $$\liminf_{n\to\infty}\frac{a_n}n\in\R.$$ 2908 By induction, we get 2909 $$a_n = a_{1+\dots+1} \leq na_1+(n-1)\kappa.$$ 2910 Therefore 2911 $$\left|\frac{a_n}{n}\right| \leq |a_1|+\frac{n-1}{n}|\kappa| \leq |a_1|+|\kappa|.$$ 2912 We showed that $\left(\frac{a_n}{n}\right)_n$ is bounded, so the limes inferior is real. 2913 2914 \item In the case $k=0$, let 2915 $$a:=\liminf_{n\to\infty}\frac{a_n}n\in\R.$$ 2916 Take $\epsilon > 0$, we show that 2917 $$\limsup_{n\to\infty}\frac{a_n}n\leq a+\epsilon.$$ 2918 Fix $n\in\N$ such that $\frac{a_n}n < a+\frac\epsilon3$ and $\frac\kappa n<\frac\epsilon3$. Any $l\geq n$ can be written as 2919 $$l=jn+r$$ 2920 with $j\in\N$, $r\in\jbr{0,n-1}$, then 2921 $$\frac{a_l}l=\frac{a_{n+\dots+n+r}}l\leq\underbrace{\frac{ja_n}l}_{j \leq \frac ln}+\frac{a_r}l+\frac{j\kappa}l\leq\frac{a_n}n+\underbrace{\frac{\max(a_1,\dots,a_{n-1})}l}_{l \text{ large}}+\frac\kappa n < a+\frac{\epsilon}{3}+\frac{\epsilon}3+\frac\epsilon3<a+\epsilon$$ 2922 if $l \geq l_0$. 2923 \end{enumerate} 2924 \end{proof} 2925 2926 \begin{proof}[Proof of Remark.] 2927 We want to show that $\rho(L)(x)=\limn\frac{L^nx-x}{n}$ exists and doesn't depend on $x$. 2928 \begin{enumerate} 2929 \item We claim that $\rho(L)(x)$ is independent of $x$. Since $L$ is a homeomorphism of $\R$ and a lift of a orientation preserving homeomorhpism, we know $L(x+1)=L(x)+1$. So 2930 $$|x-y|<1$$ 2931 implies 2932 $$|L^nx-L^ny|<1.$$ 2933 Hence, for $x,y\in(0,1]:$ 2934 $$\left|\frac{L^nx-x}n-\frac{L^ny-y}n\right|\leq\reci n(|L^nx-L^ny|+|x-y|)<\frac2n\to0,$$ 2935 since $\Delta_{L^n}(x)=L^nx-x$ is $1$ periodic on $\R$. Therefore, if the limit exists then it doesn't depend on the input. 2936 2937 \item Fix $x\in\R$, let $a_n:=L^nx-x$. We want to show that $\limn\frac{a_n}n\in\R$. Then 2938 $$a_{m+n}=L^{m+n}x-x=\underbrace{L^m(L^nx)-L^nx}_{\Delta_{L^m(y)}}+\underbrace{L^nx-x}_{=a_n},$$ 2939 where $y:=L^nx$. By the lemma, this is less than or equal to 2940 $$\Delta_{L^m}(x)+1+a_n=a_m+a_n+1$$ 2941 for all $m,n\in\Ns$. By the subadditivity lemma we have the limit 2942 $$\limn\frac{a_n}n\in[-\infty,\infty)$$ 2943 and it's also larger than $-\infty$. So 2944 $$\frac{a_n}n = \reci n\sum_{k=0}^{n-1}\underbrace{\Delta_L(T^kx)}_{\geq c > -\infty}\geq c > -\infty.$$ 2945 2946 \item Rest: Do it yourself. 2947 \end{enumerate} 2948 \end{proof} 2949 2950 \begin{rec} 2951 $T\cong S$ if they are topologically conjugate. That means that there is a homeomorphism $\eta:\T\to\T$ such that $\eta\circ T=S\circ \eta$. 2952 \end{rec} 2953 2954 \begin{rec} 2955 For periodic rotations, $\Per(T)$ is invariant: If $S\cong T$ then $\Per(S) = \Per(T)$. The converse is not true. 2956 \end{rec} 2957 2958 \begin{prop} 2959 Let $T,S: \T\to\T$ be orientation preserving homeomorphisms of $\T$, with $S=\eta\circ T\circ\eta^{-1}$, then $\rho(T)=\rho(S)$. So $\rho(T)$ is an invariant for topologically conjugacy. 2960 \end{prop} 2961 2962 \begin{exam} 2963 For all $\alpha,\beta \in (0,1]\setminus\Q$ with $\alpha \neq \beta$ and $\alpha \neq 1-\beta$ the corresponding rotations $T,S$ are not conjugate. 2964 \end{exam} 2965 2966 \begin{proof} 2967 Let $L$ and $H$ be lifts of $T$ and $\eta$. Then $H\circ L\circ H^{-1}$ is a lift of $S$. For $x\in\R$ 2968 $$\frac{(H\circ L\circ H^{-1})^nx-x}n=\frac{(H\circ L^n\circ H^{-1})x-x}n=\frac{H(L^n(H^{-1}x))-L^n(H^{-1}x)}n+\frac{L^n(H^{-1}x)-H^{-1}x}n+\frac{H^{-1}x-x}n$$ 2969 $$=\underbrace{\frac{\Delta_H(L^n(H^{-1}x))}n}_{\to0}+\frac{L^ny-y}n+\underbrace{\frac{\Delta_{H^{-1}}(x)}n}_{\to0} \to \rho(L).$$ 2970 So the rotation numbers coincide. 2971 \end{proof} 2972 2973 \begin{prop} 2974 If $T:\T\to\T$ is an orienation preserving homeomorphism, then $\rho(T) \in\Q$ if and only if $T$ has a periodic point. 