main.tex (21449B)
1 \documentclass[a4paper]{article} 2 3 \usepackage[T1]{fontenc} 4 \usepackage[utf8]{inputenc} 5 6 \usepackage{mathptmx} 7 8 \usepackage[a4paper, total={6in, 8in}]{geometry} 9 \usepackage{subcaption} 10 \usepackage[shortlabels]{enumitem} 11 \usepackage{amssymb} 12 \usepackage{amsthm} 13 \usepackage{mathtools} 14 \usepackage{braket} 15 \usepackage{bbm} 16 \usepackage{graphicx} 17 \usepackage{float} 18 \usepackage[colorlinks=true,naturalnames=true,plainpages=false,pdfpagelabels=true]{hyperref} 19 \usepackage[parfill]{parskip} 20 \usepackage[backend=biber, sorting=none]{biblatex} 21 \addbibresource{uni.bib} 22 \pagestyle{myheadings} 23 \markright{Popovic, Vogel\hfill Unbiased Fitting \hfill} 24 25 \title{University of Vienna\\ Faculty of Physics\\ \vspace{1.25cm} Theoretical Physics Lab-Course 2021S\\ 26 Quantum Entanglement at High Energies} 27 \author{Milutin Popovic \& Tim Vogel \vspace{1cm}\\ Supervisor: Prof. Dr. Beatrix C. 28 Hiesmayr} 29 \date{May the 9th, 2021} 30 31 \begin{document} 32 \maketitle 33 \noindent\rule[0.5ex]{\linewidth}{1pt} 34 \begin{abstract} 35 In this article we go through the lecture notes of Prof. Dr. Beatrix C. 36 Hiesmayr and the exercises given to us in the Theoretical Physics Lab-Course 37 in the summer semester of 2021. Precisely we look at entangled systems at high 38 energies, we learn about the Bells inequality and it's violation within the world 39 of quantum mechanics. 40 Furthermore we learn about the density matrix approach in quantum mechanics, 41 which allows us to look at the unstable particles with different decay rates 42 e.g. the K-meson. 43 \end{abstract} 44 \noindent\rule[0.5ex]{\linewidth}{1pt} 45 46 \tableofcontents 47 48 \section{Bell Theorem and Bell Inequality} 49 The Enstein-Podolsky-Rosen paradox argues that, because of hidden variables 50 not considered, quantum mechanics is incomplete. J.S. Bell in his paper \cite{bell}, 51 published in 1964 discovered what is known as the Bell's Theorem. The theorem 52 states in short that "In certain experiments all local realistic theories are 53 incompatible with quantum mechanics" \cite{bell}. This is achieved by 54 establishing a so called Bell inequality which satisfies the local realistic 55 theories but violates quantum mechanics. 56 57 To demonstrate the results of Bell, we consider a Wiegner-type Bell inequality 58 for spin-$\frac{1}{2}$ particles with a source that generates a Bell state 59 \begin{align}\label{eq:wtb} 60 P(\Uparrow \vec{a}, \Uparrow \vec{b}) \leq 61 P(\Uparrow \vec{a}, \Uparrow \vec{c}) + P(\Uparrow \vec{c}, \Uparrow \vec{b}) 62 \end{align} 63 64 here we denote the joint probability, of say Alice and Bob to find their 65 particles in the spin-up state, with respect to their orientation $\vec{a}, 66 \vec{b}$, $P(\Uparrow \vec{a}, \Uparrow \vec{b})$. For the source we consider 67 an antisymmetric Bell state $|\psi ^-\rangle$ in terms of $\vec{a}$. 