tprak

Theoretical Physics Practical Training
git clone git://popovic.xyz/tprak.git
Log | Files | Refs

main.tex (20678B)


      1 \documentclass[a4paper]{article}
      2 
      3 \usepackage[T1]{fontenc}
      4 \usepackage[utf8]{inputenc}
      5 
      6 \usepackage{mathptmx}
      7 
      8 \usepackage[a4paper, total={6in, 8in}]{geometry}
      9 \usepackage{subcaption}
     10 \usepackage[shortlabels]{enumitem}
     11 \usepackage{amsmath,amssymb}
     12 \usepackage{amsthm}
     13 \usepackage{bbm}
     14 \usepackage{graphicx}
     15 \usepackage{float}
     16 \usepackage[colorlinks=true,naturalnames=true,plainpages=false,pdfpagelabels=true]{hyperref}
     17 \usepackage[parfill]{parskip}
     18 \usepackage[backend=biber, sorting=none]{biblatex}
     19 \addbibresource{uni.bib}
     20 \pagestyle{myheadings}
     21 \markright{Popovic, Vogel\hfill Unbiased Fitting \hfill}
     22 
     23 \title{Theoretical Physics Lab-Course 2021S\\ University of Vienna \vspace{1.25cm}\\ Unbiased Fitting}
     24 \author{Milutin Popovic \\ Tim Vogel \vspace{1cm}\\ Supervisor: Peter Stoffer}
     25 \date{April 18, 2021}
     26 
     27 \begin{document}
     28 
     29 \maketitle
     30 \begin{abstract}
     31         When provided with data that doesn't only come with statistical
     32         uncertainties but also with systematic uncertainties, the least square
     33         method will not be sufficient enough and will provide false results.
     34         This report will emphasize on the D'Agostini bias, which explains the
     35         corrrelation between these uncertainties and give an example of data
     36         provided by particle physics measurements where the bias is present. In
     37         this regard the report will also explain how to avoid the D'Agostini
     38         bias with the $t_0$-method.
     39 \end{abstract}
     40 
     41 \thispagestyle{empty}
     42 \tableofcontents
     43 
     44 \newpage
     45 \section{Introduction and Motivation}
     46 In physics, we often come across the situation, where measured data needs to be
     47 approximated by a theoretical model, which requires a set amount of parameters.
     48 To determine these parameters a so called "data fit" is required, which can be
     49 done via different techniques. One of the most widely used fit-techniques is
     50 "Least-squares fitting", but as soon as we deal with correlated  data points,
     51 which means, each data point is not a completely independent measurement, a
     52 wrong application of the Least-squares fit, can lead to a bias, which, in
     53 return, will affect the accuracy of the fit in a negative way. This so called
     54 D'Agostini bias, albeit a very situational phenomenon, has to be considered
     55 when dealing with correlated data from one or even more experiments. It can be
     56 avoided by implementing a iterative fit method and we will consider this in an
     57 example from particle physics. The pion Vector Form Factor is a perfect example
     58 for this bias, as the experimental (even after many exact experiments) still
     59 doesn't fit the predictions of  the theoretical model perfectly. In this report
     60 we will fit experimental data to the theoretical model, by implementing the so
     61 called "$t_0-model$" into the fit.
