main.tex (32517B)
1 \documentclass[a4paper]{article} 2 3 \usepackage[T1]{fontenc} 4 \usepackage[utf8]{inputenc} 5 6 \usepackage{mathptmx} 7 8 \usepackage[a4paper, total={6in, 8in}]{geometry} 9 \usepackage{subcaption} 10 \usepackage[shortlabels]{enumitem} 11 \usepackage{amssymb} 12 \usepackage{amsthm} 13 \usepackage{mathtools} 14 \usepackage{braket} 15 \usepackage{bbm} 16 \usepackage{graphicx} 17 \usepackage{float} 18 \usepackage{yhmath} 19 \usepackage{tikz} 20 \usetikzlibrary{calc,decorations.markings} 21 \usepackage[colorlinks=true,naturalnames=true,plainpages=false,pdfpagelabels=true]{hyperref} 22 \usepackage[parfill]{parskip} 23 \usepackage[backend=biber, sorting=none]{biblatex} 24 \newcommand{\hbbar}{{\raisebox{0.05ex}{$\mathchar '26$}\mkern -9mu\raisebox{-0.15ex}{$\mathchar '26$}\mkern -9muh}} 25 \addbibresource{uni.bib} 26 \pagestyle{myheadings} 27 \markright{Popovic, Vogel\hfill Dispertion relations \hfill} 28 29 30 \title{Universität Wien\\ Fakultät für Physik\\ 31 \vspace{1.25cm}Laborpraktikum Theoretische Physik 2021S \\ Dispersion relations 32 } 33 \author{Milutin Popovic \& Tim Vogel \vspace{1cm}\\ Betreuer: Peter Stoffer} 34 \date{30. Juni, 2021} 35 36 \begin{document} 37 \maketitle 38 \noindent\rule[0.5ex]{\linewidth}{1pt} 39 \begin{abstract} 40 This protocol will provide a first look at dispersion relations. We will show 41 some trivial examples in the harmonic oscillator, where the mathematical basics 42 are provided and applied. From this we will dive into more complex topics, 43 derive a few equations within scattering processes in quantum dynamics and 44 after that, show, that dispersion do not only work in the quantum physical 45 world, but also find application in particle physics, where they can be used to 46 obtain results in areas, where quantum chromodynamics fail. We explicitly 47 calculate solutions to the so called Omnés-problem, and finally apply some 48 numerical values to the found solutions. 49 \end{abstract} 50 \noindent\rule[0.5ex]{\linewidth}{1pt} 51 \newcommand{\PV}{\mathop{\mathrlap{\pushR}}\!\int} 52 \newcommand{\pushR}{\mathchoice 53 {\mkern2.5mu P} 54 {\scriptstyle P} 55 {\scriptscriptstyle P} 56 {\scriptscriptstyle P} 57 } 58 59 \tableofcontents 60 \section{Introduction} 61 Within the tools of complex analysis, there exists the possibility, to form 62 relations between observable quantities of physicals systems, for example 63 dispersion in a dielectric medium. This can be taken even further, by using the 64 same methods within particle-physical problems, where the now more popular 65 methods of quantum chromodynamics do not apply, which would be low energy 66 hadronic processes. We will firstly apply these concepts to the simple example 67 of the harmonic oscillator and finally work out more complex problems, 68 regarding the pion vector form factor. The reader is expected to be familiar 69 with the subject of complex analysis, especially analyticity/holomorphicity of 70 a function, integration of complex functions, the residue theorem and the 71 Schwartz reflection principle. 72 73 \section{Damped harmonic oscillator} 74 Considering a free harmonic oscillator, the equation of motion accounts to: 75 \begin{equation} 76 \Ddot{x}(t)+\gamma\Dot{x}(t)+\omega_0^2x(t)=0 77 \end{equation} 78 where $\gamma > 0$ is the damping coefficient, and $\omega_0$ the angular frequency 79 of the oscillator. Using the exponential ansatz we can arrive at an general 80 solution to this ordinary differential equation 81 \begin{align} 82 &x(t) = a e^{-i\omega_1 t} + b e^{-i\omega_2 t} \\ 83 &\nonumber \\ 84 \text{with:} \nonumber\\ 85 &\omega_{1/2} = \pm \sqrt{\omega_0^2 - (\frac{\gamma}{2})^2} - 86 i\frac{\gamma}{2} 87 \end{align} 88 where $a$ and $b$ are calculated based on the Couchy boundary conditions. 89 90 For the case $\omega_0 > \frac{\gamma}{2}$ we can rewrite the solution 91 \begin{align} 92 &x(t) = \left(a e^{-i\tilde{\omega}_0 t} + b e^{-i\tilde{\omega}_0 93 t}\right) e^{-\frac{\gamma}{2}t}\\ 94 &\nonumber \\ 95 \text{with:} \nonumber\\ 96 &\tilde{\omega}_{0} = \sqrt{\omega_0^2 - \left(\frac{\gamma}{2}\right)^2} 97 \end{align} 98 \subsection{External Force} 99 100 Now consider a harmonic oscillator with an external force $F(t)$ driving it 101 \begin{align}\label{eq:force} 102 \Ddot{x}(t)+\gamma\Dot{x}(t)+\omega_0^2x(t)=\frac{F(t)}{m} =: f(t). 