68 \begin{align} 69 |\psi ^-\rangle = \frac{1}{\sqrt{2}}(|\Uparrow \vec{a}; \Downarrow 70 \vec{a}\rangle - |\Downarrow \vec{a}; \Uparrow \vec{a}\rangle). 71 \end{align} 72 Quantum Mechanics tells us how to calculate the probability 73 \begin{align}\label{eq:prob} 74 P^{QM}(\Uparrow \vec{a}, \Uparrow \vec{b}) = \left\|\langle\Uparrow \vec{a}; \Uparrow 75 \vec{b}|\psi ^-\rangle \right\|^2. 76 \end{align} 77 78 Furthermore quantum mechanics tells us how we can represent the ket 79 $|\Uparrow \vec{b}\rangle$ in terms $|\Uparrow \vec{a}\rangle$ and the other 80 way around. 81 \begin{align} 82 |\Uparrow \vec{b}\rangle &= \cos(\frac{\phi_{ab}}{2})|\Uparrow 83 \vec{a}\rangle + e^{i\theta_{ab}} \sin(\frac{\phi_{ab}}{2})|\Downarrow 84 \vec{a}\rangle\\ 85 |\Uparrow \vec{a}\rangle &= \sin(\frac{\phi_{ab}}{2})|\Uparrow 86 \vec{b}\rangle - e^{i\theta_{ab}} \cos(\frac{\phi_{ab}}{2})|\Downarrow 87 \vec{b}\rangle 88 \end{align} 89 90 where $\theta_{ab}$ is an unphysical phase in this case and is set to zero. 91 92 With this information we can derive the following results for the 93 probability in Equation \ref{eq:prob} (Task 1) 94 \begin{align} 95 P^{QM}(\Uparrow \vec{a}, \Uparrow \vec{b}) &= \left\|\langle\Uparrow \vec{a}; \Uparrow 96 \vec{b}|\psi ^-\rangle \right\|^2 \\ 97 &=\frac{1}{2} \left\|\langle\Uparrow \vec{a}; \Uparrow \vec{b}|\Uparrow 98 \vec{a}; \Downarrow \vec{a}\rangle - \langle \Uparrow \vec{a}; \Uparrow 99 \vec{b}| \Downarrow \vec{a}; \Uparrow \vec{a}\rangle\right\|^2 \\ 100 &= \frac{1}{2}\left\|(\langle\Uparrow \vec{a}|\Uparrow\vec{a}\rangle) 101 (\langle\Uparrow \vec{b}| \Downarrow \vec{a}\rangle) - (\underbrace{\langle\Uparrow 102 \vec{a}| \Downarrow \vec{a}\rangle}_{\bot})(\langle\Uparrow \vec{b}| 103 \Uparrow\vec{a}\rangle)\right\|^2 \\ 104 &=\frac{1}{2}\left\|\langle\Uparrow\vec{b}|\Downarrow\vec{a}\rangle\right\|^2 105 =\frac{1}{2}\sin^2(\frac{\phi_{ab}}{2}) 106 \end{align} 107 108 For the remaining probabilities in $|\Uparrow \vec{a}\Downarrow \vec{b}\rangle$,$|\Downarrow 109 \vec{a}\Uparrow\vec{b}\rangle$ and $|\Downarrow\vec{a}\Downarrow\vec{b} \rangle$ 110 we apply the same procedure to get 111 \begin{align} 112 P^{QM}(\Uparrow \vec{a}, \Downarrow \vec{b}) &= \left\|\langle\Uparrow 113 \vec{a}; \Downarrow \vec{b}|\psi^- \rangle\right\|^2 \\ 114 &=\frac{1}{2}\left\|\langle\Downarrow \vec{b}|\Downarrow 115 \vec{a}\rangle\right\|^2 = \frac{1}{2}\cos^2(\frac{\phi_{ab}}{2})\\ 116 \\ 117 P^{QM}(\Downarrow \vec{a}, \Downarrow \vec{b}) &= \left\|\langle\Downarrow 118 \vec{a}; \Downarrow \vec{b}|\psi^- \rangle\right\|^2 \\ 119 &=\frac{1}{2}\left\|\langle\Downarrow \vec{b}|\Uparrow 120 \vec{a}\rangle\right\|^2 = \frac{1}{2}\sin^2(\frac{\phi_{ab}}{2}) 121 \end{align} 122 123 Thus for the Bell inequality we get 124 125 \begin{align} 126 \frac{1}{2}sin^2(\frac{\phi_{ab}}{2}) \leq 127 \frac{1}{2}sin^2(\frac{\phi_{ac}}{2})+ 128 \frac{1}{2}sin^2(\frac{\phi_{cb}}{2}) 129 \end{align} 130 We can take $\vec{a}$, $\vec{b}$ to be in the same plane in $\mathbb{R}^3$ and 131 $\vec{c}$ ($\in \mathbb{R}^2$) to be the bisector of these two. This would imply 132 $\phi_{ac}=\phi_{cb}= \phi$ and $\phi_{ab}=2\phi$, which gives us. 133 \begin{align} 134 \sin^2(\phi) &\leq 2\sin^2(\frac{\phi}{2})\\ 135 \Leftrightarrow \cos(\frac{\phi}{2}) &\leq \frac{1}{2} 136 \end{align} 137 This is not always the case and is thereby an obvious contradiction. 138 139 Now we will derive the original inequality of John Stuart Bell\cite{bell}. 140 For this we consider the expectation values. The expectation value $E$ is expressed 141 in terms of probabilities of all possible outcomes. 142 \begin{align} 143 E(\vec{a}, \vec{b}) &= P(\Uparrow \vec{a}, \Uparrow \vec{b}) + P(\Downarrow 144 \vec{a}, \Downarrow \vec{b}) -P(\Uparrow \vec{a}, \Downarrow \vec{b}) 145 -P(\Downarrow \vec{a}, \Uparrow \vec{b})\\ 146 E(\vec{a}, \vec{c}) &= P(\Uparrow \vec{a}, \Uparrow \vec{c}) + P(\Downarrow 147 \vec{a}, \Downarrow \vec{c}) -P(\Uparrow \vec{a}, \Downarrow \vec{c}) 148 -P(\Downarrow \vec{a}, \Uparrow \vec{c})\\ 149 E(\vec{c}, \vec{b}) &= P(\Uparrow \vec{c}, \Uparrow \vec{b}) + P(\Downarrow 150 \vec{c}, \Downarrow \vec{b}) -P(\Uparrow \vec{c}, \Downarrow \vec{b}) 151 -P(\Downarrow \vec{c}, \Uparrow \vec{b}) 152 \end{align} 153 The sum of spin-up/spin-down and spin-down/spin-up probabilities needs to be 154 one, with this we get. 155 \begin{align} 156 P(\Uparrow \vec{a}, \Uparrow \vec{b}) = E(\vec{a}, \vec{b}) - P(\Downarrow 157 \vec{a}, \Downarrow \vec{b}) + 1\\ 158 P(\Uparrow \vec{a}, \Uparrow \vec{c}) = E(\vec{a}, \vec{c}) - P(\Downarrow 159 \vec{a}, \Downarrow \vec{c}) + 1\\ 160 P(\Uparrow \vec{c}, \Uparrow \vec{b}) = E(\vec{c}, \vec{b}) - P(\Downarrow 161 \vec{c}, \Downarrow \vec{b}) + 1 162 \end{align} 163 Plugging this into the inequality in equation \ref{eq:wtb} we get 164 \begin{align} 165 E(\vec{a}, \vec{b}) - E(\vec{a}, \vec{c}) &\leq E(\vec{c}, \vec{b}) + 1\\ 166 & + P(\Downarrow \vec{a}, \Downarrow \vec{b}) -P(\Downarrow \vec{a}, 167 \Downarrow \vec{c}) -P(\Downarrow \vec{c}, \Downarrow \vec{b}) 168 \label{eq:rightside} 169 \end{align} 170 The term in equation \ref{eq:rightside} satisfies the bell inequality if the 171 term on the left is strictly positive. Thus we get the original Bell inequality 172 \begin{align} 173 |E(\vec{a}, \vec{b}) - E(\vec{a}, \vec{c})| \leq E(\vec{c}, \vec{b}) + 1 174 \end{align} 175 \section{Quantum System of K-mesons} 176 Kaons were discovered in 1947 by Rochester and Butler, where cosmic ray 177 particles hit a lead plate and produced a neutral particle. The neutral 178 particle is named kaon, it was noticed through its decay in two charged 179 pions. $K^0$, the kaon, is the first strange particle. 