     62 \section{Physical background and Findings} %wird aus mehreren Teilen bestehen, nur als Platzhalter%
     63 \subsection{The Vector Form Factor of Pions}
     64 
     65 In particle physics, one of the best to study reactions of elementary
     66 particles, is the collision between an electron $(e^-)$ and it's anti-particle,
     67 the positron ($e^+)$. When these two particle collide, they annihilate each
     68 other and produce new types of particles. In these experiments very precise
     69 measurements can be taken and as such, be a very valuable base of empirical
     70 data of the Standard model of physics. A central point of study, of these
     71 electron-positron-collisions has been the anomalous magnetic moment g-2 of the
     72 muon. The anomaly of this number comes from the fact, that the measured data
     73 differs to the theoretical model by quite a large margin. As such it could be
     74 the source of exciting discoveries. The theoretical value of the g-2 momentum
     75 relies on data from the aforementioned collisions, which is used to reconstruct
     76 the so called hadronic vacuum polarization. The hadronic vacuum polarization
     77 itself comes from the hadronic final states. About 70\% of the contribution to
     78 the g-2 momentum comes from the annihilation of an electron and a positron into
     79 two pions. The probability of this happening is dependent on the energy of the
     80 two particles. The strong interaction between these two pions is given by the
     81 so called pion vector form factor (VFF, $F_\pi^V$). To obtain the pion VFF, we
     82 start with a classical damped driven oscillator, which can be described as
     83 
     84 \begin{align}
     85 \frac{d^2x}{dt^2}+\gamma\frac{dx}{dt}+\omega_0^2x=A\cos{(\omega t)}
     86 \end{align}
     87 
     88 that has a solution $x(t)=K\cos{(\omega t-\Phi)}$ The coefficient K describes the
     89 amplitude, which is a function of the natural frequence $\omega_0$ of the
     90 oscillator, the damping coefficient $\gamma$, the driving frequency $\omega$
     91 and the amplitude A:
     92 
     93 \begin{align}
     94 K^2=\frac{A^2}{(\omega^2-\omega_0^2)^2+\gamma^2\omega^2}
     95 \end{align}
     96 
     97 If now $\omega_0^2>\frac{\gamma^2}{2}$, the peak of the ampöitudes appears at the
     98 resonance frequency \newline
     99 $\omega=\omega_R:=\sqrt{\omega_0^2-\frac{\gamma^2}{2}}$. This phenomenon can be
    100 transferred to the pion VFF, as a very similar effect happens there. An
    101 unstable particle, the $\rho$ meson with a mass of $M_\rho=0.77GeV$ and a decay
    102 width $\Gamma_\rho=0.15GeV$, acts as a resonance. Now the parameters need to be
    103 transcribed to the relativistic particle-physics context. The driving frequency
    104 is replaced by the invariant squared energy s, the resonance mass takes the
    105 place of the natural frequency and the decay width acts as the damping
    106 coefficient. As such, we obtain the Breit-Wigner form of the VFF:
    107 \begin{align}
    108 |F_\pi^V(s)|^2_{BW,\rho}=\frac{M_\rho^4}{(M_\rho^2-s)^2+\Gamma_\rho^2M_\rho^2}
    109 \end{align}
    110 This can also be written in complex form, as:
    111     \begin{align}
    112 F_\pi^V(s)_{BW,\rho}=\frac{M_\rho^2}{M_\rho^2-s-iM_\rho\Gamma_\rho}
    113     \end{align}
    114 Although representing the VFF quite well, it is still very simplistic and has
    115 to be modified. By implementing another resonance contribution, the Vector Form
    116 Factor can be brought into the form:
    117         \begin{align}
    118 F_\pi^V(s)_{BW,\rho+\omega}=\frac{M_\rho^2}{M_\rho^2-s-iM_\rho\Gamma_\rho(s)}\times(1+\epsilon_\omega\frac{s}{M_\omega^2-s-iM_\omega\Gamma_\omega})\times(1+as+bs^2+cs^3)
    119         \end{align}
    120 or the modulus given as:
    121         \begin{align}
    122             |F_\pi^V(s)|^2=\frac{M_\rho^4}{(M_\rho^2-s)^2+M_\rho^2\Gamma_\rho(s)^2}\times(1+\epsilon_\omega\frac{2s(M_\omega^2-s)}{(M_\rho^2-s)^2+M_\rho^2\Gamma_\rho(s)^2}\times(1+as+bs^2+cs^3)
    123         \end{align}
    124 \subsection{The D'Agostini bias}
    125 
    126 The D'Agostini bias was first introduced by Giuilo D'Agostini in 1994. It
    127 describes a problem with data-fits, when considering data with overall
    128 systematic errors, that share a uncertainty on the normalization factor. In
    129 such a situation, if the error matrix $V$ of the data points is known, one
    130 would normally minimize the $\chi^2$, which can be obtained by
    131 \begin{align}
    132 \chi^2=\vec{\Lambda}^T\cdot V^{-1}\cdot\vec{\Lambda}
    133 \end{align}
    134 In this formula, $\Lambda$ denotes the vector between the values of the theoretical model and
    135 the measured ones. But, after carrying out such a fit, one often obtains
    136 results, which contradict expectations. For example, if we got the results
    137 $8.0\pm 2\%$ and $8.5\pm 2\%$, from a measurement, which share a $10\%$
    138 normalization error, if we minimized the $\chi^2$ as described-with the matrix
    139 $V$ estimated by the data, we would obtain the value $7.87\pm 0.81$. This
    140 result should immediately take attention, as the result with the highest
    141 probability, lies outside the range of the measured values. This error also
    142 occurs in a situation, where data is taken from two or more independently
    143 conducted experiments, which are afflicted by an additional systematic
    144 normalization error, even though the dimensions of the error are not quite as
    145 severe as in the situation described before.