103 \end{align} 104 By Fourier transforming the equation we can arrive at an equation for the 105 greens function in Fourier space. Note that the Fourier transform of 106 $x(t)$ is 107 \begin{align} 108 \hat{x}(t) &= \frac{1}{2\pi}\int_\infty^\infty d\omega 109 X(\omega) e^{-i\omega t} 110 \end{align} 111 so the Fourier transforms of $\dot{x}$ and $\Ddot{x}$ are 112 \begin{align} 113 \mathcal{F}(\dot{x}) &= -i\omega X(\omega)\\ 114 \mathcal{F}(\Ddot{x}) &= -\omega^2 X(\omega)\\ 115 \end{align} 116 and the equation \ref{eq:force} turns into 117 \begin{align} 118 (-\omega^2 - i\gamma \omega + \omega_0^2) X(\omega) = F(\omega) 119 \end{align} 120 121 The Green's function can be represented in Fourier space like the following 122 \begin{align} 123 G(\omega)= \frac{1}{-\omega^2 - i\gamma \omega + \omega_0^2} 124 \end{align} 125 126 The Maximum of the squared modulus $|G(\omega)|^2$ for $\gamma \ll \omega_0$ is 127 roughly at $\omega_0$, thus the width at half maximum can be calculated by 128 looking for two $\omega$'s that satisfy 129 \begin{align} 130 \frac{1}{2}|G(\omega_0)|^2 &= |G(\omega)|^2\\ 131 \frac{1}{2} \frac{1}{\omega_0^2\gamma^2} &= |G(\omega)|^2 132 \end{align} 133 134 The exact solutions are 135 \begin{align} 136 \tilde{\omega}_1 &= \omega_0\sqrt{-0.5\left(\frac{\gamma}{\omega_0}\right)^2 137 - 1.0\frac{\gamma}{\omega_0}(0.25\left(\frac{\gamma}{\omega_0}\right)^2 138 + 1)^{\frac{1}{2}} + 1}\\ 139 \tilde{\omega}_2 &= \omega_0\sqrt{-0.5\left(\frac{\gamma}{\omega_0}\right)^2 140 + 1.0\frac{\gamma}{\omega_0}(0.25\left(\frac{\gamma}{\omega_0}\right)^2 141 + 1)^{\frac{1}{2}} + 1} 142 \end{align} 143 With help of Taylor expansion in the linear order in $\frac{\gamma}{\omega_0}$ 144 gives us the approximation for the with at half maximum 145 \begin{align} 146 \tilde{\omega}_2 - \tilde{\omega}_1 \simeq \gamma 147 \end{align} 148 149 In the figure below we plotted the squared modulus of $|G(\omega)|^2$ 150 \begin{figure}[H] 151 \centering 152 \includegraphics[width=\textwidth]{section2.png} 153 \caption{On the left the squared modulus $|G(\omega)|^2$ in $\omega 154 \in [\omega_0 - 2\gamma, w_0 + w\gamma]$ for $\gamma \ll \omega_0$, precisely 155 $\gamma = \omega_0/20$ for $\omega_0 = 1$ and on the right $arg(G(\omega))$} 156 \end{figure} 157 158 159 Next we want calculate the Green's function in terms of time 160 \begin{align} 161 g(t) = \frac{1}{2\pi} \int^\infty_\infty d\omega G(\omega)e^{-i\omega t}. 162 \end{align} 163 Furthermore we can transform this to the complex integral where we have two singularities 164 at We have two singularities at $z_{1/2} = - \frac{i\gamma}{2} \pm 165 \tilde{\omega}_{0}$. We have the following integral 166 path 167 168 \begin{center} 169 \begin{tikzpicture}[decoration={markings, 170 mark=at position 13cm with {\arrow[line width=2pt]{>}} 171 } 172 ] 173 % The axes 174 \draw[help lines,->] (-4,0) -- (4,0) coordinate (xaxis); 175 \draw[help lines,->] (0,-3.5) -- (0,1) coordinate (yaxis); 176 177 % The path 178 \path[draw,line width=0.8pt,postaction=decorate] 179 (3,0) node[above right] {} arc (0:-180:3) -- (-3, 0) 180 node[above left] {} -- (-3, 0) -- (3, 0); 181 182 % The labels 183 \draw[thick, ->] (0,0) -- (2.1, -2.1) node[midway, fill=white] {$R$}; 184 \node[below] at (xaxis) {$\text{Re}$}; 185 \node[left] at (yaxis) {$\text{Im}$}; 186 \node at (0.2,-1.5) {$\nu$}; 187 \node at (1, -3.2) {$C(R)$}; 188 \end{tikzpicture} 189 \end{center} 190 191 The complex integral representation is 192 \begin{align} 193 \oint_\nu dz G(z) e^{-izt} &= 194 \lim_{R \rightarrow \infty } 195 \bigg( 196 \int_{C(R)} + \int_{-R}^{R} 197 \bigg) 198 dz\ G(z) e^{-izt}\\ 199 &= 2\pi i\sum_j \text{I}(C_j, z_j) \text{Res}_j 200 \end{align} 201 Keep in mind that the integral from $R$ to $-R$ is the integral we are 202 trying to solve, that is pulling the limit we have one integral over the real 203 axis. Because of Jordan's lemma, the integral over the complex curve vanishes 204 \begin{align} 205 \big| \int_{C(R)} dz G(z) e^{-izt}\big| \leq \frac{\pi}{t}M_R 206 \end{align} 207 where $M_R:= \max_{C(R)}\{G(Re^{i\varphi})\}$.It can easily be seen that $M_R$ 208 converges to $0$ as $R$ goes to infinity. Thus the only value the integral can 209 take is $0$ and we can calculate the real integral with the residues 210 \begin{align} 211 \text{Res}_1 &= \frac{e^{i z t}}{(z - z_1)(z - z_2)} (z - z_1)\bigg|_{z=z_1} 212 \\ 213 &= -\frac{e^{-iz_1t}}{z_1 - z_2} = \frac{e^{-\frac{\gamma}{2}t} 214 e^{i\tilde{\omega}_0 t}}{2\tilde{\omega}_0}\\ 215 \nonumber \\ 216 \text{Res}_2 &= \frac{e^{i z t}}{(z - z_1)(z - z_2)} (z - z_2)\bigg|_{z=z_2} 217 \\ 218 &= -\frac{e^{-iz_1t}}{z_2 - z_1} = -\frac{e^{-\frac{\gamma}{2}t} 219 e^{-i\tilde{\omega}_0 t}}{2\tilde{\omega}_0}\\ 220 \end{align} 221 with the index $\text{I}(C_R, z_i)$ being $1$, because the curve goes around the 222 singularities once. 223 224 The integral evolves to 225 \begin{align} 226 \frac{1}{2\pi} \int_{-\infty}^{\infty} d\omega G(\omega) e^{-i\omega t}= 227 \frac{\sin(\tilde{\omega}_0t)}{\tilde{\omega}_0} e^{-\frac{\gamma}{2}t}. 228 \end{align} 229 Treating the cases $t<0$ and $t>0$ separately we can join them with the 230 Heaviside-theta function $\theta(t)$, the Green's function for the damped 231 harmonic oscillator is 232 \begin{align} 233 g(t) = \frac{\sin(\tilde{\omega}_0t)}{\tilde{\omega}_0} 234 e^{-\frac{\gamma}{2}t} \theta(t) 235 \end{align} 236 With convolution we can arrive at a solution for the damped harmonic oscillator 237 for an arbitrary driving force $f(t)$ 238 \begin{align} 239 x(t) = \int_{-\infty}^{t} dt' 240 \frac{\sin(\tilde{\omega}_0 (t-t'))}{\tilde{\omega}_0} 241 e^{-\frac{\gamma}{2}(t-t')} f(t'). 242 \end{align} 243 244 \subsection{Green's Function and dispersion relations} 245 Next we want to compute the following integral 246 \begin{align} 247 0 = \oint_C d\omega' \frac{G(\omega')}{\omega - \omega'}, \;\;\;\; 248 \text{with} \;\;\; \omega' = \omega_r + i\omega_i 249 \end{align} 250 along the following contour 251 252 \begin{center} 253 \begin{tikzpicture}[decoration={markings, 254 mark=at position 0.5cm with {\arrow[line width=2pt]{>}}, 255 mark=at position 5cm with {\arrow[line width=2pt]{>}}, 256 mark=at position 13cm with {\arrow[line width=2pt]{>}}, 257 mark=at position 15cm with {\arrow[line width=2pt]{>}} 258 } 259 ] 260 % The axes 261 \draw[help lines,->] (-3.5,0) -- (3.5,0) coordinate (xaxis); 262 \draw[help lines,->] (0,-0.5) -- (0,3.5) coordinate (yaxis); 263 264 % The path 265 \path[draw,line width=0.8pt,postaction=decorate] 266 (2,0) -- (3, 0) node[below right] {} arc (0:180:3) -- (0.5, 0) 267 arc (180:0:0.75); 268 269 % The labels 270 \draw[thick, ->] (0,0) -- (-2.1, 2.1) node[midway, fill=white] {$R$}; 271 \draw[thick, ->] (1.25,0) -- (1.75, 0.5) node[midway, above] {$\varrho$}; 272 \node[below] at (xaxis) {$\text{Re}$}; 273 \node[left] at (yaxis) {$\text{Im}$}; 274 \node[circle,inner sep=1pt,label=below:{$\omega$}, fill=black] at (1.25,0) {}; 275 \end{tikzpicture} 276 \end{center} 277 so the integral representation is 278 \begin{align} 279 \oint_C d\omega' \frac{G(\omega')}{\omega - \omega'} = 280 \lim_{\substack{R\rightarrow \infty \\ \varrho \rightarrow 0^+}} 281 \bigg( \int_{C(R)} + \int_{(C(\rho)} + \int_{-R}^{\omega - 282 \varrho} + \int_{\omega +\varrho}^R 283 \bigg) 284 \;d\omega'\ \frac{G(\omega')}{\omega - \omega'} 285 \end{align} 286 We need show that the integral over the big circle goes to $0$. We know that for 287 $\omega' \neq \omega$ we have 288 \begin{align} 289 \big|\frac{G(\omega')}{\omega' - \omega}\big| &= 290 \big|\frac{1}{\omega'^3}\frac{1}{(1-\frac{\omega_1}{\omega'})(1-\frac{\omega_2}{\omega'}) 291 (1 - \frac{\omega}{\omega'})}\big| 292 \leq \frac{1}{R^3} 293 \end{align} 294 thus 295 \begin{align} 296 \bigg| 297 \int_{C(R)} d\omega' \frac{G(\omega')}{\omega - \omega'} 298 \bigg| \leq \frac{2\pi R}{R^3} = \frac{2\pi}{R^2} 299 \xrightarrow[R\rightarrow \infty]{} 0. 300 \end{align} 301 The small circle can be calculated with the Residue theorem with the pole at 302 $\omega$ 303 \begin{align} 304 \int_{C(\varrho)}d\omega' \frac{G(\omega')}{\omega - \omega'} = 2\pi i 305 \text{I}(C(\varrho), \omega) \text{Res}(\frac{G(\omega')}{\omega - \omega'}, 306 \omega) = i\pi G(\omega). 