tprak

Theoretical Physics Practical Training
git clone git://popovic.xyz/tprak.git
Log | Files | Refs

main.tex (18863B)


      1 \documentclass[a4paper]{article}
      2 
      3 \usepackage[T1]{fontenc}
      4 \usepackage[utf8]{inputenc}
      5 
      6 \usepackage{mathptmx}
      7 
      8 \usepackage[a4paper, total={6in, 8in}]{geometry}
      9 \usepackage{subcaption}
     10 \usepackage[shortlabels]{enumitem}
     11 \usepackage{bbm}
     12 \usepackage{amssymb}
     13 \usepackage{amsthm}
     14 \usepackage{mathtools}
     15 \usepackage{braket}
     16 \usepackage{bbm}
     17 \usepackage{graphicx}
     18 \usepackage{float}
     19 \usepackage{multirow}
     20 \usepackage[colorlinks=true,naturalnames=true,plainpages=false,pdfpagelabels=true]{hyperref}
     21 \usepackage[parfill]{parskip}
     22 \usepackage[backend=biber, sorting=none]{biblatex}
     23 
     24 \addbibresource{uni.bib}
     25 \pagestyle{myheadings}
     26 
     27 \usepackage{tikz}
     28 \usetikzlibrary{patterns,decorations.pathmorphing,positioning}
     29 
     30 \usepackage[framemethod=TikZ]{mdframed}
     31 
     32 \tikzstyle{titlered} =
     33     [draw=black, thick, fill=white,%
     34         text=black, rectangle,
     35         right, minimum height=.7cm]
     36 
     37 \newcounter{exercise}
     38 
     39 \renewcommand*\theexercise{Exercise~\arabic{exercise}}
     40 
     41 \makeatletter
     42 \mdfdefinestyle{exercisestyle}{%
     43     outerlinewidth=1em,%
     44     outerlinecolor=white,%
     45     leftmargin=-1em,%
     46     rightmargin=-1em,%
     47     middlelinewidth=1.2pt,%
     48     roundcorner=5pt,%
     49     linecolor=black,%
     50     backgroundcolor=blue!5,
     51     innertopmargin=1.2\baselineskip,
     52     skipabove={\dimexpr0.5\baselineskip+\topskip\relax},
     53     skipbelow={-1em},
     54     needspace=3\baselineskip,
     55     frametitlefont=\sffamily\bfseries,
     56     settings={\global\stepcounter{exercise}},
     57     singleextra={%
     58         \node[titlered,xshift=1cm] at (P-|O) %
     59             {~\mdf@frametitlefont{\theexercise}~};},%
     60     firstextra={%
     61             \node[titlered,xshift=1cm] at (P-|O) %
     62                     {~\mdf@frametitlefont{\theexercise}~};},
     63 }
     64 \makeatother
     65 
     66 \newenvironment{MyExercise}%
     67 {\begin{mdframed}[style=exercisestyle]}{\end{mdframed}}
     68 
     69 
     70 
     71 
     72 
     73 \markright{Popovic, Vogel\hfill Detection of Quantum Entanglement with MUBs \hfill}
     74 
     75 \title{Universität Wien\\ Fakultät für Physik\\
     76 \vspace{1.25cm}Labcours Theoretical Physik 2021S \\ Detection of Quantum
     77 Entanglement with MUBs
     78 }
     79 \author{Milutin Popovic \& Tim Vogel \vspace{1cm}\\ Betreuerin: Beatrix C. Hiesmayr}
     80 \date{20. Juni, 2021}
     81 
     82 \begin{document}
     83 \maketitle
     84 
     85 \noindent\rule[0.5ex]{\linewidth}{1pt}
     86 \begin{abstract}
     87     In this lab course we go through the QM problem of detecting entangled and
     88     separable states. Even thought given a density matrix we cannot always know if
     89     the state is separable or entangled. Thus a new concept is introduced, a
     90     witness function build upon by the so called mutually unbiased bases short
     91     MUBs. With help of the witness we can experimentally test to prove
     92     entangled Bell states.