    146 
    147 \subsection{Iterative solution to the D'Agostini bias}
    148 The proposed solution of the D'Agostini bias, that avoids problems with
    149 
    150 multiple experiments or quadraticity with the parameters, is as follows. The
    151 covariance matrix is constructed, not by the fit result, but by a fixed guessed
    152 value $y_0=f(x,\Vec{p_0})$. For one experiment, we then obtain: The covariance
    153 matrix calculated by:
    154 \begin{align}
    155     [Cov_{ij}]_{syst}=\zeta_{ij}^2|F_pi^V(s_i)|^2|F_pi^V(s_j)|^2
    156 \end{align}
    157 can be wrtitten as:
    158 \begin{align}
    159     [Cov(y_i,y_j)]_{syst}=\begin{pmatrix}{rr}
    160     \zeta^2y_0^2 & \zeta^2y_0^2 \\
    161     \zeta^2y_0^2 & \zeta^2y_0^2
    162 \end{pmatrix}=\begin{pmatrix}{rr}
    163   \zeta^2f(x_1,\Vec{p_0})^2   & \zeta^2f(x_1,\Vec{p_0})f(x_2,\Vec{p_0}) \\
    164   \zeta^2f(x_1,\Vec{p_0})f(x_2,\Vec{p_0})   & \zeta^2f(x_2,\Vec{p_0})^2
    165 \end{pmatrix}
    166 \end{align}
    167 
    168 or for two independent experiments:
    169 
    170 \begin{align}
    171     [Cov(y_i,y_j)]_{syst}=\begin{pmatrix}{rr}
    172   \zeta_1^2y_0^2   & 0 \\
    173    0  & \zeta_2^2y_0^2
    174 \end{pmatrix}=\begin{pmatrix}{rr}
    175   \zeta_1^2f(x_1,\Vec{p_0})^2   & 0 \\
    176   0   & \zeta_2^2f(x_2,\Vec{p_0})^2
    177 \end{pmatrix}
    178 \end{align}
    179 
    180 This conserves the quadraticity of the error functions parameters, that appear
    181 in the linear model. After solving this model, one obtains new estimates for
    182 the parameters $\Vec{p}$. With these solutions a new systematic covariance can
    183 be constructed and with each iteration, the new values are used for the next
    184 construction. This iterative solutions is called the "$t_0-method$".