307 \end{align} 308 Note that we go around $\omega$ only $1/2$ times. Reconstructing the integral 309 equation we get 310 \begin{align} 311 -i\pi G(\omega) = \lim_{\varrho \rightarrow 0^+} 312 \big( 313 \int_{-R}^{\omega -\varrho} + \int_{\omega +\varrho}^R 314 \big) \;d\omega'\ \frac{G(\omega')}{\omega' - \omega} 315 \end{align} 316 which is exactly the Cauchy Principal Value. Furthermore we can rewrite 317 $G(\omega)$ into real and imaginary parts 318 \begin{align} 319 \text{Re} (G(\omega)) = \frac{1}{\pi} \PV d\omega' \frac{\text{Im} 320 (G(\omega'))}{\omega' - \omega}\\ 321 \text{Im} (G(\omega)) = \frac{1}{\pi} \PV d\omega' \frac{\text{Re} 322 (G(\omega'))}{\omega' - \omega}\\ 323 \end{align} 324 which are Hilbert transforms of each other, the equations are also known 325 as ``dispersion relations''. It should be noted that these equations also allow 326 negative frequencies. Let us derive an representation for only positive 327 frequencies. We start off by a simple statement 328 \begin{align} 329 G(-\omega^*) = G(\omega)^*. 330 \end{align} 331 In our case this is obviously true 332 \begin{align} 333 &G(-\omega^*) = \frac{1}{-(\omega^*)^2 + i\gamma \omega^* + \omega_0^2}\\ 334 \nonumber \\ 335 &G(\omega)^* = \frac{1}{-(\omega^2)^* + i\gamma \omega^* + \omega_0^2} = 336 G(-\omega^*) 337 \end{align} 338 Now we choose $\omega \in \mathbb{R}^+$, our relation then becomes 339 $G(-\omega) = G(\omega)^*$. Then we get 340 \begin{align} 341 \text{Re} (G(\omega)) &= \frac{1}{\pi} \PV_0^\infty d\omega' \frac{2\omega'\text{Im} 342 (G(\omega'))}{\omega'^2 - \omega^2}\\ 343 \text{Im} (G(\omega)) &= -\frac{1}{\pi} \PV_0^\infty d\omega' \frac{2\omega'\text{Re} 344 (G(\omega'))}{\omega'^2 - \omega^2} 345 \end{align} 346 347 To round this chapter up we would like to show one last identity in the sense 348 of distributions 349 \begin{align} 350 \lim_{\varepsilon \rightarrow 0^+} \frac{1}{\omega' -\omega \mp 351 i\varepsilon} = \text{P}(\frac{1}{\omega' - \omega}) \pm i\pi\delta(\omega' 352 - \omega). 353 \end{align} 354 Let us extend the fraction with $\omega' - \omega \pm i\varepsilon$. 355 \begin{align} 356 \frac{\omega' - \omega \pm i\varepsilon}{(\omega' -\omega \mp 357 i\varepsilon)(\omega' - \omega \pm i\varepsilon)} = \frac{\omega' - \omega 358 \pm i\varepsilon}{(\omega' - \omega)^2 + \varepsilon^2}. 359 \end{align} 360 That means for a test function $f(\omega')$ we have 361 \begin{align} 362 \lim_{\varepsilon \rightarrow 0^+} \int_{-\infty}^\infty d\omega' 363 \frac{f(\omega')}{\omega' - \omega \mp i\varepsilon} &= 364 \lim_{\varepsilon \rightarrow 0^+} 365 \int_{-\infty}^\infty d\omega' 366 \frac{(\omega' - \omega \pm i\varepsilon) f(\omega')}{(\omega' - \omega)^2 367 + \varepsilon^2}\\ 368 & = 369 \lim_{\varepsilon \rightarrow 0^+}\bigg( 370 \int_{-\infty}^\infty d\omega' 371 \frac{f(\omega')(\omega' - \omega )}{(\omega' - \omega)^2 + \varepsilon^2} 372 \pm i\varepsilon 373 \int_{-\infty}^\infty d\omega'\frac{f(\omega')}{(\omega' - \omega)^2 + \varepsilon^2} 374 \bigg)\label{eq:id}. 375 \end{align} 376 Let us look into the first integral in equation \ref{eq:id}, we can rewrite it 377 \begin{align} 378 \lim_{\varepsilon \rightarrow 0^+}\int_{-\infty}^\infty 379 d\omega'\frac{f(\omega')(\omega' - \omega )}{(\omega' - \omega)^2 + \varepsilon^2} 380 &= \lim_{\varepsilon,\varrho \rightarrow 0^+} 381 \bigg( 382 \int_{-\infty}^{\omega - \varrho}d\omega'\frac{f(\omega')(\omega' - 383 \omega )}{(\omega' - \omega)^2 + \varepsilon^2} 384 + \int_{\omega 385 \varrho}^{\infty}d\omega'\frac{f(\omega')(\omega' - \omega )}{(\omega' 386 - \omega)^2 + \varepsilon^2} + \\ 387 &+\int_{\omega -\varrho}^{\omega+ 388 \varrho}d\omega'\frac{f(\omega')(\omega' - \omega )}{(\omega' - 389 \omega)^2 + \varepsilon^2} 390 \bigg) 391 \\ 392 &= \PV_{-\infty}^{\infty}d\omega' \frac{f(\omega')}{(\omega' - \omega)} 393 \end{align} 394 The integral from $\omega - \varrho$ to $\omega + \varrho$ can be calculated by 395 pulling out $f(\omega)$ out of the integral and directly computing it, which 396 gives then vanishes. In second integral we approximate $f(\omega')$ to 397 $f(\omega)$ in the region $\omega' \simeq \omega$ 398 \begin{align} 399 \varepsilon \int_{-\infty}^{\infty}d\omega' \frac{f(\omega')}{(\omega' - 400 \omega)^2 + \varepsilon^2} &\simeq \varepsilon f(\omega) \int_{-\infty}^{\infty} 401 \frac{1}{(\omega' -\omega)^2 + \varepsilon^2}\\ 402 &= \pi f(\omega). 