180 The neutral kaons are states of quarks and anti-quarks, the ket 181 $|K^0\rangle = |d\bar{s}\rangle$ denotes the neutral K-meson, and its 182 antiparticle is $|\bar{K}^0\rangle = |\bar{d}s\rangle$. The state of the kaon 183 is entangled in the sense that the particle $K^0$ can turn into an antiparticle 184 $\bar{K}^0$ before decay through strangeness oscillation, a particle-antiparticle oscillation. 185 186 187 There are two states, the long lived kaon $K_L$ and the short lived kaon $K_S$ 188 which diagonalize the Hamiltonian, 189 the difference of their decay rates is about a factor of $600$. 190 The thing is $K_L$ should decay into three pions, while $K_S$ should decay 191 into two pions. But in 1964 Cronin and Fitch found out that the long lived 192 kaon can also decay into two pions, which directly implies a $CP$ symmetry violation. 193 $CP$ symmetry (charge conjugation parity symmetry) in particle physics states 194 that physics is the same if instead of looking at an particle we looked at its 195 antiparticle. 196 197 The short lived kaon $K_S$ and the long lived kaon $K_L$ can be expressed in 198 terms of $|K^0\rangle$ and $|\bar{K^0}\rangle$ as follows, 199 200 \begin{align} 201 |K_S\rangle &= \frac{1}{N}(p|K^0\rangle - q|\bar{K}^0\rangle) \\ 202 |K_L\rangle &= \frac{1}{N}(p|K^0\rangle + q|\bar{K}^0\rangle) 203 \end{align} 204 where $p = 1+\varepsilon$, $q=1-\varepsilon$ and $N^2 = |p|^2 + |q|^2$, 205 $\varepsilon$ is called the $CP$ violating parameter and can be measured, with 206 a magnitude of $|\varepsilon| \approx 10^{-3}$ \cite{Bertlmann} . Note 207 that these two states are NOT orthogonal due to the $CP$ violation. 208 209 210 Furthermore the connection to the $CP$ basis is, 211 \begin{align} 212 |K_1\rangle &= \frac{1}{\sqrt{2}}(|K^0\rangle - e^{i\alpha}|\bar{K}^0\rangle) \\ 213 |K_2\rangle &= \frac{1}{\sqrt{2}}(|K^0\rangle + e^{i\alpha}|\bar{K}^0\rangle) \\ 214 \end{align} 215 here $\alpha$ is an unphysical phase and is conventionally set to zero. 216 217 218 \subsection{CP-Symmetry violation} 219 The violation in symmetry can be seen considering the Bell inequality 220 \begin{align}\label{eq:leqk} 221 P(K_S, \bar{K}^0) \leq P(K_S, K_1) + P(K_1, \bar{K}^0) 222 \end{align} 223 where $P(K_S, \bar{K}^0)$ is the probability of finding $K_S$ on the right and 224 $\bar{K}^0$ on the left at the time of measurement at $t=0$, $K_1$ denotes a 225 completely unphysical state and cannot be measured. Quantum mechanics gives us 226 the tools to calculate these probabilities, the calculation gives 227 \begin{align} 228 |p|&\leq |q|\\ 229 \Leftrightarrow \delta &:= \frac{|p|^2 - |q|^2}{|p|^2+|q|^2} \leq 