    185 \subsection{Code Structure}
    186 Here the logical structure of the code is shown.
    187 \begin{itemize}[noitemsep]
    188     \item Construct statistical covariance matrix
    189     \item Construct Jacobi matrix of model function in terms of the parameters
    190     \item Guess initial parameters $\vec{p_0}$
    191     \item Iterate
    192         \begin{itemize}[noitemsep]
    193             \item[-] Construct System covariance matrix with $\vec{p_{i}}$
    194             \item[-] Fill Jacobi matrix with $\vec{p_{i}}$ which is the Design Matrix
    195             \item[-] Calculate step $\delta \vec{p_{i}}$
    196             \item[-] update initial parameters
    197                 \begin{align*}
    198                     \vec{p}_{i+1} = \vec{p_{i}} + \alpha \cdot \delta \vec{p_{i}} \;\;\;\;\; \alpha = 0.1
    199                 \end{align*}
    200         \end{itemize}
    201     \item Calculate errors
    202     \item Calculate $\chi^2_{min}$
    203 \end{itemize}
    204 
    205 The guess used for all fits was determined by standard least-square fit
    206 provided by \texttt{scipy}.
    207     \begin{align}
    208             \vec{p_0} =
    209             \begin{pmatrix}
    210             900,\; 200,\; 810,\; 40,\; 20,\; -1000,\; 840,\; 1550
    211             \end{pmatrix}
    212     \end{align}
    213 
    214 The code can be viewed and/or downloaded from here \cite{code}
    215 (including the calculation of the guess parameters).
    216 \newpage
    217 \section{Findings}
    218 
    219 In this section the results with consideration of the D'Agostini are shown.
    220 Furthermore the findings with fits of two experiments together
    221 (6 combinations of two) and also a fit with all experiments
    222 are shown. In the end of the section the fitted parameters are compared with
    223 the literature values. The plots of the given data and their fits can be found in Section \ref{plots}.
    224 
    225 \subsection{Single Experiment Fits under consideration of the D'Agostini bias}
    226 In this section the data is fitted under consideration of the D'Agostini bias of all experiments separately is shown.
    227 \begin{table}[H]
    228     \caption{Results of all experiment data fitted separately\label{tabsingle}}
    229     \centering
    230     \begin{tabular}{|c|c|c|c|c|}
    231         \hline
    232         $\vec{p}$ & SND & CMD2 & KLOE & BABAR \\ \hline
    233         $M_{\rho}$    [MeV]          & $772.72	\pm 0.59$ & $773.93	\pm 0.67$ &$773.91	\pm 0.25 $&$773.33	\pm 0.43$ \\
    234         $\Gamma_{\rho}$   [MeV]      & $149.53	\pm 1.15$ & $147.67	\pm 1.32$ &$149.72	\pm 0.37 $&$149.19	\pm 0.81$\\
    235         $M_{\omega}$      [MeV]      & $781.94	\pm 0.09$ & $782.32	\pm 0.07$ &$782.44	\pm 0.11 $&$782.18	\pm 0.07$\\
    236         $\Gamma_{\omega}$    [MeV]   & $8.55	\pm 0.33    $ & $8.65	\pm 0.44$ &$9.66	\pm 0.33 $&$8.17	\pm 0.16$\\
    237         $\varepsilon_{\omega}$ [] & $2.02	\pm 0.09    $ & $1.92	\pm 0.12$ &$2.07	\pm 0.05 $&$1.95	\pm 0.03$\\
    238         \hline \hline
    239         $\chi^2_{min}/dof$      & $1.001$&$ 1.054$&$ 1.443$&$ 1.031$\\
    240         $p\text{-value}$        & $0.530$&$ 0.395$&$ 0.001$&$ 0.377$\\
    241         \hline
    242     \end{tabular}
    243 \end{table}
    244 
    245 \subsection{Multi Experiment Fits under consideration of the D'Agostini bias}
    246 In this section the data is fitted considering the D'Agostini bias, first the data of
    247 two experiments together then the data of all experiments is shown.