2975 \end{prop} 2976 2977 \begin{proof} 2978 We show both directions. 2979 \begin{enumerate} 2980 \item $\Leftarrow:$ Suppose $T^qx=x$ for some $q\in\Ns$. Take a lift of $T$, then $L^qx=x+p$ for some $p\in\Z$. Then, $L^{mq}x = x+mp$ for all $m \in \N$. Hence 2981 $$\rho(L)=\lim_{m\to\infty} \frac{L^{mq}x-x}{mq}=\lim_{m\to\infty}\reci{mq}\sum_{k=0}^{m-1}\underbrace{(L^{(k+1)q}x-L^{kq}x)}_{=p}=\frac{mp}{mq}=\frac pq \in\Q.$$ 2982 2983 \item $\Rightarrow:$ Assume that $\rho(L)=\frac pq$ for some lift $L$ of $T$. Then 2984 $$\rho(L^q)=p\rho(L) = p\cdot\frac pq = p = 0 \pmod1$$ 2985 Therefore $\rho(T^q) = 0$. We show that $S:=T^q$ has a fixed point. We know that $\rho(S)=0$. Take a lift $L$ of $S$ with $L(0) \in [0,1)$. We have 2986 $$\Delta_L(x)=Lx-x\notin \Z$$ 2987 for $x \in \R$ (otherwise: $S(\pi(x))=\pi(L(x))=\pi(x+m)=\pi(x)$, so $S = id$, which has fixed points). Since 2988 $$\Delta_L(0)=L(0)-0=L(0)\in(0,1)$$ 2989 and $\Delta_L$ is continuous on $\R$, $0<\Delta_L<1$ on $\R$. By continuity on $[0,1]$ there is a 2990 $$0<\delta\leq \Delta_L(x)\leq (1-\delta)<1 \quad\forall x \in\R.$$ 2991 Then 2992 $$L^n0=L^n0-0 = \sum_{k=0}^{n-1}\underbrace{(L(L^k0)-L^k0)}_{\Delta_L(L^k0)}$$ 2993 for $n\in\Ns$. Then 2994 $$\frac{n\delta}n \leq \underbrace{\frac{L^n(0)-0}n}_{\to\rho(L)}\leq \frac{n(1-\delta)}n = 1-\delta<1.$$ 2995 Therefore $\rho(L) \neq 0 \pmod1$. This is a contradiction. 2996 \end{enumerate} 2997 \end{proof} 2998 2999 \subsubsection{Circle homeomorphisms with periodic points} 3000 3001 \begin{prop} 3002 Let $T:\T\to\T$ be an orientation preserving homeomorphism, $\rho(T)=\frac pq$ with $p,q$ relatively prime. Then, for every periodic point $x$ of $T$: 3003 \begin{enumerate} 3004 \item $x$ has minimal period $q$. 3005 3006 \item The ordering of $(x,Tx,\dots, T^{q-1}x)$ on $\T$ is the same as the ordering of $(x,Sx,\dots,S^{q-1}x)$ where $Sx:=x+\frac pq \pmod1$. 3007 \end{enumerate} 3008 \end{prop} 3009 3010 \begin{exam} 3011 Let $T$ be an orientation preserving homeomorphism with $\rho(T)=\frac23$. Let $z$ be a $3$-periodic point. Let $S:\T\to\T$ with $Sx=x+\frac23$. We observe the ordering $(z, Sz, S^2z)$ with $z\in \T$. Those are oriented clockwise. For the points $(z,Tz,T^2z)$ also have the same orientation. 3012 \end{exam} 3013 3014 \begin{exam} 3015 Suppose that $T$ has exactly one $2$-cycle: $\{x_1,x_2\}$, $Tx_1=x_2$ and $Tx_2=x_1$. So both are fixed points of $S:=T^2$. Without loss of generality we assume that $x_1 = 0$. Then for all $y$ there is an $\overline m\in\{1,2\}$ such that 3016 $$d(T^{2n}y,T^{2n}x_{\overline m}) \to 0$$ 3017 since $T$ is continuous: 3018 $$d(T^{2n+1}y,T^{2n+1}x_{\overline m}) \to 0.$$ 3019 So $d(T^ny,T^nx_{\overline m}) \to 0$ as $n\to\infty$. 3020 \end{exam} 3021 3022 \begin{thm} 3023 Let $T:\T\to\T$ be a orientation preserving homeomorphism with $\rho(T) = \frac pq$ with $\{x_1,\dots,x_M\}$ of $q$-periodic points, where $x_1,\dots,x_M$ are ordered on a circle. Then for all $m\in\jbr{1,M}$ there is $\overline m\in \{m,m+1\}\pmod M$ such that for all $y \in (x_m,x_{m+1})$ we get 3024 $$d(T^ny,T^nx_{\overline m}) \to 0.$$ 3025 \end{thm} 3026 3027 Let $C:=\{x:T^qx\}$ be closed. In the case of a rational rotation, $C = \T$. Sometimes $C$ consists of finitely many points. Sometimes $C$ is an interval. 3028 3029 \begin{lem} 3030 Let $J=[a,b]\subseteq\T$ a closed interval, $f:J\to J$ a homeomorphism, increasing with $f(y)\neq y$ for all $y\in(a,b)$ then for all $y \in (a,b)$ 3031 $$\limn f^n(y)=\begin{cases} 3032 a & \text{if } f(x)<x \text{ on } $(a,b)$\\ 3033 b & \text{ otherwise } 3034 \end{cases}$$ 3035 \end{lem} 3036 3037 \begin{proof} 3038 Case $f(x) < x$: Then $y>f(y)>f^2(y)>\dots$. This sequence is monotone and bounded, so it has a limit $z$. By continuity, we get $f(z) = z$ and $z=a$. The other case works similarly. 