ncg

bachelorthesis in physics
git clone git://popovic.xyz/ncg.git
Log | Files | Refs

commit 2b11e4d44fc696ca2dbb8048cc280bd250de0d0b
parent da75f78c681a6deb7b42ee5ccf92cc30ba40cce9
Author: miksa234 <milutin@popovic.xyz>
Date:   Thu, 25 Mar 2021 17:41:21 +0100

done writing up not done with exercises

Diffstat:
Msrc/week6.tex | 188+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1 file changed, 188 insertions(+), 0 deletions(-)

diff --git a/src/week6.tex b/src/week6.tex @@ -85,5 +85,193 @@ \section{Finite Real Noncommutative Spaces} \subsection{Finite Real Spectral Triples} +Add on to finite real spectral triples a \textit{real structure}. The +requirement is that $H$ is a $A$-$A$-bimodule (before only a $A$-left +module). +\newline + +For this we introduce a $\mathbb{Z}_2$-grading $\gamma$ with +\begin{align} + &\gamma ^* = \gamma \\ + &\gamma ^2 = 1 \\ + &\gamma D = - D \gamma\\ + &\gamma a = a \gamma \;\;\;\; a\in A +\end{align} + +\begin{definition} + A \textit{finite real spectral triple} is given by a finite spectral + triple $(A, H, D)$ and a anti-unitary operator $J:H\rightarrow H$ called + the \textit{real structure}, such that + \begin{align} + a^\circ := J a^* J^{-1} + \end{align} + is a right representation of $A$ on $H$, that is $(ab)^\circ = b^\circ + a^\circ$. With two requirements + \begin{align} + &[a, b^\circ] = 0\\ + &[[D, a],b^\circ] = 0. + \end{align} + They are called the \textit{commutant property}, and mean that the left + action of an element in $A$ and $\Omega _D^1(A)$ commutes with the right + action on $A$. +\end{definition} +\begin{definition} + The $KO$-dimension of a real spectral triple is determined by the sings + $\epsilon, \epsilon ' ,\epsilon '' \in \{-1, 1\}$ appearing in + \begin{align} + &J^2 = \epsilon \\ + &JD = \epsilon \ DJ\\ + &J\gamma = \epsilon '' \gamma J. + \end{align} +\end{definition} +\begin{table}[h!] + \centering + \caption{$KO$-dimension $k$ modulo $8$ of a real spectral triple} + \begin{tabular}{ c | c c c c c c c c} + \hline + $k$ & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ + \hline + $\epsilon$ & 1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 \\ + $\epsilon '$ & 1 & -1 & 1 & 1 & 1 & -1 & 1 & 1 \\ + $\epsilon ''$ & 1 & & -1 & & 1 & & -1 & \\ + \hline + \end{tabular} +\end{table} + + +\begin{definition} +An opposite-algebra $A^\circ$ of a $A$ is defined to be equal to $A$ as a +vector space with the opposite product +\begin{align} + &a\circ b := ba\\ + &\Rihtarrow a^\circ = Ja^* J^{-1} \;\;\; \text{defines the left + representation of $A^\circ$ on $H$} +\end{align} +\end{definition} + +\begin{example} + Matrix algebra $M_N(\mathbb{C})$ acting on $H=M_N(\mathbb{C})$ by left + matrix multiplication with the Hilbert Schmidt inner product. + \begin{align} + \langle a , b \rangle = \text{Tr}(a^* b) + \end{align} + Then we define $\gamma (a) = a$ and $J(a) = a^*$ with $a\in H$. + Since $D$ mus be odd with respect to $\gamma$ it vanishes identically. +\end{example} + +\subsection{Morphisms Between Finite Real Spectral Triples} +Extend unitary equivalence of finite spectral triples to real ones (with $J$ +and $\gamma$) + +\begin{definition} + We call two finite real spectral triples $(A_1, H_1 ,D_1 ; J_1 , \gamma + _1)$ and $(A_2, H_2, D_2; J_2, \gamma _2)$ unitarily equivalent if $A_1 = + A_2$ and if there exists a unitary operator $U: H_1 \rightarrow H_2$ such + that + \begin{align} + &U\pi_1(a) U^* = \pi _2(a)\\ + &UD_1U^*=D_2\\ + &U\gamma _1 U^* = \gamma _2\\ + &UJ_1 U^* = J_2 + \end{align} +\end{definiton} +\begin{definiton} + Let $E$ be a $B$-$A$ bimodule. The \textit{conjugate Module} $E^\circ$ is + given by the $A$-$B$-bimodule. + \begin{align} + E^\circ = \{\bar{e} : e\in E\} + \end{align} + with + \begin{align} + a \cdot \bar{e} \cdot b = b^* \bar{e} a^* \;\;\;\; \forall a\in A, b \in + B + \end{align} +\end{definiton} +$E^\circ$ is not a Hilbert bimodule for $(A, B)$ because it doesn't have a +natural $B$-valued inner product. But there is a $A$-valued inner product on +the left $A$-module $E^\circ$ with +\begin{align} + \langle \bar{e}_1, \bar{e}_2 \rangle = \langle e_2 , e_1 \rangle + \;\;\;\; e_1, e_2 \in E +\end{align} +and linearity in $A$: +\begin{aling} + \langle a \bar{e}_1, \bar{e}_2 \rangle = a \langle \bar{e}_1, \bar{e}_2 + \rangle \;\;\;\; \forall a \in A. +\end{aling} +\subsubsection{Construction of a Finite Real Spectral Triple from a Finite +Real Spectral Triple} +Given a Hilbert bimodule $E$ for $(B, A)$ we construct a spectral triple +$(B, H', D'; J', \gamma ')$ from $(A, H, D; J, \gamma)$ + +For the $H'$ we make a $\mathbb{C}$-valued inner product on $H'$ by combining +the $A$ valued inner product on $E$ and $E^\circ$ with the +$\mathbb{C}$-valued inner product on $H$. +\begin{align} + H' := E\otimes _A H \otimes _A E^\circ +\end{align} + +Then the action of $B$ on $H'$ is: +\begin{align} + b(e_2 \otimes \xi \otimes \bar{e}_2 ) = (be_1) \otimes \xi \otimes + \bar{e}_2 +\end{align} +The right action of $B$ on $H'$ defined by action on the right component +$E^\circ$ +\begin{align} + J'(e_1 \otimes \xi \otimes \bar{e}_2) = e_2 \otimes J \xi \otimes + \bar{e}_1 +\end{align} +with $b^\circ = J' b^* (J')^{-1}$, $b^* \in B$ action on $H'$. +\newline + +Then the connections +\begin{align} + &\nabla: E \rightarrow E\otimes _A \Omega _D ^1(A) \\ + &\bar{\nabla}:E^\circ \rightarrow \Omega _D^1(A) \otimes _A E^\circ +\end{align} +give us the Dirac operator on $H' = E \otimes _A H \otimes _A E^\circ$ +\begin{align} + D'(e_1 \otimes \xi \otimes \bar{e}_2) = (\nabla e_1) \xi \otimes + \bar{e_2}+ e_1 \otimes D\xi \otimes \bar{e}_2 + e_1 \otimes + \xi(\bar{\nabla}\bar{e}_2) +\end{align} + +And the right action of $\omega \in \Omega _D ^1(A)$ on $\xi \in H$ is +defined by +\begin{align} + \xi \mapsto \epsilon' J \omega ^* J^{-1}\xi +\end{align} + +Finally for the grading +\begin{align} + \gamma ' = 1 \otimes \gamma \otimes 1 +\end{align} + +\begin{theorem} + Suppose $(A, H, D; J, \gamma)$ is a finite spectral triple of + $KO$-dimension $k$, let $\nabla$ be like above satisfying the + compatibility condition (like with finite spectral triples). + + Then $(B, H',D'; J', \gamma')$ is a finite spectral triple of + $KO$-Dimension $k$. ($H', D', J', \gamma'$ like above) +\end{theorem} + +\begin{proof} + The only thing left is to check if the $KO$-dimension is preserved, + for this we check if the $\epsilon$'s are the same. + \begin{align*} + &(J')^2 = 1 \otimes J^2 \otimes 1 = \epsilon\\ + &J' \gamma '= \epsilon ''\gamma'J' + \end{align*} + and for $\epsilon '$ + \begin{align*} + J'D'(e_1 \otimes \xi \otimes \bar{e}_2)&=J'((\nabla e_1) \xi \otimes + \bar{e_2} + e_1 \otims D\xi \otimes \bar{e}_2 + e_1 \otimes \xi (\tau + \nabla e_2))\\ + &= \epsilon' D'(e_2 \otimes J\xi \otimes \bar{e}_2)\\ + &= \epsilon' D'J'(e_1 \otimes \xi \bar{e}_2) + \end{align*} +\end{proof} \end{document}