403 \end{align} 404 Which means the identity is 405 \begin{align} 406 \lim_{\varepsilon \rightarrow 0^+} \int_{-\infty}^{\infty} d\omega' 407 \frac{f(\omega')}{\omega' -\omega \mp i\varepsilon} = 408 \PV_{-\infty}^{\infty} d\omega' \frac{f(\omega')}{\omega' -\omega} \pm 409 i\pi f(\omega)\label{eq:pv} 410 \end{align} 411 \section{Potential scattering in quantum mechanics} 412 If we consider elastic scattering of a spineless particle off a 413 time-independent, spherically symmetric potential of finite range, we look for 414 stationary solutions $\psi$ of the Schrödinger equation 415 \begin{equation} 416 -\frac{\hbbar^2}{2m}\Vec{\nabla^2}\psi(\Vec{x})+V(r)\psi(\Vec{x})=E\psi(\Vec{x}) 417 \end{equation} 418 Since the potential is spherically symmetric, it only depends on $r$ and for 419 large values of $r$, it can be shown, that the asymptotic form of $\psi$ looks 420 like: 421 \begin{equation} 422 \psi(r,\theta)\approx A[e^{ikz}+f(E,\theta)\frac{e^{ikr}}{r}] 423 \end{equation} 424 Where $kr\gg 1$, and k given by 425 \begin{equation} 426 k=\frac{\sqrt{2mE}}{\hbbar} 427 \end{equation} 428 We also define the scattering angle $\theta$ by $z=r\cos{\theta}$, and since 429 there is no dependence on the azimuthal angle $\phi$. we can define the 430 incoming and outgoing parts of the wave function as follows: 431 \begin{equation} 432 \psi_{in}=Ae^{ikz} 433 \end{equation} 434 and 435 \begin{equation} 436 \psi_{out}=Af(E,\theta)\frac{e^{ikr}}{r} 437 \end{equation} 438 Where the factor $\frac{1}{r}$ is carried, to conserve probability. The complex 439 function $f(E,\theta)$ is the so called scattering amplitude. We are now 440 interested in the differential cross section $\frac{d\sigma}{d\Omega}$, which 441 is defined as the ratio of number of particles per unit time, that are 442 scattered into the surface element $dS=r^2d\Omega(\theta,\phi)$ and the number 443 of incoming particles per unit time, per are orthogonal to the beam direction. 444 Expressed via probability currents, we thus obtain: 445 \begin{equation} 446 \frac{d\sigma}{d\Omega}=\frac{\Vec{j}_{out}\cdot \Vec{e}_rr^2}{|\Vec{j}_{in}|} 447 \end{equation} 448 With $\Vec{e}_r$ being a unit vector in direction of the radius, and the currents given as: 449 \begin{equation} 450 \Vec{j}=\frac{i\hbbar}{2m}(\psi\Vec{\nabla}\psi^*-\psi^*\Vec{\nabla}\psi) 451 \end{equation} 452 By applying these equations, we obtain the differential cross section as: 453 \begin{equation} 454 \frac{d\sigma}{d\Omega}=|f(E,\theta)|^2 455 \end{equation} 456 With the scattering amplitude, being given as: 457 \begin{equation} 458 f(E,\theta)=\sum_{l=0}^\infty(2l+1)f_l(E)P_l(cos\theta) 459 \end{equation} 460 where $l$ denotes the magnitude of orbital angular momentum, and 461 $P_l(cos\theta)$ are the Legendre polynomials. 462 We can now work out the total cross section $\sigma$ via the integral: 463 \begin{equation} 464 \sigma=\int{d\Omega\frac{d\sigma}{d\Omega}} 465 \end{equation} 466 We do this, by applying the orthogonality relation 467 \begin{equation} 468 \int{d\Omega P_l(cos\theta)P_{l'}(cos\theta)}=\frac{4\pi}{(2l+1)}\delta_{ll'} 469 \end{equation} 470 Thus, we obtain: 471 \begin{equation} 472 \sigma=\sum_{l,l'}(2l+1)(2l'+1)f^*_l(E)f_{l'}(E)\int{d\Omega 473 P_l(cos\theta)P_{l'}(cos\theta)} 474 \end{equation} 475 Which, finally leads to: 476 \begin{equation} 477 \sigma=4\pi\sum_l(2l+1)|f(E)|^2 478 \end{equation} 479 By now defining a phase shift of: 480 \begin{equation} 481 S_l(k)=1+2ikf_l(E) 482 \end{equation} 483 where, $S_l(k)$ is the $l$-th matrix element of the scattering operator, and 484 can also be written as: 485 \begin{equation} 486 S_l=e^{2i\delta_l} 487 \end{equation} 488 Thus, one can see pretty quickly, that 489 \begin{equation} 490 f_l(E)=\frac{e^{2i\delta_t}-1}{2ik}=\frac{e^{i\delta_l}\sin{\delta_l}}{k} 491 \end{equation} 492 With this result, we can now derive the optical theorem. We start, by plugging 493 the result above into equation (66) 494 \begin{equation} 495 \sigma=4\pi\sum_{l=0}^\infty 496 (2l+1)|\frac{1}{k}e^{i\delta_lE}\sin{\delta_l(E)}|^2 497 =\frac{4\pi}{k^2}\sum_l (2l+1)\sin^2{\delta_l} 498 \end{equation} 499 with 500 \begin{equation} 501 Im\, f(E,0)=\sum_{l=0}^\infty 502 (2l+1)Im(\frac{e^{i\delta_l}}{k})\sin{\delta_l}=\frac{1}{k}\sum_l 503 (2l+1)\sin^2{\delta_l} 504 \end{equation} 505 Which, finally leads to: 506 \begin{equation} 507 \sigma_{el}=\frac{4\pi}{k}Im\, f(E,0) 508 \end{equation} 509 We now consider a froward