     93 \end{abstract}
     94 \noindent\rule[0.5ex]{\linewidth}{1pt}
     95 
     96 \tableofcontents
     97 
     98 \section{Background}
     99 \subsection{Heisenberg's uncertainty relation-Robertson version}
    100 Given an observable $\mathcal{A}$ we can define a hermitian operator $\hat{A}$
    101 , given a state $\psi$, we can define the expectation value $\langle \hat{A} \rangle _\psi
    102 = \text{Tr}(\hat{A}\psi)$ and thus a standard derivation $(\Delta
    103 \hat{A})^2_\psi = \langle \hat{A}^2 \rangle_\psi - \langle \hat{A}
    104 \rangle_\psi^2$, where any such operator needs to satisfy.
    105 \begin{align}
    106     \langle \hat{A}^\dagger \hat{A} \rangle_\psi = \langle
    107     \psi|\hat{A}^\dagger\hat{A} \rangle = \langle \hat{A}\psi | \hat{A}\psi
    108         \rangle \geq 0.
    109 \end{align}
    110 Furthermore two arbitrary hermitian operators $\hat{A}$ and $\hat{B}$ hold the
    111 following inequality
    112 \begin{align}
    113     (\Delta \hat{A})_\psi \cdot (\Delta \hat{B})_\psi \geq \frac{1}{2} |\langle
    114     \hat{A}, \hat{B}\rangle_\psi|
    115 \end{align}
    116 for any state $\psi$. This uncertainty is called the Heisenberg's uncertainty
    117 principle and forms a fundamental basis for quantum mechanics the
    118 unpredictability of quantum mechanics.
    119 
    120 \subsection{Entropic Uncertainty Relations-Quantum Information Theoretical
    121 Formulation}
    122 In quantum-information theory the entropic uncertainty is defined as the
    123 following
    124 \begin{align}
    125     H(\hat{O}_n) + H(\hat{O}_m) \geq - \log_2\bigg(\max_{i,j}\{|\langle
    126     \chi_n^i|\chi_m^j \rangle|^2\} \bigg) = log_2(|\frac{1}{\sqrt{2}}|^2)
    127 \end{align}
    128 where $H(\bar{0})_n$ is the binary entropy for a pure state $\psi$
    129 \begin{align}
    130     H(\bar{O}_n) = -p(n)\log_2(p(n)) -(1-p(n))\log_2(1-p(n))
    131 \end{align}
    132 and $p(n) = |\langle \chi_n | \psi \rangle|^2$ is the probability for the
    133 outcome $n$ of $\hat{O}_n$ for $\psi$.
    134 
    135 The entropic uncertainty relation can be extended for an arbitrary number of
    136 outcomes, $d$, with the von-Neumann Entropy $S(\hat{O}_n)$
    137 \begin{align}
    138     &S(\hat{O}_n) + S(\hat{O}_m) \geq - \log_d\bigg(\max_{i,j}\{|\langle
    139     \chi_n^i|\chi_m^j \rangle|^2\} \bigg)\\
    140     \nonumber\\
    141     &S(\hat{O}_n) = -\sum^{d-1}_{i=0} p_n(i)\ln(p_n(i)) \;\;\;\ \text{or}\\
    142     &S(\hat{O}_n) = -\text{Tr}(\hat{O} \ln(\hat{O})). \label{eq:vn}
    143 \end{align}
    144 
    145 \subsection{Mutually Unbiased Bases (MUBs)}
    146 A ONB of a $d$-dimensional Hilbert space is $B = \{|i \rangle\} = \{|0\rangle ,\dots,
    147 |(d-1)\rangle \}$. In quantum information theory a set of orthonormal bases
    148 $\{B_1, \dots, B_m\}$ (each an ONB of the $d$-dimensional Hilbertspace $H^d$) is called mutually
    149 unbiased if
    150 \begin{align}
    151     |\langle i_k| j_{k'}\rangle|^2 = \delta_{k,k'}\delta_{i,j}
    152     (1-\delta_{k,k'})\frac{1}{d}
    153 \end{align}
    154 
    155 Thus the maximum of the entropy uncertainty relation is
    156 
    157 \begin{align}
    158     S(\hat{O}_n) + S(\hat{O}_m) \geq - \log_d(\frac{1}{d})
    159 \end{align}
    160 
    161 \subsection{Construction of MUBs \label{sec:mubs}}
    162 In this section we will show how to construct mutually unbiased bases (MUBs)
    163 using the Hadamard Matrix $\mathbb{H}$. In fact two orthonormal basies are
    164 connected by the Hadamard Matrix (unitary)
    165 \begin{align}
    166     \mathbb{H}=\sum_{i,j} \frac{1}{\sqrt{d}} e^{i\phi_{ij}}|i\rangle\langle j|.