0 230 \end{align} 231 232 Changing the choice of $\bar{K}^0$ and $K^0$ in equation \ref{eq:leqk} we 233 calculate the probabilities again: 234 \begin{align} 235 P^{QM}(K_S, K^0)&=\left\|\langle K_S, K^0|\psi ^-\rangle\right\| 236 ^2=\frac{|q|^2}{4N^2} \\ 237 P^{QM}(K_S, K_1)&= \left\|\langle K_S, K_1|\psi ^-\rangle\right\|^2= 238 \frac{1}{4N^2}\left|q-pe^{i\alpha}\right|\\ 239 P^{QM}(K_1, K^0)&=\left\|\langle K_1, K^0|\psi ^-\rangle\right\| ^2= 240 \frac{1}{4}|e^{i\alpha}|^2 241 \end{align} 242 Inserting this into the inequality in equation \ref{eq:leqk} and applying some 243 basic algebra we get 244 \begin{align} 245 |q| &\leq |p|\\ 246 \Leftrightarrow \delta &= \frac{|p|^2 - |q|^2}{|p|^2+|q|^2} \geq 0 247 \end{align} 248 implying a strict equality 249 \begin{align} 250 \delta = 0. 251 \end{align} 252 This contradicts the experimental value of $\delta$ (citation from slides). 253 \begin{align} 254 \delta_{exp} = (3.27\pm 0.12)\cdot 10^{-1}. 255 \end{align} 256 257 We can say that the CP-violation is directly related to the violation of the 258 Bell Inequality and entanglement. 259 If CP-symmetry were true the long lived kaon would decay via two paths in equal 260 amounts, which is not the case. Also 261 according to the Big-Bang-Theory the amount 262 of matter and antimatter initially created is equal, but according to 263 experimental results CP-asymmetry means that there is an imbalance in 264 matter and that physics differs for particles and antiparticles. 265 266 \subsection{Efficient description of decaying quantum systems} 267 The neutral kaon system, is usually described by an effective Schrödinger-equation, 268 which is given by the Lioville von Neumann form as: 269 \begin{equation} 270 \frac{d}{dt}\rho=-iH_{eff}\rho+i\rho H^\dagger_{eff} 271 \end{equation} 272 where $\rho$ is a 2x2 density matrix and $H_{eff}$ non hermitian. The Hamiltonian can 273 be decomposed via the Wigner-Weisskopf approximation into: $H_{eff}=M-\frac{i}{2}\Gamma$, 274 with the 2x2 mass matrix $H$ and the 2x2 decay matrix $\Gamma$ both being positive and hermitian. 275 What we are now concerned with, is the question, whether $H^\dagger_{eff}$ 276 can also be decomposed and the implications the result gives. 277 Starting from the decomposed $H_{eff}$, applying the dagger, we get: 278 \begin{equation} 279 H^\dagger_{eff}=M^T+\frac{i}{2}\Gamma^T 280 \end{equation} 281 which leads to: 282 \begin{equation} 283 H^\dagger_{eff}=\left( \begin{array}{cc} 284 M_0+\frac{i}{2}\Gamma_0 & (M_{12})^*+\frac{i}{2}(\Gamma_{12})^* \\ 285 (M_{12})+\frac{i}{2}(\Gamma_{12})^* & M_0+\frac{i}{2}\Gamma_0 286 \end{array}\right) 287 \end{equation} 288 This final matrix can now be brought into the form: 289 \begin{equation} 290 \begin{pmatrix} 291 A^* & B^*r \\ 292 \frac{B^*}{r} & A^* 293 \end{pmatrix} 294 \end{equation} 295 with $A,B and r$ being complex numbers. 