    248 
    249 \begin{table}[H]
    250     \caption{Results of data fits of experimental data fitted in pairs\label{tabtwo1}}
    251     \centering
    252     \begin{tabular}{|c|c|c|c|}
    253         \hline
    254         $\vec{p}$ & SND-CMD2 & SND-KLOE & SND-BABAR  \\ \hline
    255         $M_{\rho}$[MeV]              & $772.72	\pm 0.42$ & $773.92	\pm 0.23$ &$773.17	\pm 0.36 $ \\
    256         $\Gamma_{\rho}$[MeV]         & $149.53	\pm 0.81$ & $149.42	\pm 0.35$ &$149.70	\pm 0.64 $\\
    257         $M_{\omega}$  [MeV]          & $781.95	\pm 0.07$ & $782.39	\pm 0.07$ &$782.07	\pm 0.06 $\\
    258         $\Gamma_{\omega}$ [MeV]      & $8.56	\pm 0.24    $ & $9.42	\pm 0.20$ &$8.27	\pm 0.13 $\\
    259         $\varepsilon_{\omega}$[]  & $2.02	\pm 0.07    $ & $2.07	\pm 0.05$ &$1.96	\pm 0.03 $\\
    260         \hline \hline
    261         $\chi^2_{min}/dof$      & $0.904$&$ 1.839$&$ 0.945$\\
    262         $p\text{-value}$        & $0.754$&$ 0.001$&$ 0.763$\\
    263         \hline
    264 
    265     \end{tabular}
    266 \end{table}
    267 
    268 
    269 \begin{table}[H]
    270     \caption{Results of data fits of experimental data fitted in pairs\label{tabtwo2}}
    271     \centering
    272     \begin{tabular}{|c|c|c|c|}
    273         \hline
    274         $\vec{p}$ & CMD2-KLOE & CMD2-BABAR & KLOE-BABAR  \\ \hline
    275         $M_{\rho}$        [MeV]      & $773.92	\pm 0.23$ & $773.17	\pm 0.36$ &$773.66	\pm 0.20 $ \\
    276         $\Gamma_{\rho}$     [MeV]    & $149.42	\pm 0.35$ & $149.70	\pm 0.64$ &$149.41	\pm  $\\        $M_{\omega}$         [MeV]   & $782.39	\pm 0.07$ & $782.07	\pm 0.06$ &$782.49	\pm 0.06 $\\
    277         $\Gamma_{\omega}$    [MeV]   & $9.42	\pm 0.02    $ & $8.27	\pm 0.13$ &$8.98	\pm 0.12 $\\
    278         $\varepsilon_{\omega}$ [] & $2.07	\pm 0.05    $ & $1.96	\pm 0.03$ &$1.98	\pm 0.02 $\\
    279         \hline \hline
    280         $\chi^2_{min}/dof$      & $1.838$&$ 0.943$&$ 1.470$\\
    281         $p\text{-value}$        & $0.001$&$ 0.772$&$ 0.001$\\
    282         \hline
    283 
    284     \end{tabular}
    285 \end{table}
    286 
    287 \begin{table}[H]
    288     \caption{Results of data fit of all experimental data fitted together\label{tabmulti}}