    167 \end{align}
    168 where $\phi_{i,j}$ is a phase chosen such that the $\mathbb{H}$ is unitary. A
    169 simple choice $e^{i\phi_{i,j}} = \omega^{-ij} = e^{\frac{2\pi i}{d}}$ always
    170 works. In this case the matrix is called the Fourier matrix
    171 \begin{align}
    172     \mathbb{H}=\sum_{i,j} \frac{1}{\sqrt{d}} \omega^{-ij}|i\rangle\langle j|.
    173 \end{align}
    174 Furthermore the Hadamard matrix is directly related to the generalized
    175 Pauli-matrices.
    176 \begin{align}
    177     &\sigma_{\mathbb{Z}} = \sum_i \omega^i |i\rangle\langle i|\\
    178     &\sigma_{\mathbb{X}} = \mathbb{H}\sigma_{\mathbb{Z}} \mathbb{H} = \sum_i
    179     |i+1\rangle\langle i|\\
    180     &\sigma_{\mathbb{X}}\sigma_{\mathbb{Z}} = i \sigma_{\mathbb{Y}}.
    181 \end{align}
    182 
    183 All this means, the problem of finding MUBs, essentially narrows down, to finding
    184 these Hadamad matrices.
    185 \newline
    186 
    187 A second way of constructing MUBs is the so called Heisenberg-Weyl
    188 construction. If $d$ is prime, the eigenvectors of the operators, form a MUB,
    189 which looks like:
    190 \begin{align}
    191     (\sigma_\mathbb{Z},\sigma_\mathbb{X},\sigma_\mathbb{X}.
    192     \sigma_\mathbb{Z},\sigma_\mathbb{X}.\sigma^2_\mathbb{Z},...,\sigma_\mathbb{X}.
    193     \sigma^{d-1}_\mathbb{Z})
    194 \end{align}
    195 
    196 \textbf{Examples:}
    197 \newline
    198 
    199 MUBs for qubits (d=2)
    200 \begin{align}
    201     &B_1 = \{|0_1\rangle, |1_1\rangle\} = \{|0\rangle, |1\rangle\}\\
    202     &B_2 = \{|0_2\rangle, |1_2\rangle\} = \frac{1}{\sqrt{2}} \{|0\rangle
    203     +|1\rangle , |0\rangle - |1\rangle\}\\
    204     &B_2 = \{|0_3\rangle, |1_3\rangle\} = \frac{1}{\sqrt{2}} \{|0\rangle
    205     +i|1\rangle , |0\rangle - i|1\rangle\}\\
    206 \end{align}
    207 
    208 MUBs for qutrits (d=3)
    209 \begin{align}
    210     &B_1 = \{|0_1\rangle, |1_1\rangle, |2_1\rangle\} =
    211     \bigg\{
    212         \begin{pmatrix}1 \\ 0\\0\end{pmatrix},
    213         \begin{pmatrix}0 \\ 1\\0\end{pmatrix},
    214         \begin{pmatrix}0 \\ 0\\1\end{pmatrix}
    215     \bigg\}
    216     \\
    217     &B_2 = \{|0_2\rangle, |1_2\rangle, |2_2\rangle\} =
    218     \frac{1}{\sqrt{3}}
    219     \bigg\{
    220         \begin{pmatrix}1 \\ 1\\1\end{pmatrix},
    221         \begin{pmatrix}1 \\ \omega\\\omega^2\end{pmatrix},
    222         \begin{pmatrix}1 \\ \omega^2\\\omega\end{pmatrix}
    223     \bigg\}
    224     \\
    225     &B_3 = \{|0_3\rangle, |1_3\rangle, |2_1\rangle\} =
    226     \frac{1}{\sqrt{3}}
    227     \bigg\{
    228         \begin{pmatrix}1 \\\omega\\\omega\end{pmatrix},
    229         \begin{pmatrix}1 \\ \omega^2\\1\end{pmatrix},
    230         \begin{pmatrix}1 \\ 1\\\omega^2\end{pmatrix}
    231     \bigg\}        \\