3039 \end{proof} 3040 3041 If we apply this to $T^q$, then for any $y\in\T\setminus C$ there is an $x\in C$ such that 3042 $$d(T^{mq}y,T^{mq}x)\to0.$$ 3043 By continuoity, we get 3044 $$d(T^{mq+r}x,T^{mq+r}y)\to0$$ 3045 for $r\in\jbr{1,q-1}$ and $m\to\infty$. 3046 3047 \begin{thm} 3048 For $T$ as above with $\rho(T)\in\Q$, there is a nonempty closed $C\subseteq \T$ of $q$-periodic points (same ordering as for rotation $S$). If $I$ is a maximal interval $\T\setminus C$, then there exists a $x\in \partial I\subseteq C$ such that for all $y\in I$ 3049 $$d(T^ny,T^nx)\to0.$$ 3050 \end{thm} 3051 3052 \begin{rec} 3053 The $\omega$-limit of $x$ is 3054 $$\omega(x):=\{z\in X: (k_n)_n: k_n\to\infty \text{ and } T^{k_n}x\to z\}.$$ 3055 \end{rec} 3056 3057 \begin{hw} 3058 If $T$ is continuous: 3059 \begin{enumerate} 3060 \item $\omega(x)$ is closed 3061 3062 \item $T\omega(x) \subseteq \omega(x)$ 3063 \end{enumerate} 3064 \end{hw} 3065 3066 3067 \begin{exam} 3068 In the theorem $\omega(x)=\{x,Tx,\dots,T^{q-1}x\}$ and $\omega(y)=\omega(x)$. 3069 \end{exam} 3070 3071 Now we take a look at orientation preserving homeomorphisms with no periodic points. So $\rho(T) = \alpha\notin\Q$. 3072 3073 \begin{rec} 3074 For $Sx:=x+\alpha$, every orbit is dense ($\omega(x)=\T$). 3075 \end{rec} 3076 3077 \begin{lem} 3078 Let $T$ be as above, $m \in \jbr{n-1}$ and $I$ be a closed arc with endpoints $T^nx, T^mx$ for $x\in\T$. Then for any $y\in\T$ the orbit $(T^ky)_{k\in\N}$ meets $I$. 3079 \end{lem} 3080 3081 \begin{proof} 3082 We need to show that $X\subseteq \bigcup_{k\in\N}T^{-k}I$. Consider $I_k:=T^{-k(n-m)}I$, where $k\in\N$. Then $I_k,I_{k+1}$ have a common endpoint. Suppose $\bigcup I_k \neq \T$, then $J_m := (I_1\cup\dots\cup I_m)_m$ is growing. The right ends of $J_m$ calling it $(z_m)_m$ points is a monotone sequence. But then, $(z_m)_m$ has a finite limit. So define 3083 $$z=\lim_{k\to\infty} T^{-k(n-m)}(T^mx) = \lim_{k\to\infty}T^{-(k-1)(n-m)}(T^mx) = \lim_{k\to\infty}T^{n-m}(T^{-k(n-m)}(T^mx)) = T^{n-m}z$$ 3084 Therefore $z$ is a periodic point. So we have a contradiction. So $\T = \bigcup_{k\in\N}I_k$. 3085 \end{proof} 3086 3087 \begin{prop} 3088 Let $T$ be as above, then 3089 \begin{enumerate} 3090 \item $\omega(x)=\omega(y)$ for all $x,y\in\T$. 3091 3092 \item $E:=\omega(x)$ is a perfect set (it has no isolated points). 3093 3094 \item $E=\T$ or $E$ is nowhere dense (the interior of the closure is empty). 3095 3096 \item Cantor set: It's perfect and nowhere dense. 3097 \end{enumerate} 3098 \end{prop} 3099 3100 \begin{proof} 3101 We only proof the first statement. Maybe we'll do the others in the future. 3102 \begin{enumerate} 3103 \item Take $z\in\omega(x)$, then there exists $(l_n)_n$ going to $\infty$ such that $T^{l_n}x\to z$. Consider $J_n:=[T^{l_n}x,T^{l_{n+1}}x]$ (the shorter interval). By the lemma there is a sequence $k_n\to\infty$: $T^{k_n}y\in J_n$ (fill in the details). 3104 3105 Since $T^{l_n}x\to z$, we get $d(J_n,z)\to0$. So $T^{k_n}y\to z$ which proves that $z\in \omega(y)$. 3106 3107 \item Not now 3108 3109 \item Not now 3110 \end{enumerate} 3111 \end{proof} 3112 3113 \begin{thm} 3114 Let $T:\T\to\T$ be an orientation preserving homeomorphism of a circle with $\alpha := \rho(T)\notin\Q$. Then there exists a monotone topological semiconjugacy $\eta:\T\to\T$ with $\eta\circ T=S\circ \eta$, where $S$ is a rotation. 3115 3116 \begin{enumerate} 3117 \item If $T$ is topologically transitive (so $E = \T$), then $\eta$ is a homeomorphism, so a topological conjugate. 