296 \newline 297 We now compute the Eigenvalues of this matrix, giving: 298 \begin{equation} 299 (A^*-\lambda)^2-(B^*)^2 \rightarrow \lambda=A^*\pm B^* 300 \end{equation} 301 With this, the Eigenvectors take the form: 302 \begin{equation} 303 v_1=\begin{pmatrix} 304 r^* \\ 305 1 306 \end{pmatrix} 307 \end{equation} 308 and 309 \begin{equation} 310 v_2=\begin{pmatrix} 311 -r^* \\ 312 1 313 \end{pmatrix} 314 \end{equation} 315 We now define the matrices: 316 \begin{equation} 317 R^{-1}= 318 \begin{pmatrix} 319 r^* & -r^* \\ 320 1 & 1 321 \end{pmatrix} 322 \end{equation} 323 and 324 \begin{equation} 325 R= \frac{1}{2r} 326 \begin{pmatrix} 327 1 & r^* \\ 328 -1 & r^* 329 \end{pmatrix} 330 \end{equation} 331 and with 332 \begin{equation} 333 RH^\dagger_{eff}R^{-1}= 334 \begin{pmatrix} 335 A^*+B^* & 0 \\ 336 0 & A^*-B^* 337 \end{pmatrix} 338 \end{equation} 339 we finally find values for $\ket{K_S}$ and $\ket{K_L}$ which explicitly are: 340 \begin{equation} 341 \ket{K_S}=\frac{1}{\sqrt{1+|r|^2}}(-r^*\ket{K^0}+\ket{\bar{K^0}}) 342 \end{equation} 343 and 344 \begin{equation} 345 \ket{K_L}=\frac{1}{1+|r|^2}(r^*\ket{K^0}-\ket{\bar{K^0}} 346 \end{equation} 347 We now want to calculate the overlap of these eigenvectors. We start with the 348 overlap in $H_{eff}$, which is given by: 349 \begin{equation} 350 \braket{K_S|K_L}=\frac{1-|r|^2}{1+|r|^2} 351 \end{equation} 352 We now define $\varepsilon=\frac{1-r}{1+r}\rightarrow r=\frac{1-\varepsilon}{1+\varepsilon}$, which leads to: 353 \begin{equation} 354 \braket{K_S|K_L}=\frac{|\varepsilon+1|^2-|\varepsilon-1|^2}{|\varepsilon+1|^2+|\varepsilon-1|^2} 355 \end{equation} 356 And with only considering the real part of Epsilon, we finally obtain: 357 \begin{equation} 358 \braket{K_S|K_L}=\frac{2Re(\varepsilon}{|\varepsilon|^2+1}) 359 \end{equation} 360 We now do the same for the overlap in $H^\dagger_{eff}$, and thereby obtain the result: 361 \begin{equation} 362 \braket{K_S|K_L}=\frac{1-|r|^2}{1+|r|^2}=\frac{2Re(\varepsilon)}{1+|\varepsilon|^2} 363 \end{equation} 364 This means, that in both cases we obtain a CP-violation. 365 \subsection{Charge asymmetry} 366 Finally, we look at the following charge asymmetry term, given by: 367 \begin{equation} 368 \delta(t)=\frac{P(K^0,t;|K^0|)-P(\bar{K^0},t;|K^0|)}{P(K^0,t;|K^0|)+P(\bar{K^0},t;|K^0|)} 369 \end{equation} 370 Fist we define the following ket: 371 \begin{equation} 372 \ket{K^0(t)}=\frac{\sqrt{1+|\varepsilon}|^2}{\sqrt{2}(1+\varepsilon)}(\exp{(-i\lambda_st)}\ket{K_S}+\exp{(-i\lambda_Lt)}\ket{K_L} 373 \end{equation} 374 with: $\lambda_{S/L}=m{_S/L}-\frac{i}{2}\Gamma_{S/L}$. We now compute the probabilities $P(\bar{K^0},t;|K^0|)$ and $P(K^0,t;|K^0|)$, and obtain: 375 \begin{equation} 376 P(K^0,t;|K^0|)=\frac{1}{2|1+\varepsilon|^2}|e^{-i\lambda_S