    232     &B_4 = \{|0_4\rangle, |1_1\rangle, |2_1\rangle\} =
    233     \frac{1}{\sqrt{3}}
    234     \bigg\{
    235         \begin{pmatrix}1 \\\omega^2\\\omega^2\end{pmatrix},
    236         \begin{pmatrix}1 \\ \omega\\1\end{pmatrix},
    237         \begin{pmatrix}1 \\ 1\\\omega\end{pmatrix}
    238     \bigg\}
    239 \end{align}
    240 
    241 With these bases we can define an bell state seed $\Omega_{0,0}$ with $P_{0,0}
    242 = |\Omega_{0,0}\rangle\langle \Omega_{0,0}|$,
    243 \begin{align}\label{eq:arb}
    244     |\Omega_{0,0}\rangle  = \frac{1}{\sqrt{d}} \sum_{s=0}^{d-1} |ss\rangle
    245 \end{align}
    246 extending this with the Wely operators $W_{kl}$ we can arrive at an arbitrary
    247 bell state $P_{i,j}$
    248 \begin{align}
    249     &|\Omega_{k,l}\rangle = W_{kl} \otimes \mathbbm{1}|\Omega_{0,0}\rangle\\
    250     \nonumber\text{where:}\\
    251     &W_{kl} = \sum_{j=0}^{d-1} \omega^{j\cdot k} |j\rangle \langle j+l|
    252 \end{align}
    253 where $\omega = e^{\frac{2\pi i}{d}}$ and $\sum_{j=0}^{d-1} \omega^j = 0$.
    254 
    255 \subsection{Detecting Entanglement via MUBs}
    256 One of the most important aspects of quantum theory, is the prediction of
    257 entanglement, and furthermore finding ways to construct experiments, that, with
    258 minimal effort allow the creation of so called entanglement witnesses for
    259 entanglement detection. Because, the bigger a system gets, the more
    260 measurements are needed, which for huge systems is often straight up impossible
    261 to realize. So, essentially, quantum theory tries to witness entanglement with
    262 as few measurements as possible, and without resorting to full state
    263 tomography.
    264 \begin{table}[h!]
    265     \centering
    266 \begin{tabular}{||c|c|c || c|c||}
    267 \hline
    268     & \multicolumn{2}{|c||}{Lower Bounds} &\multicolumn{2}{|c||}{Upper Bounds}\\
    269 \hline
    270     m & $L_{m,2}^{MUB}$ &$L_{m,3}^{MUB}$&$U_{m,2}^{MUB}$ &$U_{m,3}^{MUB}$ \\
    271 \hline
    272     2 & 1/2 &0.211 &3/2 & 4/3\\
    273 \hline
    274     3 & 1 &1/2 &2 & 5/3\\
    275 \hline
    276     4 & &1 &  & 2\\
    277 \hline
    278 \end{tabular}
    279     \caption{Lower $L$ and upper $U$ bounds for the MUB witness for $d = 2, 3$
    280     and $m=1, \dots, d+1$ \label{tab:1}}
    281 \end{table}
    282 
    283 \newpage
    284 \section{Exercises}
    285 
    286 \begin{MyExercise}
    287     \textbf{Compute the Heisenberg uncertainty relation for $\hat{A} =
    288     \hat{\sigma}_{1}$ and $\hat{B} = \hat{\sigma}_{2}$ (Pauli matrices) for an
    289     arbitrary pure state $|\psi \rangle = \cos\frac{\theta}{2} |\Uparrow\rangle
    290     + \sin\frac{\theta}{2} e^{i\phi} |\Downarrow\rangle$. Furthermore compute
    291     the quantum-information theoretical version of the inequality for
    292     $\hat{O}_{n,m} = \hat{\sigma}_{1, 2}$}.