3118 3119 \item Otherwise: $\eta$ is not injective ($S$ is just a factor of $T$). 3120 \end{enumerate} 3121 \end{thm} 3122 3123 \begin{thm} 3124 Depending on the smoothness of $\eta$ there are different possibilities. 3125 \begin{enumerate} 3126 \item For $C^1$ diffeomorphisms both (1) and (2) are possible. 3127 3128 \item For $C^2$ diffeomorphisms only (1) is possible. 3129 \end{enumerate} 3130 \end{thm} 3131 3132 \subsection{Maps with complicated orbit structure} 3133 3134 \subsubsection{Warmup} 3135 3136 Very simple maps on the interval/circle can have very complicated dynamics.\\ 3137 Limitations for predictions, often due to: 3138 3139 \begin{defin} 3140 Let $(X,d)$ be a metric space. The map $T:X\to X$ has sensitive dependence (on initial conditions) if there is a $\delta > 0$ (the sensitivity constant) such that for all $x\in X$ and $\epsilon > 0$ there exists $y\in Y$ such that 3141 $$d(x,y)< \epsilon,$$ 3142 but 3143 $$d(T^nx,T^ny) \geq \delta$$ 3144 for some $n\in\Ns$. 3145 \end{defin} 3146 3147 \begin{exam}[Prototypical] 3148 Let $X = \T$. 3149 \begin{itemize} 3150 \item Angle doubling map: Let $T:\T\to\T$ with $Tx:=2x$. We take a look at the lift $L:\R\to\R$, with $Lx:=2x$. More generally, we can replace $2$ by an integer $m\geq 2$ where $m=\deg(T)$. In this case, we have $m$ cylinder sets (maximal subintervals, such that $T$ is injective on it). That means that $T|_z$ is injective, where $z$ is a branch. $T^n$ has $m^n$ branches. 3151 \end{itemize} 3152 \end{exam} 3153 3154 \begin{defin} 3155 A uniformly expanding map on $\T$ is a map $T\in C^1(\T,\T)$ with $|T'|\geq \delta > 1$. So there is a lift $L$. 3156 \end{defin} 3157 3158 It can be shown that $T^n$ has $m^n$ cylinders and $\diam(Z)\leq \rho^{-n}$ for each cylinder $Z$. Check that we can assume that $T0=0$ (by shifting). 3159 3160 \subsubsection{Basic properties} 3161 3162 \paragraph{Periodic orbits:} 3163 We know that $T^n$ has $m^n$ branches. Each branch meets the diagonal at exactly one point. Therefore, there are $m^n-1$ fixed points of $T^n$. So the set of the periodic points is dense (since the $\diam(Z)\to0$ for every cylinder $Z$ as $n\to\infty$). 3164 3165 \paragraph{Question:} 3166 What about non-periodic points? 3167 3168 \begin{prop} 3169 Every uniformly expanding map $T$ on $\T$ has sensitive dependence. 3170 \end{prop} 3171 3172 \begin{proof}[Proof for $Tx=2x$] 3173 If $x\neq y$ with $d(x,y) < \reci4$. Then $d(Tx,Ty)=2d(x,y)$. So we can take $\delta = \reci4$. 3174 \end{proof} 3175 3176 \begin{itemize} 3177 \item There are always countably infinitely many periodic points. 3178 3179 \item $T$ has sensitive dependence. 3180 3181 \item What about other types of orbits? Dense orbits? Recurrent orbits? 3182 \end{itemize} 3183 3184 \begin{rec} 3185 Continuous map $T$ on $\T$ is topologically transitive if and only if for all open $U,V\neq \emptyset$ there is an $n\in\Ns$ such that $U\cap T^{-n}V\neq \emptyset$. 3186 \end{rec} 3187 3188 \begin{defin} 3189 $T$ on $X$ is topologically mixing, if for all nonempty open $U,V\subseteq X$ there is a $N\in\N$ such that $U\cap T^{-n}V\neq \emptyset$ for all $n\geq N$. 3190 \end{defin} 3191 3192 \begin{exam} 3193 No rotation is topologically mixing, since: 3194 \end{exam} 3195 3196 \begin{prop} 3197 If $X$ has at least three different points and $T$ is an isometry. Then $T$ is not topologically mixing. 3198 \end{prop} 3199 3200 \begin{proof} 3201 Exercise. 3202 \end{proof} 3203 3204 \begin{exam} 3205 The doubling map is topologically mixing. Without loss of generality $U,V$ are open intervals. So $\diam(U) > 0$. Take $N$ so large that $\diam(U)>2\cdot 2^{-N}=\diam(Z)$ where $Z$ is a cylinder of $T^n$. In this case there is a cylinder $Z_0$ lying completely in $U$. So $\T = T^nZ_0\subseteq T^nU$. 