ncg

bachelorthesis in physics
git clone git://popovic.xyz/ncg.git
Log | Files | Refs

commit 08728ff7db193b88e1a312f16cd0404357269f9e
parent fc85583bf898ab83bf2f390cfd910204d6aeaed8
Author: miksa234 <milutin@popovic.xyz>
Date:   Tue, 16 Mar 2021 20:35:57 +0100

week5 almost done need to add worked exercises

Diffstat:
Aweek5.pdf | 0
Aweek5.tex | 416+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
2 files changed, 416 insertions(+), 0 deletions(-)

diff --git a/week5.pdf b/week5.pdf Binary files differ. diff --git a/week5.tex b/week5.tex @@ -0,0 +1,416 @@ +\documentclass[a4paper]{article} + +\usepackage[T1]{fontenc} +\usepackage[utf8]{inputenc} + +\usepackage{mathptmx} + +\usepackage{subcaption} +\usepackage[shortlabels]{enumitem} +\usepackage{amsmath,amssymb} +\usepackage{amsthm} +\usepackage{bbm} +\usepackage{graphicx} +\usepackage[colorlinks=true,naturalnames=true,plainpages=false,pdfpagelabels=true]{hyperref} +\usepackage[parfill]{parskip} + +\usepackage{tikz} +\usetikzlibrary{patterns,decorations.pathmorphing,positioning} + +\theoremstyle{definition} +\newtheorem{definition}{Definition} + +\theoremstyle{definition} +\newtheorem{question}{Question} + +\theoremstyle{definition} +\newtheorem{example}{Example} + +\theoremstyle{theorem} +\newtheorem{theorem}{Theorem} + +\theoremstyle{theorem} +\newtheorem{lemma}{Lemma} + +\theoremstyle{theorem} +\newtheorem{exercise}{Exercise} + +\theoremstyle{definition} +\newtheorem{solution}{Solution} + +\newtheorem*{idea}{Proof Idea} + + +\title{Notes on \\ Noncommutative Geometry and Particle Physics} +\author{Popovic Milutin} +\date{Week 5: 12.03 - 19.03} + +\begin{document} + +\maketitle +\tableofcontents + +\section{Noncommutative Geometric Spaces } +\subsection{Exercises} +\begin{exercise} + Make the proof of the last theorem (see week4.pdf) explicit for $N=3$ +\end{exercise} +\begin{solution} + For the C* algebra we have $A=\mathbb{C}^3$ + For $H$ we have $H = (\mathbb{C}^2)^{\oplus 3} = H_2 \oplus H_2^1 \oplus H_2^2$. + The symmetric operator $D$ acting on $H$ and the representation $\pi (a)$: + \begin{align} + \pi((a(1), a(2), a(3)) &= + \begin{pmatrix} + a(1) & 0 \\ 0 & a(2) + \end{pmatrix} \oplus + \begin{pmatrix} + a(1) & 0 \\ 0 & a(3) + \end{pmatrix} \oplus + \begin{pmatrix} + a(2) & 0 \\ 0 & a(2) + \end{pmatrix} \nonumber \\ + & = + \begin{pmatrix} + a(1) & 0 & 0 & 0 & 0 & 0 \\ + 0 & a(2) & 0 & 0 & 0 & 0 \\ + 0 & 0 & a(1) & 0 & 0 & 0 \\ + 0 & 0 & 0 & a(3) & 0 & 0 \\ + 0 & 0 & 0 & 0 & a(2) & 0 \\ + 0 & 0 & 0 & 0 & 0 & a(3) + \end{pmatrix} \\ + D &= + \begin{pmatrix} + 0 & x_1 \\ x_1 & 0 + \end{pmatrix} \oplus + \begin{pmatrix} + 0 & x_1 \\ x_1 & 0 + \end{pmatrix} \oplus + \begin{pmatrix} + 0 & x_1 \\ x_1 & 0 + \end{pmatrix} \nonumber \\ + &= + \begin{pmatrix} + 0 & x_1 & 0 & 0 & 0 & 0 \\ + x_1 & 0 & 0 & 0 & 0 & 0 \\ + 0 & 0 & 0 & x_2 & 0 & 0 \\ + 0 & 0 & x_2 & 0 & 0 & 0 \\ + 0 & 0 & 0 & 0 & 0 & x_3 \\ + 0 & 0 & 0 & 0 & x_3 & 0 \\ + \end{pmatrix} \\ + \end{align} + Then the norm of the commutator would be the largest eigenvalue + \begin{align} + &||[D, \pi(a)]|| = ||D\pi(a) - \pi(a)D||\nonumber \\ + &= + \left|\left| + \setlength{\arraycolsep}{0.1cm} + \renewcommand{\arraystretch}{0.1} + \begin{pmatrix} + 0 & x_1(a(2)-a(1)) & 0 & 0 & 0 & 0 \\ + -x_1(a(2)-a(1)) & 0 & 0 & 0 & 0 & 0 \\ + 0 & 0 & 0 & x_2(a(3)-a(1)) & 0 & 0 \\ + 0 & 0 & -x_2(a(3)-a(1)) & 0 & 0 & 0 \\ + 0 & 0 & 0 & 0 & 0 & x_3(a(3)-a(2)) \\ + 0 & 0 & 0 & 0 & -x_3(a(2)-a(3)) & 0 \\ + \end{pmatrix}\right|\right| \label{skew matrix} + \end{align} +The matrix in Equation \ref{shew matrix} is a skew symmetric matrix its eigenvalues +are $i\lambda_1, i\lambda_2, i\lambda_3, i\lambda_4$, where the $\lambda$'s are on the +upper and lower diagonal check \url{https://en.wikipedia.org/wiki/Skew-symmetric_ +matrix#Skew-symmetrizable_matrix}. The matrix norm of would be the maximum of the norm of +the larges eigenvalues: +\begin{align} + ||[D, \pi(a)]|| = \max_{a\in A}\{x_i|a(j)-a(k)|\} +\end{align} +\end{solution} + +\begin{exercise} + Compute the metric on the space of three points given by $d_{ij} = + \sup_{a\in A}\{|a(i) - a(j)|: ||[D, \pi(a)]|| \leq 1\}$ for the set of data + $A = \mathbb{C}^3$ acting in the defining representation $H = \mathbb{C}^3$, and + \begin{align*} + D = + \begin{pmatrix} + 0 & d^{-1} & 0 \\ + d^{-1} & 0 & 0 \\ + 0 & 0 & 0 + \end{pmatrix} + \end{align*} + for some $d \in \mathbb{R}$ +\end{exercise} +\begin{solution} + We have $A=\mathbb{C}^3$, $H=\mathbb{C}^3$ and $D$ from above, then + + \begin{align} + ||[D, \pi(a)]|| &= d^{-1}\left|\left| + \begin{pmatrix} + 0 & a(2)-a(1) & 0 \\ + -(a(2)-a(1)) & 0 & 0 \\ + 0 & 0 & 0 + \end{pmatrix} \right|\right| \\ + &= d^{-1} |a(2) - a(1)| + \end{align} +\end{solution} +\begin{exercise} + Show that $d_{ij}$ from Equation \ref{ext metric} is a metric on $\hat{A}$ by + establishing that: + \begin{align} + d_{ij} &= 0\;\;\; \Leftrightarrow \;\;\; i=j \label{metric 1} \\ + d_{ij} &= d_{ji} \label{metric 2}\\ + d_{ij} &\leq d_{ik} + d_{kj} \label{metric 3} + \end{align} + \begin{equation} \label{ext metric} + d_{ij} = \sup_{a\in A}\big\{|\text{Tr}(a(i)) - \text{Tr}((a(j))|: ||[D, a]|| \leq 1\big\} + \end{equation} +\end{exercise} +\begin{solution} +For Equation \ref{metric 1} set $i=j$ in \ref{ext metric}. +\begin{align*} + d_{ii} &= \sup_{a \in A}\{|\text{Tr}(a(i)) - \text{Tr}((a(i))|: ||[D, a]|| \leq + 1\big\} \\ + &= \sup_{a \in A}\{0: ||[D, a]|| \leq 1\big\} = 0 +\end{align*} +For Equation \ref{metric 2} obviously we have the commuting property of +addition. +\newline +For Equation \ref{metric 3}, for $k=j$ then $d_{kj} = 0$ and the equality +holds. For $i = k$ then $d_{ik} = 0$ and equality holds. Else set $d_{ik} = +1$ and $d_{kj} = 1$ then $d_{ij} = 1 \leq d_{ik} + d_{kj} = 2$ +\end{solution} + +\subsection{Properties of Matrix Algebras} +\begin{lemma} + If $A$ is a unital C* algebra that acts faithfully on a finite + dimensional Hilbert space, then $A$ is a matrix algebra of the Form: + \begin{equation} + A \simeq \bigoplus _{i=1}^N M_{n_i}(\mathbb{C}) + \end{equation} +\end{lemma} +\begin{proof} + Since $A$ acts faithfully on a Hilbert space, then $A$ is a C* + subalgebra of a matrix algebra $L(H) = M_{\dim (H)}(\mathbb{C} + \Rightarrow A \simeq \text{Matrix algebra}$. +\end{proof} + +\begin{question} + What does the author mean when he sais 'acts faithfully on a + Hilbertspace`? Then the representation is fully reducible, or that the + presentation is irreducible? +\end{question} + +\begin{example} + $A = M_n(\mathbb{C})$ and $H=\mathbb{C}^n$, $A$ acts on $H$ with matrix + multiplication and standard inner product. $D$ on $H$ is a hermitian + matrix $n\times n$ matrix. +\end{example} + +$D$ is referred to as a finite Dirac operator as in as its $\infty$ +dimensional on Riemannian Spin manifolds coming in Chapter 4. Now we +introduce it as +\begin{equation} + \frac{a(i)-a(j)}{d_{ij}} +\end{equation} +for each pair $i$, $j$ $\in X$ the finite dimensional discrete space. +This appears in the entries in the commutator $[D, a]$ in the above +exercises. +\begin{definition} + Given an finite spectral triple $(A, H, D)$, the $A$-bimodule of + Connes' differential one form is: + \begin{equation} + \Omega _D ^1 (A) := \left\{ \sum _k a_k[D, b_k]: a_k, b_k \in A \right\} + \end{equation} +\end{definition} + +\begin{question} + Is the Conne's differential one form the set of all '1st order + differential operators` given $A$, that act on $H$? +\end{question} +Then there is a map $d:A\rightarrow \Omega _D ^1 (A)$, $d = [D, \cdot]$. + +\begin{lemma} + Let $(A, H, D) = (M_n(\mathbb{C}, \mathbb{C}^n, D)$, with $D$ a hermitian + $n\times n$ matrix. If $D$ is not a multiple of the identity then: + \begin{equation} + \Omega _D ^1 (A) \simeq M_n(\mathbb{C}) = A + \end{equation} +\end{lemma} + +\begin{proof} + Assume $D = \sum _i \lambda _i e_{ii}$ (diagonal), $\lambda _i \in \mathbb{R}$ and + $\{e_{ij}\}$ the basis of $M_n(\mathbb{C}$. For fixed $i$, $j$ choose $k$ + such that $\lambda _k \neq \lambda _j$ then + \begin{align*} + \left(\frac{1}{\lambda _k - \lambda _j} e_{ik}\right) [D, e_{kj}] = + e_{ij} + \end{align*} + $e_{ij}\in \Omega _D ^1 (A)$ by the above definition. And $\Omega _D ^1 + (A) \subset L(\mathbb{C}^n) = H \simeq M_n(\mathbb{C}) = A$ +\end{proof} + +\subsection{Morphisms Between Finite Spectral Triples} +\begin{definition} + two finite spectral tripes $(A_1, H_1, D_1)$ and $(A_2, H_2, D_2)$ are + called unitarily equivalent if + \begin{itemize} + \item $A_1 = A_2$ + \item $\exists \;\; U: H_1 \rightarrow H_2$, unitary with + \begin{enumerate} + \item $U\pi_1(a)U^* = \pi_2(a)$ with $a \in A_1$ + \item $UD_1 U^* = D_2$ + \end{enumerate} + \end{itemize} +\end{definition} + +Some remarks +\begin{itemize} + \item the above is an equivalence relation + \item spectral unitary equivalence is given by the unitaries of the + matrix algebra itself + \item for any such $U$ then $(A, H, D) \sim (A, H, UDU^*)$ + \item $UDU^* = D + U[D, U^*]$ of the form of elements in + $\Omega _D^1 (A)$. +\end{itemize} + +Extending the this relation we look again at the notion of equivalence from +Morita equivalence of Matrix Algebras. +\newline + +Given a Hilbert bimodule $E \in KK_f(B, A)$ and $(A, H, D)$ we construct +a finite spectral triple on $B$, $(B, H', D')$ +\begin{equation} + H' = E \otimes _A H +\end{equation} +This extends the left action on $B$ with the right action and inherits the +$\mathbb{C}$ valued inner product space. +\begin{equation} + D'(e\otimes \xi) = e \otimes D \xi + \nabla (e) \xi \;\;\;\; e\in + E, a\in A +\end{equation} +Where $\nabla$ is called the \textit{connection on the right A-module E} +associated with the derivation $d=[D, \cdot]$ and satisfying the +\textit{Leibnitz Rule} which is +\begin{equation} + \nabla(ae) = \nabla(e)a + e \otimes [D, a] \;\;\;\;\; e\in E,\; a\in A +\end{equation} +Then the linearity of the balanced tensor product $E \otimes _A H$ is +satisfied +\begin{align*} + D'(ea \otimes \xi - e \otimes a \xi) &= D'(ea \otimes \xi) - D'(e + \otimes \xi) \\ + &= ea\otimes D\xi + \nabla(ae) \xi - e \otimes D(a\xi ) - \nabla (e)a + \xi \\ + &= 0 +\end{align*} +With the information thus far we can prove the following theorem +\begin{theorem} + If $(A, H, D)$ a finite spectral triple, $E \in KK_f(B, A)$. + Then $(V, E\otimes _A H, D')$ is a finite spectral triple, provided that + $\nabla$ satisfies the compatibility condition + \begin{equation} + \langle e_1, \nabla e_2 \rangle _E - \langle \nabla e_1, e_2 + \rangle _E = d\langle e_1, e_2 \rangle _E \;\;\;\; e_1, e_2 \in E + \end{equation} +\end{theorem} +\begin{proof} + $E\otimes _A H$ was shown in the previous section (text before the + theorem). The only thing left is to show that $D'$ is a symmetric + operator, this we can just compute. Let $e_1, e_2 \in E$ and $\xi _1, + \xi _2 \in H$ then + \begin{align*} + \langle e_1 \otimes \xi _1, D'(e_2 \otimes \xi_2)\rangle _{E\otimes _A H} &= + \langle \xi _1, \langle e_1, \nabla e_2\rangle _E \xi _2\rangle + \langle \xi _1 , \langle e_1, e_2\rangle _E D\xi + _2\rangle _H \\ + &= \langle \xi _1, \langle \nabla e_1, e_2\rangle _E \xi _2\rangle _H + \langle \xi _1, d\langle e_1, e_2\rangle _E + \xi _2\rangle _H \\ + &+ \langle D\xi _1,\langle e_1, e_2\rangle _E \xi _2\rangle _H - \langle \xi _1, [D, \langle e_1, e_2\rangle _E] \xi + _2 \rangle _H \\ + &= \langle D'(e_1 \otimes \xi _1), e_2 \otimes \xi _2\rangle _{E \otimes _A H} + \end{align*} +\end{proof} + +\subsection{Graphing Finite Spectral