    293     \newline
    294 
    295     To start of, the Pauli matrices are
    296     \begin{align}
    297         \sigma_1 =
    298         \begin{pmatrix}
    299             0 & 1\\ 1& 0
    300         \end{pmatrix} \;\;\;\;\;
    301         \sigma_2 =
    302         \begin{pmatrix}
    303             0 & -i \\ i & 0
    304         \end{pmatrix} \;\;\;\;\;
    305         \sigma_3 =
    306         \begin{pmatrix}
    307             1&0\\ 0& -1
    308         \end{pmatrix} \;\;\;\;\;
    309     \end{align}
    310     Now we have a straight forward calculation
    311     \begin{align}
    312         &\langle \sigma_1\rangle^2_\psi = \sin^2 \theta \cos^2 \phi\\
    313         &\langle (\sigma_1)^2\rangle_\psi = 1\\
    314         \nonumber \\
    315         &\langle \sigma_2\rangle_\psi^2 = \sin^2\theta \sin^2\phi\\
    316         &\langle (\sigma_2)^2\rangle_\psi = 1\\
    317         \nonumber \\
    318         &\frac{1}{2} |\langle[\sigma_1, \sigma_2]\rangle = cos\theta
    319     \end{align}
    320     after some basic algebra with trigonometric functions we arrive at the
    321     following inequality
    322     \begin{align}
    323         \sin^4\theta \sin^2(2\phi) \geq 0
    324     \end{align}
    325     which holds true for all $\theta, \phi$.
    326 
    327     For the quantum-theoretical version of the inequality we use Equation
    328     \ref{eq:vn} to calculate the von Neumann entropy. The maximum of the right
    329     hand side is $\frac{1}{2}$
    330     \begin{align}
    331         S(\sigma_1) = -\text{Tr}(\sigma_1\ln(\sigma_1)) = 0\\
    332         S(\sigma_2) = -\text{Tr}(\sigma_2\ln(\sigma_2)) = \pi
    333     \end{align}
    334     thus the inequality is
    335     \begin{align}
    336         \pi \geq 1
    337     \end{align}
    338 
    339     Since the Heisenberg's uncertainty principle is mathematically correct,
    340     because it holds true for all hermitian operators, a violation of
    341     the principle would put the basis of functional analysis and/or
    342     the axioms of quantum mechanics at question.
    343 
    344     The quantum information theoretical approach to the uncertainty principal
    345     is convenient since the right hand side does not depend on any particular
    346     state.
    347 \end{MyExercise}
    348 
    349 \begin{MyExercise}\label{ex:2}
    350     \textbf{Compute
    351     \begin{align}
    352         &I_m^{MUB} = \sum_{k=1}^m\sum_{i=0}^{d-1}
    353         \text{Tr}((|i_k\rangle\langle i_k| \otimes |i_k\rangle \langle i_k|)
    354         \varrho) \;\;\;\;\;\; \text{and}\\
    355         &I_m^{MUB} = \sum_{k=1}^m\sum_{i=0}^{d-1}
    356         \text{Tr}((|i_k\rangle\langle i_k| \otimes  (|i_k\rangle \langle
    357         i_k|)^*)
    358         \varrho)
    359     \end{align}
    360     for two qubits ($d=2$), for $m=1, 2, 3$ and $|\psi\rangle =
    361     cos\alpha|00\rangle + sin\alpha |11>$. Here $|i_k\rangle$ is the eigenvector
    362     of the Pauli matrix $\sigma_k$.}
    363 
    364     The strategy to calculate the witness is to use the computer to loop over
    365     $d$ and $m$ for $m = 1, \dots, d+1$ then we compare the results with table
    366     \ref{tab:1}. Note that $|i_k\rangle\langle i_k|$ is a $d$-dimensional
    367     matrix, the density matrix is a $d^2$-dimensional matrix and
    368     thus the matrix inside the trace is $d^2$.