3206 \end{exam} 3207 3208 \begin{prop} 3209 Every uniformly expanding circle map $T$ is topologically mixing. 3210 \end{prop} 3211 3212 \begin{proof} 3213 Same argument: $T^N$ has $m^n$ branches/cylinders $Z$ with $TZ = \T$. We know that $\diam(Z)\leq \rho^{-N}$ and do the same. 3214 \end{proof} 3215 3216 \begin{prop} 3217 $T$ as above has dense orbits. 3218 \end{prop} 3219 3220 \begin{prop} 3221 If $T\in C(X,X)$ and $X$ has at least $2$ points, then topologically mixing implies sensitive dependence. 3222 \end{prop} 3223 3224 \begin{proof} 3225 Exercise. 3226 \end{proof} 3227 3228 \subsubsection{Symbolic dynamics and coding} 3229 3230 The case of the doubling map $T:\T\to\T$ with $Tx = 2x$. 3231 \newline 3232 \newline 3233 Binary/dyadic expansions: 3234 $$x = 0.\omega_0\omega_1\omega_2\dots = \sum_{j\in\N}\frac{\omega_j}{2^{j+1}},\quad \omega_j\in\{0,1\}.$$ 3235 We can imagine that $\omega_0$ splits the interval into two pieces. If $\omega_0=0$ we use the left piece. Otherwise we use the right one. Then we keep doing it with $\omega_1,\omega_2,\dots,\omega_{l-1}$ to get a smaller interval. We get the interval 3236 $$\left[\sum_{j=0}^{n-1}\frac{\omega_j}{2^{j+1}},\sum_{j=0}^{n-1}\frac{\omega_j}{2^{j+1}}+\reci{2^r}\right] =: Z_{(\omega_0,\omega_1,\dots,\omega_{r-1})}.$$ 3237 Now our map $T$ can simply be written as 3238 $$Tx=\omega_0+\sum_{j\in\N}\frac{\omega_{j+1}}{2^{j+1}} = \sum_{j\in\N}\frac{\omega_{j+1}}{2^{j+1}} = 0.\omega_1\omega_2\dots$$ 3239 Also 3240 $$T^nx=0.\omega_n\omega_{n+1}\dots$$ 3241 So $T^nx\in Z_{(\omega_n,\dots,\omega_{n+r-1})}$ for all $r,n \in \N$. For every $\omega = (\omega_j)_{j\in\N}\in\Omega_2:=\{0,1\}^{\N}$ there exists an $x$ such that $x=0.\omega_0\omega_1\dots$ 3242 3243 \paragraph{Application:} 3244 \begin{enumerate} 3245 \item $T$ has $2^p-1$ points of period $\leq p$: So there exists $2^p$ tuples $(\omega_0,\dots,\omega_{p-1})$. Take $\omega=\overline{(\omega_0,\dots,\omega_{p-1},\dots)}$ 3246 3247 \item $T$ has dense orbits: Take $\omega$ which contains every finite block: 3248 $$\omega=0,1,00,01,10,11,000,\dots, \hat \omega_0,\dots,\tilde \omega_{r-1},\dots$$ 3249 $\eta:\Omega_2\to\T$ 3250 $x := \eta(\omega)$, $T^nx=0.\tilde\omega_0,\dots,\tilde\omega_{r-1}\in Z_{(\omega_0,\dots,\omega_{r-1})}$. So the orbit lands in every cylinder and is therefore dense. 3251 3252 \item There exists $x\in Z_{(0,0,1)}$ such that $T^nx\in Z_{(0,0,1)}$ for all $n\geq 2$. Take $\omega=0,0,1,0,1,0,1,0,1,0,1,\dots$. Such that only one time there are zwo consecutive zeros. In this case, the orbit will never return to the first quater. 3253 3254 \item For every left-/right sequence there is a 0-/1 sequence. So there is a $x$ such that $T^nX$ on left/right of presented times. 3255 3256 \item The shift means: $T$ can be represented on $\Omega_2$ by 3257 $$\sigma:\Omega_2\to \Omega_2$$ 3258 the shift map with $\sigma((\omega_j)_j) := (\omega_{j+1})$. So we get a commuting diagram with $\sigma$, $\eta$ and $T$. In this case $\eta$ is a semi conjugacy (but not injective because of different expansions for the same number). 3259 \end{enumerate} 3260 3261 \paragraph{Metric on $\Omega_2$:} 3262 Let $\omega:=(\omega_j)_j, \tilde \omega:=(\tilde \omega_j)_j$. Let $s(\omega,\tilde\omega):=\inf\{j\in\N:\omega_j\neq\tilde\omega_j\}\in[0,\infty]$. Now let $d(\omega,\tilde\omega):=2^{-s(\omega,\tilde\omega)}$. Now let 3263 $$[\omega_0,\dots,\omega_{r-1}]:=\{\tilde\omega:\tilde\omega_j=\omega_j\quad j \in \jbr{0,r-1}\}.$$ 3264 This is a $2^{-r}$ neighborhood of $\omega$, a cylinder set in $\Omega_2$. 