t}+ 377 \varepsilon e^{-i\lambda_L t}|^2 378 \end{equation} 379 and 380 \begin{equation} 381 P(\bar{K^0},t;|K^0|)=\frac{1}{2|1-\varepsilon|^2}| 382 e^{-i\lambda_S t}-\varepsilon e^{-i\lambda_L t}|^2 383 \end{equation} 384 Then: 385 \begin{equation} 386 \delta(t)=\frac{\frac{1}{|1+\varepsilon|^2}| 387 e^{-i\lambda_S t}+\varepsilon 388 e^{-i\lambda_L t}|^2-\frac{1}{|1-\varepsilon|^2}| 389 e^{-i\lambda_S t}-\varepsilon 390 e^{-i\lambda_L t}|^2}{\frac{1}{|1+\varepsilon|^2}| 391 e^{-i\lambda_S t}+\varepsilon 392 e^{-i\lambda_L t}|^2+\frac{1}{|1-\varepsilon|^2}| 393 e^{-i\lambda_S t}-\varepsilon 394 e^{-i\lambda_L t}|^2} 395 \end{equation} 396 and with the limit of $t\rightarrow 0$ we obtain the result: 397 \begin{equation} 398 \delta(t)=\frac{|1-\varepsilon|^2-|1+\varepsilon|^2}{|1+\varepsilon|^2+|1-\varepsilon|^2} 399 \end{equation} 400 And by expansion of the leading order in $Re(\varepsilon)$, finally: 401 \begin{equation} 402 \frac{|1-\varepsilon|^2-|1+\varepsilon|^2}{|1+\varepsilon|^2+|1-\varepsilon|^2}=2Re(\varepsilon)+\mathcal{O}(\varepsilon^3) 403 \end{equation} 404 \subsection{Density Matrix Approach Time Evolution} 405 In this section we describe an open quantum system with unstable particles 406 (e.g. K-mesons) with the Lindbad-Gorini-Kossakowsky-Sudarhasanan master equation, 407 an density matrix approach, by enlarging the Hilbertspace\cite{bgh}. With this 408 larger Hilbertspace $\textbf{H}_{tot} = \textbf{H}_s \oplus \textbf{H}_f$ we take 409 into consideration both the "surviving"($\textbf{H}_s$) and the "decaying" or 410 "final" ($\textbf{H}_f$) 411 states and thus get a positive time evolution described by a non-hermitian 412 Hamiltonian $H_{eff}$ and a dissipator $\mathcal{D}$ of the Lindbad operator 413 $L$. The time evolution of the density matrix $\varrho \in \mathbf{H}_{tot}$ is given by the master 414 equation in the Lindbad form 415 \begin{align}\label{eq:master} 416 \frac{d\varrho}{dt} &= -[H, \varrho] - \mathcal{D}[\varrho]\\ 417 \text{with}\;\;\;\; \mathcal{D}[\varrho] &= \frac{1}{2} \sum_{j=0} (L^{\dagger}_j L_j \varrho + \varrho 418 L^{\dagger}_j L_j - L_j \varrho L^{\dagger}_j) 419 \end{align} 420 where the density matrix $\varrho$ is a $4x4$ matrix with components 421 $\varrho_{ij}$ ($i,j = s,f$) which are $2x2$ matrices, with the property 422 $\varrho^\dagger_{sf} = \varrho_{fs}$ 423 \begin{align} 424 \varrho = 425 \begin{pmatrix} 426 \varrho_{ss} & \varrho_{sf} \\ 427 \varrho_{fs} & \varrho_{ff} 428 \end{pmatrix}. 429 \end{align} 430 The Hamiltonian $H$ is an extension of the effective Hamiltonian $H_{eff}$ on 431 the total Hilbertspace $\textbf{H}_{tot}$ 432 \begin{align} 433 H = 434 \begin{pmatrix} 435 H_{eff} & 0 \\ 436 0 & 0 437 \end{pmatrix}. 