    369 
    370     We start of with $I_m^{MUB}$ without conjugation
    371     \begin{align}
    372         &I^{MUB}_{m=1} = \cos^2\alpha\\
    373         &I^{MUB}_{m=2} = \frac{1}{4}(-\sin(2\alpha) + 2\cos(2\alpha) + 3)\\
    374         &I^{MUB}_{m=3} = \cos^2(\alpha) + \frac{1}{2}
    375     \end{align}
    376     For $m=2$ entangled states for lower bound $\alpha = \frac{\pi}{4}$. For
    377     $m = 3$ entangled states for lower bound $\alpha = \frac{3\pi}{4}$.
    378 
    379     with conjugation we get
    380     \begin{align}
    381         &I^{MUB}_{m=1} = \cos^2\alpha\\
    382         &I^{MUB}_{m=2} = \frac{1}{4}(\sin(2\alpha) + 2\cos(2\alpha) + 3)\\
    383         &I^{MUB}_{m=3} = \frac{1}{\sqrt{2}} \sin(2\alpha + \frac{\pi}{4}) +1
    384     \end{align}
    385     For $m=2$ entangled states for lower bound $\alpha = \frac{\pi}{4}$. For
    386     $m = 3$ entangled states for lower bound $\alpha = -\frac{\pi}{8}$.
    387 \end{MyExercise}
    388 
    389 \begin{MyExercise}
    390     \textbf{Compute the same as in exercise \ref{ex:2} for
    391     the isotropic state
    392     \begin{align}
    393         \varrho^{iso}_d (p) = (1-p)\cdot\frac{1}{d^2}\mathbbm{1}_{d^2} + p
    394         P_{i,j}
    395     \end{align}
    396     for a freely chosen bell state $P_{i,j}$, and for both $d=2$ qubits and for
    397     $d=3$ qutrits. For $p\in [-\frac{1}{d^2-1}, 1]$
    398     we have the positivity condition and for $p\in [-\frac{1}{d^2 -1},
    399     \frac{1}{d+1}]$ we have a separable state else entangled.
    400         }
    401 
    402     We choose $P_{i,j} = P_{0,0} = |\Omega_{0,0}\rangle \langle \Omega_{0,0}|$.
    403     To calculate $\Omega$ we use the equation \ref{eq:arb} and use the MUBs given
    404     in section \ref{sec:mubs}.
    405 
    406     For $d=2$ we have the following for the standard $I^{MUB}$
    407     \begin{align}
    408         &I^{MUB}_{m=1} = \frac{1}{4}(3p+1) \\
    409         &I^{MUB}_{m=2} = \frac{1}{2}(3p+1) \\
    410         &I^{MUB}_{m=3} = \frac{1}{4}(5p+3) \\
    411     \end{align}
    412     For $m=2$ we have entanglement on the upper bound for $p = \frac{2}{3}$.
    413     For $m=3$ we have entanglement on the upper bound for $p = 1$.
    414 
    415 
    416     with conjugation we get
    417     \begin{align}
    418         &I^{MUB}_{m=1} = \frac{1}{4}(3p+1) \\
    419         &I^{MUB}_{m=2} = \frac{1}{2}(3p+1) \\
    420         &I^{MUB}_{m=3} = \frac{1}{4}(9p+3) \\
    421     \end{align}
    422     For $m=2$ we have entanglement on the upper bound for $p = \frac{2}{3}$.
    423     For $m=3$ we have entanglement on the upper bound for $p = \frac{4}{9}$.
    424 
    425     For $d=3$ we have the following
    426     \begin{align}
    427         &I^{MUB}_{m=1} = \frac{1}{9}(16p+2) \\
    428         &I^{MUB}_{m=2} = \frac{1}{9}(23p+4) \\
    429         &I^{MUB}_{m=3} = 3p + \frac{1}{3}\\
    430         &I^{MUB}_{m=4} = \frac{1}{9}(31p + 8)