3265 3266 \begin{prop} 3267 The following statements hold: 3268 \begin{enumerate} 3269 \item $d$ is a metric. 3270 3271 \item $\eta$ is continuous. 3272 \end{enumerate} 3273 \end{prop} 3274 3275 However $\eta$ is not injective in this situation: 3276 $$\omega_0\dots\omega_{r-1}10000000\dots = \omega_0\dots\omega_{r-1}01111111\dots$$ 3277 Such $x$ have exactly two preimages. These $x$ are exactly the endpoints of the diadic intervals. All other $x$ have exactly one preimage $\omega$ such that $x=\eta(\omega)$. 3278 \newline 3279 \newline 3280 We imagine that we half the interval and shrink both parts. Then we repeat it and get something similar to the cantor set. 3281 3282 \begin{prop} 3283 $\Omega_2$ has no isolated points and is totally disconnected and compact. So this is a cantor set. 3284 \end{prop} 3285 3286 \subsubsection{The general uniformly expanding circle maps $T:\T\to\T$ of degree 2} 3287 3288 Let $Z_0,Z_1$ be the two cylinders. So the natural semipartition is $S = \{Z_0,Z_1\}$ with overlapping endpoints. Previously $x\in Z_{(0,1,0)}$ meant $x \in Z_0$, $Tx\in Z_1$ and $T^2x\in Z_0$. The same holds for this general case. 3289 $$Z_{(\omega_0,\dots,\omega_{r-1},\omega_r)} := \text{The non degenerate interval in } Z_{(\omega_0,\dots,\omega_{r-1})}\cap T^{-r}Z_{\omega_r}$$ 3290 Then $x\in Z_{(\omega_0,\dots,\omega_{r-1})}$ implies $T^jx\in Z_{\omega_j}$ for $j\in\jbr{0,r-1}$. Moreover for every $\omega=(\omega_j)_j\in\Omega_2$ there exists exactly one $x = \eta_T(\omega)\in\T$ such that $x \in Z_{(\omega_0,\dots,\omega_{r-1})}$ for all $r\in\Ns$. Indeed 3291 $$\bigcap_{r\in\Ns} Z_{(\omega_0,\dots,\omega_{r-1})}$$ 3292 is a singleton because it's a nested sequence of non empty compact intervals and $\diam(Z_{(\dots)}) \leq \rho^{-r} \to 0$. :)\\ 3293 So we define $\eta_T:\Omega_2\to\T$ like that. For $x = \eta_T(\omega)$, consider $y := Tx$. Then $T^jy=T^{j+1}x\in Z_{\omega_{j+1}}$ for all $j\in\N$. So 3294 $$\eta_T\circ \sigma = T\circ \eta_T.$$ 3295 Check the following: 3296 \begin{enumerate} 3297 \item $\eta_T$ is continuous. 3298 3299 \item $x$ has two preimages if and only if $x$ is the endpoint of some cylinder. This looks like 3300 $$\omega = \omega_0\dots\omega_{r-1}10000000\dots,\tilde \omega= \omega_0\dots\omega_{r-1}01111111\dots.$$ 3301 with $\eta(\omega)$, define $\eta_T^{-1}(x) := \omega$ (not $\tilde \omega$). 3302 \end{enumerate} 3303 3304 \begin{thm} 3305 Any two uniformly expanding circle maps $T, \tilde T$ of degree $2$ are topologically conjugate. Hence they are isomorphic to the doubling map. 3306 \end{thm} 3307 3308 \begin{proof} 3309 Let $\psi:= \eta_{\tilde T}\circ\eta_T^{-1}:\T\to\T$. Then 3310 $$\psi\circ T=\tilde T\circ \psi.$$ 3311 Also $\psi$ is a bijection. \\ 3312 Claim: $\psi$ is a homeomorphism. It suffices to show that it's continuous at every $x\in\T$ (by changing the roles of $T, \tilde T$).\\ 3313 Let $\epsilon > 0$. Let $Z_{(\omega_0,\dots,\omega_{r-1})}$ be a cylinder of $T$ and $\tilde Z_{(\omega_0,\dots,\omega_{r-1})}$ be a cylinder of $\tilde T$. Take $r\in\Ns$ so large that choose four adjacent cylinders $\tilde Z(l) = \tilde Z_{(\omega_0^{(l)},\dots,\omega_{r-1}^{(l)})}$ where $l\in\jbr{1,4}$ such that $y$ is between $Z(1)$ and $Z(4)$ and all of them are contained in the $\epsilon$ neighborhood. Consider $Z(l) = Z_{(\omega_0^{(l)},\dots,\omega_{r-1}^{(l)})}$ where $l\in\jbr{1,4}$. By construction $Z(l)$ is mapped to $\tilde Z(l)$. Choose $\delta > 0$ such that $B_\delta(x)\subseteq \bigcup_{l=1}^4Z(l)$. Then 3314 $$\psi(B_j(x))\subseteq \psi\left(\bigcup_{l=1}^4Z(l)\right)=\bigcup_{l=1}^4\tilde Z(l)\subseteq B_\epsilon(y).