scattering amplitude, with the asymptotic behavior 510 $[f(E,0)-f_\infty(0)]\rightarrow E^{}-1-\epsilon$ for $|E|\rightarrow\infty$, 511 with $\epsilon>0$. We want to compute the integral, given by: 512 \begin{equation} 513 \oint_\Gamma dE'\frac{f(E',0)-f_\infty(0)}{E'-E}=2\pi i\sum_i^N\frac{Res_{E'=E_i(f(E',0)-f_\infty(0)}}{E_i-E} 514 \end{equation} 515 From the optical theorem we know, that the forward scattering amplitude is real 516 on the negative real axis, and we also assume that $F_\infty(0)$ is real, as 517 well. For further calculations the integrand in equation (73) will be named 518 $F(E')$, to improve readability, also the arguments of the functions $f(E,0)$ 519 and $f_\infty(0)$ will be left out, from this point forward. Firstly, we 520 consider the parts of the curve, parallel to the real axis. We say $f(E,0)$ is 521 analytical on the upper half plane, to the point E. By making use of the 522 Schwarz reflection principle, we can write: 523 \begin{equation} 524 \int_\leftarrow dE'F(E'^*)+\int_\rightarrow dE'F(E')=\int_\leftarrow 525 dE'F^*(E')+\int_\rightarrow dE'F(E')=2i\int\rightarrow dE'\, ImF(E') 526 \end{equation} 527 The imaginary part of $F(E')$ equates to: 528 \begin{equation} 529 Im(F)=Im(\frac{f-f_\infty}{E'-E})=\frac{1}{|E'-E|^2}[Im(f)Re(E'-E)-Re(f)Im(E'-E)+f_\infty 530 Im(E'-E)] 531 \end{equation} 532 We can now calculate the residues of each term of equation (75) individually. 533 To achieve this, we consider the point $E=E_r+\alpha iE_i$. We will start by 534 calculating the residues for the second and third term first, since the first 535 term will be used differently. So, for the second term, we obtain the residue 536 as follows: 537 \begin{equation} 538 Res_{E_2}=\lim\limits_{\alpha\rightarrow 539 0}\frac{d}{dE'}(E'-E)^2\frac{Re(f)Im(E'-E)}{(E'-E)(E'-E)^*}|_{E'=E} 540 \end{equation} 541 \begin{equation} 542 =\lim\limits_{\alpha\rightarrow 543 0}\frac{d}{dE'}\frac{Re(f)Im(E'-E)(E'-E)}{(E'-E)^*}|_{E'=E} 544 \end{equation} 545 The product rule leaves four terms to calculate from this equation, but three 546 of which can be disregarded, since they vanish, if the limit is taken before 547 the derivation. The last term comes to: 548 \begin{equation} 549 \frac{d}{dE'}Im(E'-E)=-\frac{i}{2} 550 \end{equation} 551 Which leaves the residue as: 552 \begin{equation} 553 Res_{E_2}=-\frac{i}{2}Ref(E) 554 \end{equation} 555 By the same procedure, the other residue amounts to: 556 \begin{equation} 557 Res_{E_3}=-\frac{i}{2}f_\infty 558 \end{equation} 559 For the first term, we calculate the integral 560 \begin{equation} 561 \lim\limits_{\alpha\rightarrow 0}\int_0^\infty dE'\frac{Imf(E',0)}{|E'-E|^2}=P\int_0^\infty dE'\frac{Imf(E',0)}{E'-E}+\int_{circle}dE'\frac{Imf(E',0)}{|E'-E|^2} 562 \end{equation} 563 Where $P\int$ denotes the principal value integral. With $E'=E_r-\rho e^{i\phi}$ and $E=E_r+i\alpha E_i$, the seconds integral in equation (81) can be written as 564 \begin{equation} 565 \lim\limits_{\alpha\rightarrow 0}\lim\limits_{\rho\rightarrow 0}\int_\pi^{2\pi}d\phi\frac{Imf(E_r-\rho e^{i\phi},0)(\rho\cos{\phi})}{|(E_r-\rho e^{i\phi})-(E_r+i\alpha E_i)|^2}(-i\rho e^{i\phi})\rightarrow 0 566 \end{equation} 567 Thus, we finally obtain: 568 \begin{equation} 569 \oint_\Gamma dE'\frac{f(E',0)-f_\infty(0)}{E'-E}=2i(-\pi Ref(E',0)+\pi f_\infty(0)+P\int_0^\infty dE'\frac{Imf(E',0)}{E'-E}) 570 \end{equation} 571 Which is equal to 572 \begin{equation} 573 Ref(E',0)=f_\infty(0)+\frac{1}{\pi}P\int_0^\infty dE'\frac{Imf(E',0)}{E'-E}-\sum_i^N\frac{Res_{E'=E_i}(f(E',0)-f_\infty(0))}{E_i-E} 574 \end{equation} 575 576 \section{The pion vector from factor and the Omn\`es Problem} 577 Not only do the principles of unitarity and analyticity apply in quantum 578 physical scattering processes, they also work very well within relativistic 579 ones in quantum field theory. For processes involving the strong nuclear force, 580 quantum chromodynamics describe the involved theory. While for high energies, 581 the very usual way, of perturbative expansion works very well, the smaller the 582 energy the more unreliable the perturbative schemes get. The advantage of 583 dispersion relations is now, that they hold non-perturbatively and thus 584 enabling us, to obtain results by plugging in experimental input and deriving 585 relations between observables. One such application is the pion vector form 586 factor, which describes the non-perturbative effects of the strong interaction, 587 affecting the transition of the virtual photon into the pion pair, in a 588 collision between an electron and its anti-particle. The so called Omnés 589 problem describes a way to find the pion VFF, via the $\pi\pi$ - phase shift. 