commit 24757a9157b3ea60fb7ab6f74fbf227ef760e23d
parent 8b6913bddf52c3523aad41aab2419135c3b3b448
Author: miksa <milutin@popovic.xyz>
Date: Wed, 9 Jun 2021 13:20:10 +0200
initial week10
Diffstat:
2 files changed, 67 insertions(+), 3 deletions(-)
diff --git a/src/week10.pdf b/src/week10.pdf
Binary files differ.
diff --git a/src/week10.tex b/src/week10.tex
@@ -135,9 +135,73 @@ Glaser}
\end{align}
\end{proposition}
\begin{proof}
- Will maybe be filled in if I go through the last two chapters in the
- book and understand the proof.
- \textbf{PROOF IN week10.pdf}
+ The dimension of our manifold $M$ is $\dim(M) = \text{Tr}(id) =4 $. Let us
+ take a $x \in M$, we have an asymtotic expansion of
+ $\text{Tr}(f(\frac{D_\omega}{\Lambda}))$ as $\Lambda \rightarrow \infty$
+ \begin{align}
+ \text{Tr}(f(\frac{D_\omega}{\Lambda})) \simeq& \ 2f_4 \Lambda ^4
+ a_0(D_\omega ^2)+ 2f_2\Lambda^2 a_2(D_\omega^2) \\&+ f(0) a_4(D_\omega^4)
+ +O(\Lambda^{-1}).
+ \end{align}
+ Note that the heat kernel coefficients are zero for uneven $k$,
+ furthermore they are dependent on the fluctuated Dirac operator
+ $D_\omega$. We can rewrite the heat kernel coefficients in terms of $D_M$,
+ for the first two we note that $N:= \text{Tr}\mathbbm{1_{H_F}})$
+ \begin{align}
+ a_0(D_\omega^2) &= Na_0(D_M^2)\\
+ a_2(D_\omega^2 &= Na_2(D_M^2) - \frac{1}{4\pi^2}\int_M
+ \text{Tr}(\Phi^2)\sqrt{g}d^4x
+ \end{align}
+ For $a_4$ we need to extend in terms of coefficients of $F$, look week9.pdf
+ for the standard version,
+ \begin{align}
+ &\frac{1}{360}\text{Tr}(60sF)= -\frac{1}{6}S(Ns + 4
+ \text{Tr}(\Phi^2))\\
+ \nonumber\\
+ &F^2 = \frac{1}{16}s^2\otimes 1 + 1\otimes \Phi^4 - \frac{1}{4}
+ \gamma^\mu\gamma^\nu \gamma^\varrho\gamma^\sigma F_{\mu\nu}F^{\mu\nu}+\\
+ &\;\;\;\;\;\;\;+\gamma^\mu\gamma^\nu\otimes(D_\mu\Phi)(D_\nu
+ \Phi)+\frac{1}{2}s\otimes \Phi^2 + \ \text{traceless terms}\\
+ \nonumber\\
+ &\frac{1}{360}\text{Tr}(180F^2) = \frac{1}{8}s^2N + 2\text{Tr}(\Phi^4)
+ + \text{Tr}(F_{\mu\nu}F^{\mu\nu}) +\\
+ &\;\;\;\;\;\;\;+2\text{Tr}((D_\mu\Phi)(D^\mu\Phi))
+ + s\text{Tr}(\Phi^2)\\
+ \nonumber\\
+ &\frac{1}{360}\text{Tr}(-60\DeltaF)=
+ \frac{1}{6}\Delta(Ns+4\text{Tr}(\Phi^2)).
+ \end{align}
+ Now for the cross terms of $\Omega_{\mu\nu}^E\Omega^{E\mu\nu}$ the trace
+ vanishes because of the anti-symmetric properties of the Riemannian
+ Cruvature Tensor
+ \begin{align}
+ \Omega_{\mu\nu}^E\Omega^{E\mu\nu} = \Omega_{\mu\nu}^S\Omega^{S\mu\nu}
+ \otimes 1 - 1\otimes F_{\mu\nu}F^{\mu\nu} + 2i\Omega_{\mu\nu}^S
+ \otimes F^{\mu\nu}
+ \end{align}
+ the trace of the cross term vanishes because
+ \begin{align}
+ \text{Tr}(\Omega^{S}_{\mu\nu} = \frac{1}{4}
+ R_{\mu\nu\varrho\sigma}\text{Tr}(\gamma^\mu\gamma^\nu) = \frac{1}{4}
+ R_{\mu\nu\varrho\sigma}g^{\mu\nu} =0
+ \end{align}
+ and the trace of the whole term is
+ \begin{align}
+ \frac{1}{360}\text{Tr}(30\Omega^E_{\mu\nu}\Omega^{E\mu\nu}) =
+ \frac{N}{24}R_{\mu\nu\varrho\sigma}R^{\mu\nu\varrho\sigma}
+ -\frac{1}{3}\text{Tr}(F_{\mu\nu}F^{\mu\nu}).
+ \end{align}
+ Plugging the results into $a_4$ and simplifying we can write
+ \begin{align}
+ a_4(x, D_\omega^4) &= Na_4(x, D_M^2) + \frac{1}{4\pi^2}\bigg(\frac{1}{12} s
+ \text{Tr}(\Phi^2) + \frac{1}{2}\text{Tr}(\Phi^4) \\
+ &+ \frac{1}{4}
+ \text{Tr}((D_\mu\Phi)(D^\mu \Phi)) + \frac{1}{6}
+ \Delta\text{Tr}(\Phi^2) + \frac{1}{6}
+ \text{Tr}(F_{\mu\nu}F^{\mu\nu})\bigg)
+ \end{align}
+ The only thing left is to plug in the heat kernel coefficients into the
+ heat kernel expansion above.
\end{proof}
\section{Fermionic Action}