$$ 3315 \end{proof} 3316 3317 \begin{rem} 3318 Analogous construction works for degree $m\geq 2$ maps with the sequence space $\Omega_m:=\jbr{0,m-1}^\N=\{(\omega_j)_{j\geq0}:\omega_j\in\jbr{0,m-1}\}$. 3319 \end{rem} 3320 3321 \begin{thm} 3322 Two uniformly expanding circle maps $T, \tilde T$ of degree $m$ and $\tilde m\geq 2$ respectively are topologically conjugate if and only if $m=\tilde m$. 3323 \end{thm} 3324 3325 \begin{proof} 3326 We look at the two cases. 3327 \begin{itemize} 3328 \item $m=\tilde m$: The same as seen before. 3329 3330 \item $m\neq \tilde m$: The number of preimages of a point $(m,\tilde m)$ is invariant under conjugaticy. 3331 \end{itemize} 3332 \end{proof} 3333 3334 \subsection{Outlook: Coding for other systems} 3335 3336 \begin{defin} 3337 For arbitrary $X$ and $T:X\to X$ and a partition $S=\{Z_i\}_{i\in I}$, where $I$ is finite/countable. For any $x\in X$ the $S$-itineray ($S$-name) of $x$ is the sequence 3338 $$\gamma_T(x):=\omega=(\omega_j)_{j\in\N}\in\Omega_I=I^\N,$$ 3339 with $T^jx \in Z_{\omega_j}$ for all $j\in\N$. So $\gamma_T:X\to \Omega_I$. 3340 \end{defin} 3341 3342 For $y = Tx$, we get $T^jy=T^{j+1}x \in Z_{\omega_{j+1}}$ that means that $\gamma \circ T = \sigma \circ \gamma$. 3343 3344 \paragraph{Warning:} 3345 In general, $\gamma$ is not injective. For example, $S = \{X\}$ doesn't tell anything. We want that 3346 $$Z_{(\omega_0,\dots,\omega_{r-1})}:=\bigcap_{j=0}^{r-1}T^{-j}Z_{\omega_j}$$ 3347 shrinks to at most one point. 3348 3349 \begin{rem} 3350 Sometimes, it is useful to use partitions with overlaps. 3351 \end{rem} 3352 3353 \begin{rem} 3354 In general, even for nicest $S$, $\gamma_T$ need not be surjective. And $\gamma_T(X) \subseteq \Omega_I$ can be very complicated. 3355 \end{rem} 3356 3357 \begin{exam} 3358 Let $T:\T\to\T$ a surjective piecewise not continuous linear map. We assume that the graph doesn't contain $[0.5,0.5]^2$. Then $\gamma_T(X)=\{\omega: (\omega_j,\omega_{j+1})\neq(1,1)\quad \forall j\in\N\}$. 3359 \end{exam} 3360 3361 It $T$ is invertible, use $2$-sided sequences 3362 $$\hat\Omega_I:=\{\og=(\og_j)_{j\in\Z}:\og_j\in\Z\}=I^\Z$$ 3363 $$\hat\Omega_I\to\hat\Omega_I, \quad (\omega_j)_{j\in\Z}\mapsto (\og_{j+1})_{j\in\Z}$$ 3364 and we define $\gamma_I(x)=(i_n)_{n\in\Z}$, where $T^nx\in Z_{i_n}$ for all $n\in\Z$. 3365 3366 \begin{exam} 3367 Baker map on $\T^2$. Let $Z_0$ be the closed left half and $Z_1$ be the closed right half. Then $\{Z_0, Z_1\}$ is almost a partition. Let $T:\T^2\to\T^2$ with 3368 $$T(s,t) = \left(2s,\half t+\half{1_{Z_1}(s,t)}\right).$$ 3369 Then for all $\og\in\hat\Og_I=\{0,1\}^\Z$ there exists an $x$ such that $\gamma(x)=\og$. If we restrict ourselves to the first component of $T$, we get 3370 $$S(s) = 2s.$$ 3371 This is an example of a general hyperbolic map with expanding (horizontal) and contracting (vertical) directions. 3372 \end{exam} 3373 3374 \subsubsection{Outlook: Measurable dynamics (Ergotic theory)} 3375 3376 We have already seen chaotic maps with sensitive dependence transitivity (coexistence of diffent types of orbits). What do most/many orbits do? 3377 3378 \begin{exam} 3379 Doubling map $T:\T\to\T$, $Tx = 2x$. Let $f:= 1_{Z_1}$ and $X_k \in f\circ T^k:\T\to\{0,1\}$. Then 3380 $$x \in Z_{[\og_0,\dots,\og_{n-1}]}$$ 3381 if and only if 3382 $$T^kx\in Z_{\og_k}$$ 3383 for all $k \in\jbr{0,n-1}$. Also $\lambda(Z_{[\omega_0,\dots,\og_{n-1}]})=2^{-n}$. Suppose we split $x$ at random, using $P = \lambda$ (the Lebesgue measure on $(X, B_X)$). Then 3384 $$P[(X_0,\dots,X_{n-1})=(\og_0,\dots,\omega_{n-1})]=\lambda(Z_{(\og_0,\dots,\og_{n-1})})=2^{-n}$$ 3385 This deterministic dynamival system generates the most random process possible if the initial condition is regarded random.