    431     \end{align}
    432     For $m=2$ we have entanglement on the upper bound for $p = \frac{8}{23}$.
    433     For $m=3$ we have entanglement on the upper bound for $p = \frac{4}{9}$.
    434 
    435     with conjugation we get
    436     \begin{align}
    437         &I^{MUB}_{m=1} = \frac{1}{9}(16p+2) \\
    438         &I^{MUB}_{m=2} = \frac{1}{9}(32p+4) \\
    439         &I^{MUB}_{m=3} = \frac{16}{3}p + \frac{2}{3}\\
    440         &I^{MUB}_{m=4} = \frac{1}{9}(64p + 8)
    441     \end{align}
    442     For $m=3$ we have entanglement on the upper bound for $p = \frac{5}{3}$.
    443 \end{MyExercise}
    444 \newpage
    445 \begin{MyExercise}
    446     \textbf{
    447         Compute $I_m^{MUB}$ with conjugation and without for the Werner states
    448         for $d=2, 3$ and $m=1,\dots, d+1$
    449         \begin{align}
    450             \varrho_W(q) = q \frac{P_{sym}}{d(d+1)} + (1-q) \frac{P_{asym}}{d(d-1)}
    451         \end{align}
    452         where $P_{sym} = (\mathbbm{1} + \mathbb{P})$ and $P_{asym} =
    453         (\mathbbm{1} - \mathbb{P})$  for $\mathbb{P} = \sum_{ij}
    454         |ji\rangle\langle ij|$. The state is separable for $q\in [0,\frac{1}{2}]$ and
    455         entangled for $q\in [\frac{1}{2}, 1]$
    456     }
    457 
    458     First we calculate for $d=2$ we choose the basis $B_1$ to calculate the projection
    459     operator. And note that $|ij\rangle = |i\rangle \otimes |j\rangle$ we need
    460     the tensor product here.
    461 
    462     Straightforward computation gives
    463     \begin{align}
    464         &I^{MUB}_{m=1} = \frac{q}{3}\\
    465         &I^{MUB}_{m=2} = \frac{2q}{3}\\
    466         &I^{MUB}_{m=3} =    q
    467     \end{align}
    468     For $m=3$ we have entanglement on the lower bound for $p = 1/2$.
    469 
    470     with conjugation
    471     \begin{align}
    472         &I^{MUB}_{m=1} = \frac{q}{3}\\
    473         &I^{MUB}_{m=2} = \frac{2q}{3}\\
    474         &I^{MUB}_{m=3} = \frac{q}{3} + \frac{1}{2}
    475     \end{align}
    476     For $m=3$ we have entanglement on the lower bound for $p = 0$.
    477 
    478     For $d=3$ we choose the basis $B_1$ to calculate the projection operator
    479     and straightforward computation gives
    480     \begin{align}
    481         &I^{MUB}_{m=1} = \frac{q}{3}\\
    482         &I^{MUB}_{m=2} = \frac{2q}{3}\\
    483         &I^{MUB}_{m=3} = q \\
    484         &I^{MUB}_{m=3} = \frac{4q}{3}
    485     \end{align}
    486     For $m=2$ we have entanglement on the lower bound for $p = 0.3165$.
    487     For $m=3$ we have entanglement on the lower bound for $p = \frac{1}{2}$.
    488 
    489     with conjugation
    490     \begin{align}
    491         &I^{MUB}_{m=1} = \frac{q}{3}\\
    492         &I^{MUB}_{m=2} = \frac{1}{12}(5q + 2)\\
    493         &I^{MUB}_{m=3} = \frac{1}{36}(15q + 14)\\
    494         &I^{MUB}_{m=4} = \frac{1}{36}(15q + 22)\\
    495     \end{align}
    496     For $m=2$ we have entanglement on the lower bound for $p = 0.1064$.
    497     For $m=3$ we have entanglement on the lower bound for $p = \frac{4}{15}$.
    498 
    499     A simple comparison with exercise 3, we arrive at the conclusion that for
    500     the Werner states we detect entanglement only on the lower bound and for the
    501     isotropic states we detect entanglement only on the upper bound.
    502 \end{MyExercise}
    503 
    504 
    505 
    506 \nocite{cite1}
    507 \nocite{cite2}
    508 \nocite{cite3}
    509 \nocite{cite4}
    510 \nocite{cite5}
    511 \printbibliography
    512 
    513 
    514 
    515 \end{document}