438 \end{align} 439 Furthermore the Lindbad generator $L_0$ is defined with 440 $B:\textbf{H}_s \rightarrow \textbf{H}_f$, where $B^\dagger B = \Gamma$, decay 441 matrix $\Gamma$ from the effective Hamiltonian $H_{eff}$, 442 \begin{align} 443 L_0 = 444 \begin{pmatrix} 445 0 & 0 \\ 446 B & 0 447 \end{pmatrix} \;\;\;\; 448 L_j = 449 \begin{pmatrix} 450 A_j & 0 \\ 451 0 & 0 452 \end{pmatrix} \;\;\;\;\; (\text{with}\; j > 0). 453 \end{align} 454 455 Rewriting the master equation in \ref{eq:master} we get the following 456 differential equations for the density matrix components 457 \begin{align} 458 \dot{\varrho}_{ss} &= -i[H_{eff},\varrho{ss}] - \frac{1}{2}\{B^\dagger 459 B,\varrho_{ss} \} - \tilde{D}[\varrho_{ss}],\\ 460 \dot{\varrho}_{sf} &= -iH_{eff}\varrho_{sf} - \frac{1}{2} B^\dagger B \varrho_{sf} 461 -\frac{1}{2}\sum_j A_j^\dagger A_j \varrho_{sf},\\ 462 \dot{\varrho}_{ff} &=B\varrho_{ss}B^\dagger . 463 \end{align} 464 with $\tilde{D}[\varrho_{ss}] = \frac{1}{2} \sum_{j=0} (A^{\dagger}_j A_j 465 \varrho_{ss} + \varrho_{ss} 466 A^{\dagger}_j A_j - A_j \varrho_{ss} A^{\dagger}_j)$.\newline 467 468 Now we solve these equations for the case without decoherence, meaning the 469 Lindbad Operators operators $A_j$ disappear and we can rewrite the equations 470 for $\varrho_{ss}$ above in 471 \begin{align} 472 \dot{\varrho_{ss}} &= -[H_{eff}, \varrho_{ss}] - \frac{1}{2} \{\Gamma, 473 \varrho_{ss}\}=\\ 474 &=-i((M-\frac{i}{2}\Gamma)\varrho_{ss} - \varrho_{ss}(M-\frac{i}{2}\Gamma)) 475 -\frac{1}{2}(\Gamma \varrho_{ss} + \varrho_{ss}\Gamma)\\ 476 &= -i\underbrace{[M, \varrho_{ss}]}_{=0} - \varrho_{ss} \Gamma\\ 477 &= -\varrho_{ss}\Gamma \\ 478 \Rightarrow \;\;\; \varrho_{ss} &= \varrho_{ss}(0) e^{-\Gamma t}. 479 \end{align} 480 For $\varrho_{sf}$ we get 481 \begin{align} 482 \dot{\varrho}_{sf} &= -i H_{eff} \varrho_{sf} - \frac{1}{2} \Gamma 483 \varrho_{sf} =\\ 484 &= -iM\varrho_{sf}\\ 485 \Rightarrow \;\;\; \varrho_{sf} &= \varrho_{sf}(0) e^{-iM t}. 486 \end{align} 487 And for $\varrho_{ff}$ 488 \begin{align} 489 \dot{\varrho}_{ff} &= B\varrho_{ss}B^\dagger \\ 490 \Rightarrow \;\;\; \varrho_{ff}&= B\int \varrho_{ss}dt B^\dagger \\ 491 &= -B\varrho_{ss}(0) \Gamma^{-1} e^{-\Gamma t} B^\dagger + \varrho_{ff}(0) 492 \end{align} 493 494 In reality the decay rates of particles differ e.g. $K_S$ and $K_L$, the 495 density matrix allows such things to be taken care of by mathematically 496 extending the Hilbertspace and including the Lindbad operator. We could also 497 consider a particle with three different decay rates, though the Hamiltonian 498 would be a nine dimensional. In this regard we might say that the master 499 equation \ref{eq:master} is a more general Schrödinger equation, 500 because it not only describes pure quantum states but 501 also mixed states. 502 503 \nocite{carla} 504 \nocite{bgh} 505 \nocite{mexico} 506 \printbibliography 507 \end{document}