    289     \centering
    290     \begin{tabular}{|c|c|}
    291         \hline
    292         $\vec{p}$   & Multi-Fit\\
    293         \hline
    294         $M_{\rho}$       [MeV]       & $773.62	\pm 0.18$   \\
    295         $\Gamma_{\rho}$     [MeV]    & $149.42	\pm 0.29$  \\
    296         $M_{\omega}$         [MeV]   & $782.36	\pm 0.08$  \\
    297         $\Gamma_{\omega}$   [MeV]    & $8.75	\pm 0.08    $  \\
    298         $\varepsilon_{\omega}$[]  & $1.96	\pm 0.02    $  \\
    299         \hline \hline
    300         $\chi^2_{min}/dof$      & $1.735$\\
    301         $p\text{-value}$        & $0.000$\\
    302         \hline
    303 
    304     \end{tabular}
    305 \end{table}
    306 
    307 \subsection{Litrature comparison}
    308 In this section the fitted parameters of CMD2-BABAR and the literature values\cite{particleref} are compared.
    309 The reason why CMD2-BABAR was chosen, is that it has a value of $\chi^2_{min}$ close to $1$.
    310 
    311 \begin{table}[H]
    312     \caption{Result comparison with literature\label{tabref}}
    313     \centering
    314     \begin{tabular}{|l|c|c|c|}
    315         \hline
    316         $\vec{p}$     & Literature    &   CMD2-BABAR      & Relative error \\
    317         \hline
    318         $M_{\rho}$   [MeV]           & $775.26	\pm 0.25$ & $773.17	\pm 0.36$ & $ 0.28 \%$\\
    319         $\Gamma_{\rho}$   [MeV]      & $147.80	\pm 0.90$  & $149.70	\pm 0.64$  & $ 1.29 \%$ \\
    320         $M_{\omega}$       [MeV]     & $782.65	\pm 0.12$  & $782.07	\pm 0.06$ & $ 0.08\% $ \\
    321         $\Gamma_{\omega}$  [MeV]     & $8.49	\pm 0.08    $ & $8.27	\pm 0.13$  & $ 2.60 \%$\\
    322         \hline
    323     \end{tabular}
    324 \end{table}
    325 
    326 \newpage
    327 \subsection{Fitting with D'Agostini bias}
    328 Furthermore here we compare the results of the t0-method, with the incorrect method of
    329 multiplying the relative systematic uncertainties with the data provided, instead of
    330 calculating the systematic uncertainties in regards of the newly calculated parameters in
    331 every iteration. For demonstrational purposes only the single fitted experiments are pulled.
    332 Again we would like to reference the plots in Section \ref{plots}. In the following table
    333 the results of the incorrect method applied to fitting are shown.
    334 
    335 \begin{table}[H]
    336     \caption{Results of all experiment data wrongly fitted  separately\label{tabwrong}}
    337     \centering
    338     \begin{tabular}{|c|c|c|c|c|}
    339         \hline
    340         $\vec{p}$ & SND & CMD2 & KLOE & BABAR \\ \hline
    341         $M_{\rho}$   [MeV]           & $772.21	\pm 4.97$ & $774.51	\pm 2.59$ &$774.09	\pm 0.25 $&$773.42 \pm 0.54$ \\
    342         $\Gamma_{\rho}$   [MeV]      & $151.26	\pm 13.11$ & $145.18	\pm 5.83$ &$149.89	\pm 0.84 $&$149.29	\pm 1.01$\\
    343         $M_{\omega}$      [MeV]      & $781.03	\pm 0.47$ & $782.09	\pm 0.32$ &$782.79	\pm 0.18 $&$782.18	\pm 0.07$\\
    344         $\Gamma_{\omega}$  [MeV]     & $8.96	\pm 2.25    $ & $8.58	\pm 0.15$ &$11.11	\pm 0.70 $&$8.18	\pm 0.18$\\
    345         $\varepsilon_{\omega}$[]  & $2.14	\pm 0.68    $ & $1.85	\pm 0.38$ &$2.15	\pm 0.08 $&$1.94	\pm 0.04$\\
    346         \hline \hline
    347         $\chi^2_{min}/dof$      & $0.016$&$ 0.125$&$ 0.903$&$ 1.118$\\
    348         $p\text{-value}$        & $1.000$&$ 1.000$&$ 0.839$&$ 0.099$\\
    349         \hline
    350     \end{tabular}
    351 \end{table}
    352 
    353 
    354 \subsection{Plots\label{plots}}
    355 \begin{figure}[H]
    356     \centering
    357     \includegraphics[width=0.8\textwidth]{./plots/SND.png}
    358     \caption{SND data fit\label{fig1}}
    359 \end{figure}
    360 \begin{figure}[H]
    361     \centering
    362     \includegraphics[width=0.8\textwidth]{./plots/CMD2.png}