590 \subsection{Unitarity of the scattering matrix} 591 As in quantum mechanics, we also define a scattering matrix in particle 592 physics. This S-matrix describes the transition of incoming particles into 593 outgoing particles in a scattering experiment. The S-operator must be unitary, 594 in order to preserve probability and not to change the norm of the state: 595 \begin{equation} 596 SS^\dagger=S^\dagger S=1 597 \end{equation} 598 This can be used to obtain Watson's final state theorem: 599 \begin{align} 600 \label{eq:rec} 601 \text{Im}(F^V_\pi(s) = F^V_\pi(s) e^{-i\delta_{\pi\pi}(s)}\sin\delta_{\pi\pi}(s) 602 \end{align} 603 \subsection{The Omn\`es Problem} 604 The equations \ref{eq:rec} allow us to carefully reconstruct the pion Vector Form 605 Factor, based on strictly formulated conditions. This is known as the Omn\`es 606 Problem. First of all the equation tells us that $F_\pi^V(s)$ is a complex 607 valued function, as $s$ is an analytic variable in the complex plane, apart 608 from a cut complex s-plane $\Gamma = [s_0, \infty) \subset \mathbb{R}$, where 609 $s_0 = 4M_\pi^2 > 0$. To summarize e the conditions are 610 \begin{itemize} 611 \item $F_\pi^V(s)$ is analytic on the cut complex s-plane 612 $\mathbb{C}\backslash \Gamma$ 613 \item $F_\pi^V(s)\in \mathbb{R} \;\;\; \forall\; s \in 614 \mathbb{R}\backslash \Gamma$ 615 \item $\lim_{\varepsilon \rightarrow 0}(F_\pi^V(s+i\varepsilon) 616 e^{-i\delta_{\pi\pi}(s)}) \in \mathbb{R}$ on $\Gamma$ for a real 617 bounded function $\delta_{\pi\pi}(s)$ 618 \item We assume $F_\pi^V(0) = 1$ and $F_\pi^V(s)$ has no zeros. 619 \end{itemize} 620 We start off with the Couchy Integral 621 \begin{align} 622 \ln(F(s)) = \frac{1}{2\pi i}\oint_C ds' \frac{\ln(F(s'))}{s'-s} 623 \end{align} 624 over the following contour 625 \begin{center} 626 \begin{tikzpicture}[decoration={markings, 627 mark=at position 0.5cm with {\arrow[line width=2pt]{>}}, 628 mark=at position 5cm with {\arrow[line width=2pt]{>}}, 629 mark=at position 13cm with {\arrow[line width=2pt]{>}}, 630 mark=at position 21cm with {\arrow[line width=2pt]{>}}, 631 mark=at position 23cm with {\arrow[line width=2pt]{>}} 632 } 633 ] 634 % The axes 635 \draw[help lines,->] (-3.5,0) -- (3.5,0) coordinate (xaxis); 636 \draw[help lines,->] (0,-3.5) -- (0,3.5) coordinate (yaxis); 637 638 % The path 639 \path[draw,line width=0.8pt,postaction=decorate] 640 (1.5,0.1) -- (3, 0.1) node[below right] {} arc (4:360:3) -- (1.5, -0.1) 641 node[below right] {} arc(345:15:0.4); 642 643 % The labels 644 \draw[thick, ->] (0,0) -- (-2, 2) node[midway, fill=white] {$R$}; 645 \draw[thick, ->] (1.1,0) -- (1.1, 0.4) node[above] {$\varrho$}; 646 \node[below] at (xaxis) {$\text{Re}$}; 647 \node[left] at (yaxis) {$\text{Im}$}; 648 \node[circle,inner sep=1pt,label=below:{$s_0$}, fill=black] at (1.1,0) {}; 649 \end{tikzpicture} 650 \end{center} 651 This means the integral can be separated into 652 \begin{align} 653 \oint_C ds' \frac{\ln(F(s'))}{s'-s} = 654 \lim_{\substack{\varepsilon \rightarrow 0}} 655 \bigg( 656 \int_{C(R)} + \int_{C(\varrho)} + \int_{s_0+i\varepsilon}^{\infty 657 +i\varepsilon} + \int^{s_0-i\varepsilon}_{\infty 658 -i\varepsilon} 659 \bigg) ds' \frac{\ln(F(s'))}{s'-s} 660 \end{align} 661 The integrals over $C(R)$ and $C(\varrho)$ disappear. For the last two 662 integrals we can use the Schwarz reflection principle and then we get 663 \begin{align} 664 \oint_C ds' \frac{\ln(F(s'))}{s'-s} = \frac{1}{\pi} \int_{s_0}^{\infty}ds' 665 \text{Im}\left( 666 \frac{\ln(F(s'))}{s'-s}\right) 667 \end{align} 668 where we used $\text{Im}(z) = \frac{z - z^*}{2i}$ to write the imaginary part 669 here. We look now at equation \ref{eq:rec} and refactor it 670 \begin{align} 671 &\frac{F_\pi^V(s)-F_\pi^V(s)^*}{2i} = F_\pi^V e^{i\delta_{\pi\pi}}(s) 672 \sin(\delta_{\pi\pi}(s)) \\ 673 &F_\pi^V(s) = F_\pi^V(s)^* e^{2i \delta_{\pi\pi}(s)}\\ 674 &\ln(F_\pi^V(s)) = \ln((F_\pi^V e^{-i\delta_{\pi\pi}})^*)+ 675 i\delta_{\pi\pi}(s).