Triples} +\begin{definition} + A \textit{graph} is a ordered pair $(\Gamma ^{(0)}, \Gamma ^{(1)})$. + Where $\Gamma ^{(0)}$ is the set of vertices (nodes) and $\Gamma ^{(1)}$ + a set of pairs of vertices (edges) +\end{definition} +\begin{figure}[h!] + \centering +\begin{tikzpicture}[ + mass/.style = {draw,circle, minimum size=0.2cm, inner sep=0pt, thick}, + spring/.style = {decorate,decoration={zigzag, pre length=1cm,post length=1cm,segment length=5pt}},] + \node[mass] (m1) at (1,1.5) {}; + \node[mass] (m2) at (-1,1.5) {}; + \node[mass] (m3) at (0,0) {}; + + \draw (m1) -- (m2); + \draw (m1) -- (m3); + \draw (m2) -- (m3); + \end{tikzpicture} + \caption{A simple graph with three vertices and three edges} +\end{figure} +\begin{definition} + A $\Lambda$-decorated graph is given by an ordered pair $(\Gamma, + \Lambda)$ of a finite graph $\Gamma$ and a set of positive integers + $\Lambda$ with the labeling + \begin{itemize} + \item of the vetices $v\in \Gamma ^{(0)}$ given by $n(\nu) \in + \Lambda$ + \item of the edges $e = (\nu _1, \nu _2) \in \Gamma ^{(1)}$ by + operators + \begin{itemize} + \item $D_e: \mathbb{C}^{n(\nu _1)} \rightarrow + \mathbb{C}^{n(\nu _2)}$ + \item and $D_e^*: \mathbb{C}^{n(\nu _2)} \rightarrow + \mathbb{C}^{n(\nu _1)}$ its conjugate traspose + (pullback?) + \end{itemize} + \end{itemize} + such that + \begin{equation} + n(\Gamma ^{(0)}) = \Lambda + \end{equation} +\end{definition} +\begin{question} + Would then $D_e$ be the pullback? +\end{question} +\begin{question} + These graphs are important in the next chapter I should look + into it more, I don't understand much here, specific + how to construct them with the abstraction of a spectral triple... +\end{question} + +The operator $D_e$ between $\textbf{n}_i$ and $\textbf{n}_j$ add up to +$D_{ij}$ +\begin{align*} + D_{ij} = \sum\limits_{\substack{e = (\nu _1, \nu _2) \\ n(\nu _1) = + \textbf{n}_i \\ n(\nu _2) = \textbf{n}_j}} D_e +\end{align*} + +\begin{theorem} + There is a on to one correspondence between finite spectral triples + modulo unitary equivalence and $\Lambda$-decorated graphs, given by + associating a finite spectral triples $(A, H, D)$ to a $\Lambda$ decorated + graph $(\Gamma, \Lambda)$ in the following way: + \begin{equation} + A = \bigoplus _{n\in \Lambda} M_n(\mathbb{C}); \;\;\; + H = \bigoplus _{\nu \in \Gamma ^{(0)}} \mathbb{C}^{n(\nu)}; \;\;\; + D = \sum _{e \in \Gamma ^{(1)}} D_e + D_e^* + \end{equation} +\end{theorem} +\begin{example} +\begin{figure}[h!] + \centering + \begin{tikzpicture}[ + mass/.style = {draw,circle, minimum size=0.3cm, inner sep=0pt, thick}, + ] + + \node[mass, label={\textbf{n}}] (m1) at (1,0) {}; + \draw (m1) to [out=330, in=210, looseness=25] node[above] {$D_e$} (m1); + \end{tikzpicture} + \caption{A $\Lambda$-decorated Graph of $(M_n(\mathbb{C}), \mathbb{C}^n, + D = D_e + D_e^*)$} +\end{figure} +\end{example} +\end{document}