\\ 3386 Recall that the strong law of large numbers implies 3387 $$\reci n\sum_{k=0}^{n-1}X_k \to \half1$$ 3388 almost sure. This is a special case of the Ergotic theorem (for the doublong map): 3389 $$\forall f \in L^1(\lambda): \reci n\sum_{k=0}^{n-1}f\circ T^k \to \int fd\lambda \text{ almost everywhere}.$$ 3390 \end{exam} 3391 3392 \begin{thm} 3393 Let $A \in B_X$ be any measurable set and $f:=1_A$. Then 3394 $$\reci n\sum_{k=0}^{n-1}1_A\circ T^k \to\lambda(A) \text{ almost everywhere}$$ 3395 \end{thm} 3396 3397 What is behind this? 3398 \begin{thm} 3399 Suppose $T$ is measurable on a measurable space $(X,B_X)$ such that for all $A\in B_X$ the exists $\mu(A) \in[0,1]$ such that 3400 $$\reci n\int_{k=0}^{n-1}1_A\circ T^k \to \mu(A)$$ 3401 then 3402 \begin{enumerate} 3403 \item $\mu$ is a measure on $B_X$ and $\mu(X)=1$ (showing the finite additivity is easy, but not the $\sigma$-additivity) 3404 3405 \item $\mu$ is $T$-invariant: $\mu\circ T^{-1}=\mu$, meaning that $\mu(T^{-1}A)=\mu(A)$ for all $A\in B_X$. 3406 \end{enumerate} 3407 \end{thm} 3408 3409 \begin{proof} 3410 We only prove the second property. Since $1_{T^{-1}A}=1_a\circ T$, we get 3411 $$\underbrace{\reci n\sum_{k=0}^{n-1}1_{T^{-1}A}\circ T^k}_{\to\mu(T^{-1}A)}=\reci n\sum_{k=1}^{n} 1_A\circ T^k= \underbrace{\reci n\sum_{k=0}^{n-1}1_A\circ T^k}_{\to \mu(A)} \underbrace{-\reci n1_A+\reci n1_A\circ T^k}_{\to0}.$$ 3412 So we conclude that $\mu(T^{-1}A) = \mu(A)$. 3413 \end{proof} 3414 3415 The existence of $T$-invariant probability measure $\mu$ enables quantitative analysis of $T$, for example, the ergodic theorem implies that 3416 $$\reci n \sum_{k=0}^{n-1}1_A\circ T^k \text{ converges } \lambda-\text{almost everywhere}.$$ 3417 This is in particular useful if $\mu$ is equivalent to $\lambda$ (meaning they have the same $0$-sets) 3418 3419 \begin{exam} 3420 If $T$ is a uniformly expanding circle map and $C^2$ (or $C^{1+\epsilon}$) then there is a $\mu\circ T^{-1} \cong \lambda$. 3421 \end{exam} 3422 3423 \begin{exam} 3424 Rotations preserve $\lambda$. 3425 \end{exam} 3426 3427 \begin{exam} 3428 Any Hamiltonian system has an invariant measure $\cong \lambda^d$ (Liouville measure), which is finite on compact subsetes. 3429 \end{exam} 3430 3431 \begin{exam} 3432 Math billiards. 3433 \end{exam} 3434 3435 Sample result: Poincare-Carathedory recurrence theorem. 3436 3437 \begin{thm} 3438 Let $(X, B_X, \mu)$ be a finite measure space and $T$ be measurable with $\mu = \mu \circ T^{-1}$. Then for all $B \in B_X$ and $\mu$-almost all $x\in B$ will return to $B$ infinitely often. That means that there is an increasing, diverging sequence $(n_k)_k$ such that $T^{n_k}x \in B$. 3439 \end{thm} 3440 3441 \begin{proof} 3442 Let's go through the proofs. 3443 \begin{enumerate} 3444 \item We say that $A\in B_X$ is a wandering set if no $x\in A$ returns. So $A$ and $T^{-k}A$ are disjoint for all $k\in\Ns$. Applying $T^{-m}$ to both sets, we get that $T^{-m}A$ and $T^{-m-k}A$ and so 3445 $$A, T^{-1}A, T^{-2}A, \dots$$ 3446 are pairwise disjoint. Then we get, 3447 $$\infty > \mu(x) \geq \mu\left(\bigcup_{k\in\N}T^{-k}A\right)=\sum_{k\in\N}\mu(T^{-k}A) = \sum_{k\in\N}\mu(A) = \infty\mu(A).$$ 3448 Therefore $\mu(A) = 0$. 3449 3450 \item Take any $B\in B_X$. Let 3451 $$A:= B\setminus\bigcup_{k\in\Ns}T^{-k}B,$$ 3452 the set of returning points. Then $A$ is wandering. By 1. we know that $\mu(A)=0$. But 3453 $$\mu(\{x\in B: x \text{ is not infinitely recurrent to } B\}) = \mu\left(\bigcup_{n\in\N}T^{-n}A\right)\leq\sum_{n\in\N}\underbrace{\mu(T^{-n}A)}_{=\mu(A) = 0} = 0.$$ 3454 \end{enumerate} 3455 \end{proof} 3456 3457 \end{document}