\label{eq:use} 676 \end{align} 677 Now we use this equation to compute the integral with variation in $s 678 \rightarrow s+i\varepsilon$ as $\varepsilon$ goes to infinity. 679 \begin{align} 680 \ln(F_\pi^V(s)) &= \lim_{\substack{\varepsilon \rightarrow \infty}} 681 \ln(F_\pi^V(s+i\varepsilon)) = \\ 682 &= \lim_{\substack{\varepsilon \rightarrow \infty}}\frac{1}{\pi} 683 \int_{s_0}^{\infty} 684 \text{Im}\left(\frac{F_\pi^V(s')}{s'-s-i\varepsilon}\right)=\\ 685 &=\lim_{\substack{\varepsilon \rightarrow \infty}}\frac{1}{\pi} 686 \int_{s_0}^{\infty} 687 \text{Im}\left(\frac{\ln((F_\pi^V e^{-i\delta_{\pi\pi}})^*)+ 688 i\delta_{\pi\pi}}{s'-s-i\varepsilon}\right) 689 \end{align} 690 the part $F_\pi^V e^{-i\delta_{\pi\pi}}$ needs to be real that means 691 \begin{align} 692 \ln(F_\pi^V(s)) &= \lim_{\substack{\varepsilon \rightarrow \infty}}\frac{1}{\pi} 693 \int_{s_0}^{\infty} 694 \frac{\delta_{\pi\pi}(s')}{s'-s-i\varepsilon} =\\ 695 &= \ln(F_\pi^V(0)) + \lim_{\substack{\varepsilon \rightarrow \infty}} 696 \frac{s}{\pi} 697 \int_{s_0}^{\infty} 698 \frac{\delta_{\pi\pi}(s')}{s'(s'-s-i\varepsilon)} 699 \end{align} 700 with the condition $F_\pi^V(0) = 1$ and the relation from \ref{eq:pv} we get 701 \begin{align} 702 F_\pi^V(s) = \exp 703 \bigg( 704 \frac{s}{\pi}\PV_{s_0}^\infty ds' \frac{\delta_{\pi\pi}(s')}{s'(s'-s)} 705 + i\delta_{\pi\pi}(s) 706 \bigg). 707 \end{align} 708 To compute the principal value integral we use the following trick 709 \begin{align} 710 \frac{s}{\pi}\PV_{s_0}^\infty ds' \frac{\delta_{\pi\pi}(s')}{s'(s'-s)} = 711 \frac{s}{\pi} \int_{s_0}^\infty ds' \frac{\delta_{\pi\pi}(s') 712 -\delta_{\pi\pi}(s)}{s'(s'-s)}+ 713 \delta_{\pi\pi}\frac{s}{\pi}\PV_{s_0}^\infty \frac{1}{s'(s'-s)}. 714 \end{align} 715 The first integral can be computed numerically, the second one has an analytic 716 solution for $s > s_0$. We use the definition of the principal value and circle 717 around $s$ in a small half circle with the radius $r$. 718 \begin{align} 719 \PV_{s_0}^\infty \frac{1}{s'(s'-s)} = \lim_{\substack{r\rightarrow0}} 720 \bigg( 721 \int_{s_0}^{s-r}ds' + \int_{s+r}^{\infty} ds' 722 \bigg)\frac{1}{s'(s'-s)} 723 \end{align} 724 then we simply integrate and plug in 725 \begin{align} 726 \PV_{s_0}^\infty \frac{1}{s'(s'-s)} &= \lim_{\substack{r\rightarrow 0}} 727 \bigg( 728 \frac{\ln(s'-s) - \ln(s')}{s}\big|_{s'= s_0}^{s'= s-r} 729 \frac{\ln(s'-s)-\ln(s')}{s}\big|_{s'=s+r}^{s'=\infty} 730 \bigg) =\\ 731 &=\frac{1}{s}\ln\left(\frac{s_0}{s_0-s}\right) 732 \end{align} 733 that means the second integral is 734 \begin{align} 735 \delta_{\pi\pi}\frac{s}{\pi}\PV_{s_0}^\infty \frac{1}{s'(s'-s)} 736 =\delta_{\pi\pi}(s)\frac{1}{\pi} \ln\left(\frac{s_0}{s_0 -s }\right) 737 \end{align} 738 739 Lastly we would like to plot the modulus of the Omn\`es representation of the 740 pion vector form 741 factor. For the phase we would usually use experimental values, but in our case 742 we will use the Breit-Wigner representation of the pion VVF to compute the 743 phase $\delta_{\pi\pi}$. A reminder the Breit-Wigner representation is the 744 following 745 \begin{align} 746 F^V_\pi(s)_{BW} = \frac{M_\varrho^2}{M_\varrho^2 - s - iM_\varrho 747 \Gamma_\varrho(s)} 748 \end{align} 749 where 750 \begin{align} 751 \Gamma_\varrho(s) := \Gamma_\varrho\frac{s}{M_\varrho^2} \left( 752 \frac{\sigma_\pi(s)}{\sigma_\pi(M_\varrho^2)} 753 \right)^3 \theta(s-4M_\pi^2), \;\;\;\;\;\; \sigma_\pi(s) := 754 \sqrt{1-\frac{4M_\pi^2}{s}}. 755 \end{align} 756 Thus our phase shift will be 757 \begin{align} 758 \delta_{\pi\pi}(s) := \arg\left(F_\pi^V(s)_{BW}\right) 759 \end{align} 760 where we will use numerical values for $M_\varrho = 0.77\ \text{GeV}$, 761 $\Gamma_\varrho = 0.15\ \text{GeV}$, $M_\pi = 0.14 \text{GeV}$. 762 \begin{figure}[H] 763 \centering 764 \includegraphics[width=0.9\textwidth]{./omnes_bw.png} 765 \caption{Plot of the modulus of the Breit-Wigner(red) and the Omn\`es 766 representation(black) of the pion Vector From Factor for $s \in [0, 1]$ in $GeV^2$} 767 \end{figure} 768 The code for the plots and some minor calculations e.g. numerical integration 769 can be found in \cite{code}. 770 771 \nocite{mathe} 772 \nocite{stoffer} 773 \nocite{omnes} 774 \printbibliography 775 \end{document}