    363     \caption{CMD2 data fit\label{fig2}}
    364 \end{figure}
    365 \begin{figure}[H]
    366     \centering
    367     \includegraphics[width=0.8\textwidth]{./plots/KLOE.png}
    368     \caption{KLOE data fit\label{fig3}}
    369 \end{figure}
    370 \begin{figure}[H]
    371     \centering
    372     \includegraphics[width=0.8\textwidth]{./plots/BABAR.png}
    373     \caption{BABAR data fit\label{fig4}}
    374 \end{figure}
    375 
    376 
    377 
    378 \begin{figure}[H]
    379     \centering
    380     \includegraphics[width=0.8\textwidth]{./plots/SND-CMD2.png}
    381     \caption{SND and CMD2 fitted togther\label{fig5}}
    382 \end{figure}
    383 \begin{figure}[H]
    384     \centering
    385     \includegraphics[width=0.8\textwidth]{./plots/SND-KLOE.png}
    386     \caption{SND and KLOE fitted togther    \label{fig6}}
    387 \end{figure}
    388 \begin{figure}[H]
    389     \centering
    390     \includegraphics[width=0.8\textwidth]{./plots/SND-BABAR.png}
    391     \caption{SND and BABAR fitted togther   \label{fig7}}
    392 \end{figure}
    393 
    394 
    395 \begin{figure}[H]
    396     \centering
    397     \includegraphics[width=0.8\textwidth]{./plots/CMD2-KLOE.png}
    398     \caption{CMD2 and KLOE fitted togther   \label{fig8}}
    399 \end{figure}
    400 \begin{figure}[H]
    401     \centering
    402     \includegraphics[width=0.8\textwidth]{./plots/CMD2-BABAR.png}
    403     \caption{CMD2 and BABAR fitted togther   \label{fig9}}
    404 \end{figure}
    405 \begin{figure}[H]
    406     \centering
    407     \includegraphics[width=0.8\textwidth]{./plots/KLOE-BABAR.png}
    408     \caption{KLOE and BABAR fitted togther   \label{fig10}}
    409 \end{figure}
    410 
    411 \begin{figure}[H]
    412     \centering
    413     \includegraphics[width=0.8\textwidth]{./plots/multi.png}
    414     \caption{SND, CMD, KLOE and BABAR fitted togther   \label{fig11}}
    415 \end{figure}
    416 
    417 \begin{figure}[H]
    418     \centering
    419     \includegraphics[width=0.8\textwidth]{./plots/wrong-SND.png}
    420     \caption{Wrong method, SND data fit\label{fig12}}
    421 \end{figure}
    422 \begin{figure}[H]
    423     \centering
    424     \includegraphics[width=0.8\textwidth]{./plots/wrong-CMD2.png}
    425     \caption{Wrong method, CMD2 data fit\label{fig13}}
    426 \end{figure}
    427 \begin{figure}[H]
    428     \centering
    429     \includegraphics[width=0.8\textwidth]{./plots/wrong-KLOE.png}
    430     \caption{Wrong method, KLOE data fit\label{fig14}}
    431 \end{figure}
    432 \begin{figure}[H]
    433     \centering
    434     \includegraphics[width=0.8\textwidth]{./plots/wrong-BABAR.png}
    435     \caption{Wrong method, BABAR data fit\label{fig15}}
    436 \end{figure}
    437 
    438 \section{Conclusion}
    439 Under consideration of the D'Agostini bias in the calculations we arrive very close the the literature values in table \ref{tabref}.
    440 Furthermore the parameters in table \ref{tabsingle} all make the $\chi^2_{min}/dof$ value converge to $1$, making the goodnes of the fit very
    441 good. When fitting two experiments together the results according to the $\chi^2_{min}/dof$ value are only good for SND-CMD2, SND-BABAR
    442 and CMD2-BABAR, table \ref{tabtwo1} and \ref{tabtwo2}. Taking this into account we need to choose the experiments fitted together very
    443 carefully to arrive at good results, fitting all experiments together for instance does't provide a good  $\chi^2_{min}/dof$ value, table
    444 \ref{tabmulti}. Furthermore looking at the parameter fits without consideration of the D'Agostini bias we can conclude that the fits are
    445 obviously missing something, table \ref{tabwrong}.
    446 
    447 \printbibliography
    448 
    449 \end{document}